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Abstract Based on the principle of Lorentz covariance the
transition matrix elements from an off-shell photon state to
the vacuum are decomposed into the light-cone photon dis-
tribution amplitudes (DAs), in which only two transversal
DAs survive in the on-shell limit. The eight off-shell light-
cone photon DAs corresponding to chiral odd and chiral even
up to twist four, and the corresponding coupling constants
are studied systematically in the instanton vacuum model
of quantum chromodynamics (QCD). The various individ-
ual photon DAs multiplied by their corresponding coupling
constants are expressed in terms of the correlation functions,
which are connected with the spectral densities of an effec-
tive quark propagator and then evaluated in the low-energy
effective theory derived from the instanton vacuum model of
QCD. The explicit analytical expressions and the numerical
results for the photon DAs and their coupling constants are
given.

1 Introduction

Motivated originally by Brodsky and Lepage [1], hadronic
distribution amplitudes (DAs) are introduced as the nonper-
turbative parameters to deal with the hadronic scattering pro-
cess [2–7]. Similar to the hadronic ones, the photon DAs are
also introduced into QCD light-cone sum rules [8], serving
as reliable nonperturbative parameters in various processes
involving photons, such as radiative decay of hyperons [9],
the scattering of real and virtual photons γ γ ∗ → π0 [10,11],
and deeply virtual Compton scattering [12,13].

For hadronic DAs, such as those associated with pions [14,
15], rho [16] and kaons [17–19], a huge amount of work has
been done in the literature. In comparison, there are only a few
works for the calculation of the photon DAs yet, especially
for the ones of higher twist, based on a consistent formalism.
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To the best of our knowledge, the most detailed treatment
of photon DAs of the asymptotic form has been carried out
in [20]. It provides a systematic classification of photon DAs
corresponding to different twists, the number of intermediate
particles, and the chiralities in the framework of the back-
ground field formalism. However, it deals simply with the
real photon case. We understand these results as being valid
in the high-energy region, because the conformal symmetry
is used as a base for expansion. Then some extension work
has been done by means of both an asymptotic treatment and
the effective low-energy theory [21,22]. A very impressive
common characteristic of the results is that a scalar type of the
virtual photon DA is missing. The reason may be traced to the
fact that the authors have adopted two mixing schemes: the
background field formalism [20], which may be understood
to be valid in the high-energy region, and the instanton vac-
uum model, which is basically appropriate in the low-energy
region [21,22].

To exploit such a point, we completely confine ourselves
to the low-energy effective theory of the local type, derived
from the instanton vacuum model of QCD. Along this line,
the leading twist light-cone real photon DA correspond-
ing to the tensor current has been calculated [23]. Within
this theoretical framework, the QCD vacuum is described
as a dilute medium of instanton. The interaction of quarks
with the fermion zero modes of the individual instanton
in this medium provides a mechanism for the chiral sym-
metry breaking [24], which is the most important nonper-
turbative phenomenon in the hadron world. The calculated
masses and coupling constants of the hadrons, such as π , σ ,
ρ, A1, N , Δ, etc., agree with the data, and the correspond-
ing correlation functions are also in accordance with phe-
nomenology [25] and lattice simulations [26,27]. The pic-
ture of the instanton vacuum also leads to the formation of
the gluon condensates [28,29] and the so-called topological
susceptibility needed to cure the U (1) paradox [30,31]. In the
large-Nc limit, the instanton vacuum leads to a very reason-
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able low-energy effective theory of quarks with a momentum-
dependent dynamical mass M(k), which drops to zero at
a Euclidean momentum of the order of the inverse of the
average instanton size, ρ̄−1 ≈ 600 MeV [32]. The whole
approach of this low-energy effective theory is based on
the smallness of (M(k)ρ̄)2, and it is restricted to momenta
k � 1/ρ̄, and at such a low-energy scale there are no dynam-
ical gluons.

Following the same line as in [23], we have calculated
the off-shell photon DAs at leading twist corresponding with
both Dirac structures, σμν and γμ [33–35], and the twist-two
parts of the other two photon DAs (each of which contains
both twist-two and twist-three parts, but we call them twist-
three DAs, different from other references) of the tensor cur-
rent are estimated.

In the present paper, we extend our previous calculation to
higher twists, and we give a complete treatment in the same
way for all light-cone photon DAs up to twist four as appear-
ing in the formalism described before in [33], which is based
on the effective low-energy instanton vacuum model of QCD
and a systematical Lorentz decomposition of the transition
matrix element from an off-shell photon to vacuum through a
nonlocal quark–antiquark bilinear current with a gauge link.
We show that in our formalism there are altogether eight pho-
ton DAs up to twist four, in which only two DAs survive in
the on-shell limit. In particular, there appears a scalar vir-
tual photon DA corresponding to the scalar nonlocal bilinear
quark current, as explicitly demonstrated in the calculation.
However, such a DA is absent in the asymptotic form because,
as the authors claimed, the vacuum expectation value of the
scalar operator does not contain any contribution linear in the
background electromagnetic field.

Besides the above mentioned difference, there is another
difference between our treatment and the one used in Refs.
[21,22]. It is noted that when working with the effective
theory (the covariant version of (31) below), the dynami-
cal quark mass is assumed to be small compared with the
ultraviolet cutoff. In order to compute the photon DAs we
need to couple an electromagnetic field to the quark fields of
the effective Lagrangian. The interaction between the elec-
tromagnetic field and the quarks should be dominated by
the pointlike one, while the non-pointlike interaction, which
arises from the momentum-dependent mass term, is sup-
pressed in (M ρ̄)2 relative to the pointlike one. Therefore,
keeping in mind that we are within leading order in M ρ̄, we
may choose to work with the pointlike electromagnetic cur-
rent (a further discussion of this point can be found in the last
paragraph and Appendix C of this paper).

Our paper is organized as follows: After giving our ideas
and motivation in the introduction, in Sect. 2 we review our
previous formalism to define the off-shell light-cone photon
DAs up to twist four with a slight modification based just on
the Lorentz covariance. Then, every photon DA multiplied by

its coupling constant is individually expressed in terms of the
corresponding correlation function in Sect. 3. Afterwards, in
Sect. 4 the spectral representations of the correlation func-
tions are worked out by using a general spectral representa-
tion of the effective quark propagator, which is assumed to
be of the pole form related to the instanton vacuum model of
QCD for practical purpose. In Sect. 5, the analytical expres-
sions of all photon DAs are shown. The numerical simulation
and the corresponding results are displayed in Sect. 6. Finally,
in Sect. 7 our conclusions and discussions are given. Some
technical details are presented in the appendices.

2 Definition of photon distribution amplitudes
up to twist four

Let us review the formalism suggested in [33] with a slight
modification, in which the photon DAs are defined and clas-
sified into two groups with different chiralities. According
to Lorentz covariance, the nonlocal quark–antiquark current
with light-like separation (z2 = 0) sandwiched between vac-
uum |0〉 and one photon state |γ (P, λ)〉, characterized by
its momentum Pμ and the polarization vector e(λ)σ , can be
decomposed into different Lorentz structures Li (p, n, e(λ)),

〈0|ψ̄(z)Γ [z,−z]ψ(−z)|γ (P, λ)〉

=
∑

i

fi (P
2)Li (p, n, e(λ))

1∫

0

dueiξp·zφ(i)γ (u, P2), (1)

where Γ is one of the Dirac-matrices I , γμ, σμν , γμγ5, and
γ5, u the fraction of the momentum carried by the quark,
ξ = 2u − 1, φ(i)γ (u, P2) is the photon DA with a virtuality
P2 being normalized as

1∫

0

duφ(i)γ (u, P2) = 1, (2)

and fi (P2) its corresponding coupling constant. The notation
[x, y] is the path-ordered gauge link

[x, y] = Pexp

⎧
⎨

⎩i

1∫

0

dτ(x − y)μ[gs Bμ(τ x + (1 − τ)y)

+Q Aμ(τ x + (1 − τ)y)]
}
,

with Bμ and Aμ being the gauge potentials for the strong
and electromagnetic interactions, respectively, and gs and Q
are the corresponding coupling constants.

To find the Lorentz structures Li (p, n, e(λ)) for i = t, v,
corresponding to Γ being σμν (tensor case) and γμ (vector
case), respectively, let us start with the local quark–antiquark
bilinear case, z = 0. It is easy to see that there are only two
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physical vectors available, the polarization vector e(λ)μ and
the momentum Pν , and each photon DA should be linear in
e(λ)μ . Thus

〈0|ψ̄(0)σμνψ(0)|γ (P, λ)〉 = i f (t)γ (P2)T (λ)μν (3)

〈0|ψ̄(0)γμψ(0)|γ (P, λ)〉 = M f (v)γ (P2)e(λ)μ (4)

where T (λ)μν = e(λ)μ Pν − e(λ)ν Pμ, and M is a Lorentz invariant
constant which is taken to be the effective non-vanishing
quark mass at P2 = 0 instead of μ ≡ √|P2| as before to
avoid the influence of some inconvenient behavior of μ near
P2 = 0.

For implementing the light-cone expansion in a systemati-
cal way, let us introduce a light-like vector p such that P → p
as P2 → 0; and for the sake of convenience, introduce fur-
ther the dimensionless light-like vectors n and n̂ parallel to
z and p, respectively, with

n · n̂ = 2, zμ = nμτ.

Then, we go away from z = 0 but keep z2 = 0, and we
decompose e(λ)μ and Pμ into three independent vectors, pμ,

zμ, and e(λ)⊥μ (the projection of e(λ)μ on the plane perpendicular
to both pμ and zμ), namely

e(λ)μ = e(λ)⊥μ + pμ
e(λ) · z

p · z
− zμ

e(λ) · z

2(p · z)2
P2 (5)

Pμ = pμ + P2

2p · z
zμ, (6)

which leads to

T (λ)μν =
3∑

i=1

T (λ,i)μν (7)

with

T (λ,1)μν = e(λ)⊥μ pν − e(λ)⊥ν pμ (8)

T (λ,2)μν = (pμnν − pνnμ)
e(λ) · n

(p · n)2
(9)

T (λ,3)μν = (e(λ)⊥μnν − e(λ)⊥νnμ)
P2

2p · n
. (10)

We note here that, because of the conservation of the local
electromagnetic current, there is the orthogonality relation
between the polarization vector and the momentum of a
photon

e(λ) · P = 0,

which can be used to transform e(λ) · z into e(λ) · p, and vice
versa, and to obtain a formula for the photon polarization
summation,

∑

λ

e∗(λ)
μ e(λ)ν = −gμν + PμPν

P2 . (11)

It is important to note that the three terms of the R.H.S. of (8)–
(10) are the only independent antisymmetric tensors, which
can be constructed from the three independent vectors pμ,

zμ, and e(λ)⊥μ. As a consequence, we have the definition of the
photon DAs for z 
= 0

〈0|ψ̄(z)σμν [z,−z]ψ(−z)|γ (P, λ)〉

= i f (t)γ⊥(P
2)T (λ1)

μν

1∫

0

dueiξp·zφ(t)γ⊥(u, P2)

+i f (t)γ ‖ (P
2)T (λ2)

μν

1∫

0

dueiξp·zh(t)γ ‖(u, P2)

+i f (t)γ 3 (P
2)T (λ3)

μν

1∫

0

dueiξp·zh(t)γ 3(u, P2) (12)

for the tensor case, and

〈0|ψ̄(z)γμ [z,−z]ψ(−z)|γ (P, λ)〉

= f (v)γ ‖ (P
2)Mpμ

e(λ) · n

p · n

1∫

0

dueiξp·zφ(v)γ ‖ (u, P2)

+ f (v)γ⊥(P
2)Me(λ)⊥μ

1∫

0

dueiξp·z g(v)γ⊥(u, P2)

− f (v)γ 3 (P
2)Mnμ

e(λ) · n

(p · n)2
P2

1∫

0

dueiξp·z g(v)γ 3 (u, P2)

(13)

for the vector case, according to the Lorentz decomposition
(1).

In addition, it is obvious that there is no pseudoscalar
which can be constructed from the three independent vectors
pμ, zμ, and e(λ)⊥μ, and that only one scalar and one axial vector
can be constructed from the above three independent vectors,
and thus the corresponding photon DAs can be defined as fol-
lows:

〈0|ψ̄(z) [z,−z]ψ(−z)|γ (P, λ)〉

= i f (s)γ ‖ (P
2)(e(λ) · z)P2

1∫

0

dueiξp·zh(s)γ ‖(u, P2), (14)

〈0|ψ̄(z)γμγ5 [z,−z]ψ(−z)|γ (P, λ)〉

= M f (a)γ⊥(P
2)εμναβe(λ)ν⊥ pαzβ

1∫

0

dueiξp·z g(a)γ⊥(u, P2).

(15)
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From Eq. (14), it is obvious that a scalar operator ψ̄(z) [z,−z]
ψ(−z) has a projection onto a virtual photon state |γ (P, λ)〉
which is proportional to the longitudinal photon polarization
e(λ) · z and vanishing in the on-shell limit.

The above formalism for defining the light-cone photon
DAs (or wave functions) is, in fact, parallel to the case of
the ρ meson [16]. An obvious advantage of this formalism is
that only two transversal DAs φ(t)γ⊥(u, P2) and g(a)γ⊥(u, P2)

survive in the on-shell case, and the others decouple auto-
matically from the corresponding quark–antiquark currents,
provided all coupling constants are finite at P2 = 0 as they
should be (see below). This is just as we expected, since a
real photon has only two transverse degrees of freedom.

3 Photon DAs expressed in terms of correlation
functions

To evaluate the transition matrix elements between photon
and vacuum for various currents, we rewrite them as [20]

〈0|ψ̄(z)Γ [z,−z]ψ(−z)|γ (P, λ)〉
= i

∫
d4xe−i P·x e(λ)σ 〈0|T ψ̄(z)Γ [z,−z]ψ(−z) jσem(x)|0〉

(16)

where jσem(x) = Qψ̄(x)γ σψ(x) is the electromagnetic cur-
rent with an electric charge Q for associated quark flavor.
Contracting both sides of (16) with e∗(λ)

ν , and using (11) to
work out the summation over the photon polarizations, we
obtain the polarization-averaged transition matrix element
between photon and vacuum, which is, in fact, the correla-
tion function for a nonlocal quark–antiquark current and a
local electromagnetic one,

Π
(Γ )
νΓ = i

∫
d4xe−i P·x

(
−gνσ + Pν Pσ

P2

)

× 〈0|T ψ̄(z)Γ [z,−z]ψ(−z) jσem(x)|0〉, (17)

obeying

PνΠ(Γ )
νΓ = 0. (18)

An important characteristic of this correlation function is that
it is gauge-invariant, which enables us to use an appropriate
form of quark propagator to evaluate it.

The explicit expressions of the correlation functions are

Π(T )
νμρ = i f (t)γ⊥(P

2)t (1)νμρ

1∫

0

dueiξp·zφ(t)γ⊥(u, P2)

+ i f (t)γ ‖ (P
2)t (2)νμρ

1∫

0

dueiξp·zh(t)γ ‖(u, P2)

+ i f (t)γ 3 (P
2)t (3)νμρ

1∫

0

dueiξp·zh(t)γ 3(u, P2), (19)

with the Lorentz structures t (i)νμρ being defined as

t (1)νμρ = (gνρ pμ − gνμ pρ)+ pν
pρnμ − pμnρ

p · n
(20)

t (2)νμρ = (pμnρ − pρnμ)

(
pν − P2

2p · n
nν

)
1

p · n
(21)

t (3)νμρ = P2

2p · n

[
(gνρnμ − gνμnρ)+ nν

pμnρ − pρnμ
p · n

]

(22)

for the tensor case, and

Π(V )
νμ = M f (v)γ ‖ (P

2)v(1)νμ

1∫

0

dueiξp·zφ(v)γ ‖ (u, P2)

+ M f (v)γ⊥(P
2)v(2)νμ

1∫

0

dueiξp·z g(v)γ⊥(u, P2)

− M f (v)γ 3 (P
2)v(3)νμ

1∫

0

dueiξp·z g(v)γ 3 (u, P2), (23)

with

v(1)νμ = pμ pν
P2 − pμnν

2p · n
(24)

v(2)νμ = −gμν + pμnν + pνnμ
p · n

(25)

v(3)νμ = nμ
2p · n

(
pν − P2

2p · n
nν

)
(26)

for the vector case, and

Π(S)
ν = i f (s)γ ‖ (P

2)

[
(p · z)pν− 1

2
zν P2

] 1∫

0

dueiξp·zh(s)γ ‖(u, P2)

(27)

for the scalar case, and

Π(A)
νμ = M f (a)γ⊥(P

2)εμναβ pαzβ
1∫

0

dueiξp·z g(a)γ⊥(u, P2) (28)

for the axial vector case, respectively.
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Now we extract an individual photon DA from the cor-
responding correlation function Π(Γ )

νΓ by contracting it with
an appropriate projection operator constructed from pμ, zμ,
and gμν , and then performing the inverse Fourier transform,

F[φ(i)γ (τ, P2)]≡ p+

π

∫
dτei2up+τ φ(i)γ (τ, P2)=φ(i)γ (u, P2).

(29)

In the end, all photon DAs could be expressed in terms of
correlation functions as

f (i)γ (P2)φ(i)γ (u, P2) = F
[
−i tν...(i) Π

(Γ )
νΓ

]
. (30)

The details of the calculation are given in Appendix A.
After working out the correlation functions, the series of

(30) can be used to determine the various coupling constants
fi (P2) by integrating both sides of these equations over u
from 0 to 1, and the various photon DAs φ(i)γ (u, P2) can
be determined by substituting the corresponding coupling
constants fi (P2) into the equations. We note here that the
solutions we have obtained are universal in the sense that
their validity is independent of the special dynamical model
adopted in calculation of the correlation function.

4 Spectral representations of correlation functions

To obtain the explicit expressions of photon DAs from (30),
we need to choose a dynamical model to calculate the cor-
relation functions. Since we are interested in the low-energy
region, we would like to work in the low-energy effective the-
ory based on the instanton vacuum model of QCD, in which
the essential element in our calculation is the effective quark
propagator.

The effective quark propagator in the instanton vacuum
model has been derived in the singular gauge of instantons
[36] by applying the Feynman variational principle [37] to
the low-energy effective theory of QCD. The effective chi-
ral action which describes the interaction of quarks with an
external meson field U in the large Nc limit is

Seff = −Nctr ln(i /∂ + i M FU F), (31)

where

U = exp[iγ5τ
aπa(x)] (32)

and M is the dynamical quark mass at zero momentum. F(k)
is the form factor, related to the Fourier transform of the
instanton zero mode

F(k)=2y[I0(y)K1(y)− I1(y)K0(y)]−2I1(y)K1(y) (33)

with y = kρ/2 and ρ = (600 MeV)−1 being the typical
inverse instanton size. In this low-energy effective theory,
the various correlation functions can be evaluated by a quark
loop in the large Nc limit with the following effective quark
propagator:

SF (k) = /k + M F2(k)

k2 − M2 F4(k)+ iε
. (34)

For the sake of convenience, we choose to work with the pole
form of the quark form factor F(k) [23],

F(k) =
( −Λ2

k2 −Λ2 + iε

)n

(35)

where Λ and n are artificial but justified input parameters.
To check whether the propagator (34) is theoretically

acceptable, and to express the correlation functions in some
more general form, we write (34) in terms of the spectral
densities ρ1(ω

2) and ρ2(ω
2) defined in a general formula for

fermion propagator [38]

SF (k) =
∫

dω2 ρ1(ω
2)/k + ρ2(ω

2)

k2 − ω2 + iε
. (36)

Comparing (34) and (36), we have

∫
dω2 ρ1(ω

2)

k2 − ω2 + iε
= (k2 −Λ2)4n

k2(k2 −Λ2)4n − (MΛ4n)2
, (37)

∫
dω2 ρ2(ω

2)

k2 − ω2 + iε
= MΛ4n(k2 −Λ2)2n

k2(k2 −Λ2)4n − (MΛ4n)2
. (38)

After making the expansion in simple partial fractions

(k2 −Λ2)4n

k2(k2 −Λ2)4n − (MΛ4n)2
=

4n+1∑

i=1

fi (zi −Λ2)4n

k2 − zi
, (39)

MΛ4n(k2 −Λ2)2n

k2(k2 −Λ2)4n − (MΛ4n)2
= MΛ4n

4n+1∑

i=1

fi (zi −Λ2)2n

k2 − zi
,

(40)

where zi are the roots of the algebraic equation

z(z −Λ2)4n = (MΛ4n)2 (41)

and

fi =
4n+1∏

j=1, j 
=i

1

z j − zi
,

the spectral densities can easily be read off as the weighted
summations of Dirac δ-functions of ω2 peaked at different
roots zi :
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Fig. 1 The spectral density ρ1(ω
2) and ρ2(ω

2) for n = 1 (upper case) and n = 2 (lower case) and Λ = 850 MeV

ρ1(ω
2) =

4n+1∑

i=1

fi (zi −Λ2)4nδ(ω2 − zi )

= δ

[
4n+1∏

i

ω2 − zi

(ω2 +Λ2)4n

]
, (42)

ρ2(ω
2) = MΛ4n

4n+1∑

i=1

fi (zi −Λ2)2nδ(ω2 − zi )

= MΛ4nδ

[
4n+1∏

i

ω2 − zi

(ω2 +Λ2)2n

]
. (43)

These satisfy the three constraints for the fermion’s spectral
densities

(i) ρ1(ω
2) and ρ2(ω

2) are real,
(ii) ρ1(ω

2) ≥ 0,
(iii) ωρ1(ω

2)− ρ2(ω
2) ≥ 0.

This reveals some consistency of the form of the effective
quark propagator (34) with F(k) defined by (35).

The shapes of the spectral densities are displayed in Fig.1,
where the different roots zi are shown to be in between 1 and
1.5 GeV2, which is just the very energy regime of effective
low-energy theory of QCD. It can be seen from these figures
that the spectral functions ρ1 and ρ2 are almost coincident for
the cases of n = 1 and n = 2. This fact is in agreement with
the statement that the forms of the photon DAs are insensitive
against a change of value of the artificial variable n [33]. For
this reason, it may be safe for us to choose, say, n = 1 and
Λ = 850 MeV, in our numerical simulation.

Using Wick’s theorem and the general spectral form of
the quark propagator, the correlation functions for various
currents can be expressed analytically as follows:

Π(T )
νμρ = Cνσ Î

[
gσρ [(P − k)μF1 + kμF2]

−gσμ[(P − k)ρF1 + kρF2]
]
, (44)

Π(V )
νμ = Cνσ Î

[
F3[kσ (P − k)μ + kμ(P − k)σ ]

−gσμ[F3(P − k) · k + F4]
]
, (45)

Π(S)
ν = Cνσ Î

[
(kσ − Pσ )F1 + kσ F2

]
, (46)

Π(A)
νμ = Cνσ Î F3ε

σ
μραPρkα, (47)
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where Cνσ and Î are a constant tensor and an operator, respec-
tively, defined by

Cνσ ≡ −4QNc

(
−gνσ + Pν Pσ

P2

)
,

Î ≡
∫

d4k

(2π)4
e−i(p−2k)·z

∫
dω

(P − k)2 − ω

∫
dμ

k2 − μ
,

and the Fi are the products of the two appropriate spectral
densities ρ j (ω) and ρk(μ) of the effective quark propagator:

F1 ≡ ρ1(ω)ρ2(μ), F2 ≡ ρ1(μ)ρ2(ω),

F3 ≡ ρ1(ω)ρ1(μ), F4 ≡ ρ2(ω)ρ2(μ).

5 Explicit analytic expressions of photon DAs

5.1 Chiral odd

Now, we are in a position to express the light-cone pho-
ton DAs in terms of the functions Fi . Substituting (44) and
(46) into (100)–(102) and (106), and carrying out the inverse
Fourier transformation, we obtain the explicit expressions of
the chiral-odd light-cone photon DAs,

φ
(t)
γ⊥(u, P2) = 4Nc

i f (t)γ⊥(P2)
D̂F (1), (48)

h(t)γ ‖(u, P2) = 4Nc

i f (t)γ ‖ (P2)
D̂F (2), (49)

h(t)γ 3(u, P2) = 4Nc

i f (t)γ 3 (P
2)

D̂F (3), (50)

h(s)γ ‖(u, P2) = 4Nc

i f (s)γ ‖ (P2)
T̂ F (4), (51)

where the operations D̂ and T̂ are defined as the following
three-fold integrations:

D̂ ≡
∫

d4k

(2π)4
δ(k+ − up+)

∫
dω

(P − k)2 − ω

∫
dμ

k2 − μ
,

T̂ ≡
∫

d4k

(2π)4
θ(k+ − up+)

∫
dω

(P − k)2 − ω

∫
dμ

k2 − μ
,

and the F (k) for k from 1 to 4 are listed in Table 1 at the end
of this section.

Integrating both sides of (48)–(51) over u from 0 to 1, and
using the normalization conditions of the light-cone DAs,
the corresponding couplings, f (t)γ⊥, f (t)γ ‖ , f (t)γ 3 , and f (s)γ ‖ , are
obtained:

f (t)γ⊥(P
2) = −4i Nc

1∫

0

du D̂F (1), (52)

f (t)γ ‖ (P
2) = −4i Nc

1∫

0

du D̂F (2), (53)

f (t)γ 3 (P
2) = −4i Nc

1∫

0

du D̂F (3), (54)

f (s)γ ‖ (P
2) = −4i Nc

1∫

0

duT̂ F (4). (55)

To obtain the explicit expressions of the DAs, we need to
evaluate the integrations of forms like

I1 =
∫

d4k

(2π)4
δ(k+ − up+)

[(P − k)2 − ω](k2 − μ)
, (56)

I2 =
∫

d4k

(2π)4
(k · p)δ(k+ − up+)

[(P − k)2 − ω](k2 − μ)
. (57)

Let us focus on the general Lorentz structure of I2, an integra-
tion over the integrand involving factor of kμ, which should
be of the form, after Lorentz decomposition,

∫
d4k

(2π)4
δ(k+ − up+)kμ

[(P − k)2 − ω](k2 − μ)
= A(u)Pμ + B(u)nμ,

(58)

where A(u) and B(u) are some scalar functions, and there is
an obvious condition for B(u),

1∫

0

du B(u) = 0, (59)

due to Lorentz covariance. This property will be useful when
we calculate the coupling constants by means of the normal-
ization conditions.

We now turn to the evaluation of I1 and I2. Introducing
the dimensionless variables η = p+k−/Λ2, s = P2/Λ2,
and t = |k⊥|2/Λ2, and completing the integration over k+
and η, the integrals I1 and I2 can be worked out to be (see
Appendix B)

I1 = i

2(2π)2
ln

(
1 + v

−uūs + uω + ūμ

)
, (60)

I2 = − i

4(2π)2
(ω − μ− ūs) ln

(
1 + v

−uūs + uω + ūμ

)
,

(61)

where v is a cutoff for the upper bound of the absolute value
of k.
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Table 1 The explicit
expressions of F (k) and V (k)

i j
k F (k) V (k)

i j

1 F1 + k+
P+ (F2 − F1) ū(z j −Λ2)−2 + u(zi −Λ2)−2

2 F1 +
(

k+
2P+ + k·p

P2

)
(F2 − F1) (s + zi − z j )(z j −Λ2)−2 + (s + z j − zi )(zi −Λ2)−2

3 F1 + 2k·p
P2 (F2 − F1) (us + zi − z j )(z j −Λ2)−2 + (ūs + zi − z j )(zi −Λ2)−2

4
(

k·z
p·z − 2k·p

P2

)
(F1 + F2)

[
(z j −Λ2)−2 + (zi −Λ2)−2

]
(uūs − uzi − ūz j )

5 F (6) −
(

1 − 2k·z
p·z

)
F (8) Mi j + ūz j + uzi − 2uūs

6 F3(P − k) · k + F4 Mi j + s − (zi + z j )

7 F (6) +
(

1 − 4k·p
P2

)
F (8) Mi j − 2uūs + (3uzi − 3uz j + 2z j − zi )

8
[
k · p − k·z

2p·z P2
]

F3 −uūs + uzi + ūz j

Now, using (60) and (61), we can carry out the integration
over k and then the integration over μ and ω, and finally we
obtain the explicit expressions of the light-cone photon DAs
for the tensor and scalar cases

φ
(t)
γ⊥(u, P2) = − 2Nc MΛ4

f (t)γ⊥(P2)(2π)2

5∑

i, j=1

Wi j V (1)
i j , (62)

h(t)γ ‖(u, P2) = − 2Nc MΛ4

f (t)γ ‖ (P2)(2π)2

5∑

i, j=1

Wi j V (2)
i j , (63)

h(t)γ 3(u, P2) = − 2Nc MΛ4

f (t)γ 3 (P
2)(2π)2

5∑

i, j=1

Wi j V (3)
i j , (64)

h(s)γ ‖(u, P2) = − 2Nc MΛ4

f (s)γ ‖ (P2)(2π)2

5∑

i, j=1

Wi j V (4)
i j , (65)

where

Wi j = fi f j (zi −Λ2)4(z j −Λ2)4 ln(−uūs + uzi + ūz j ),

and the explicit expressions of V (k)
i j are listed in Table 1.

In the above expressions, the cutoff v disappears because
of the identity for the partial fraction summation

5∑

i=1

fi z
n
i = 0 for n < 4. (66)

We note here that in evaluating the light-cone photon DA
corresponding to the scalar current, we need to deal with the
integrals

I3 =
∫

d4k

(2π)4
θ(k+ − up+)

[(P − k)2 − ω](k2 − μ)
,

I4 =
∫

d4k

(2π)4
(k · p)θ(k+ − up+)

[(P − k)2 − ω](k2 − μ)
,

which are the integrations of I1 and I2 over u, respectively.
Therefore, only ∂h(s)γ ‖/∂u (not h(s)γ ‖) can be evaluated in the
same way as the photon DAs corresponding to the tensor
current. To obtain h(s)γ ‖ , we need a boundary conditions at
u = 0 and u = 1, which, for the sake of simplicity, are
assumed to be

h(s)γ ‖(0, P2) = h(s)γ ‖(1, P2) = 0. (67)

The same is done for the light-cone photon DA g(a)γ⊥ corre-
sponding to the axial current, i.e.,

g(a)γ⊥(0, P2) = g(a)γ⊥(1, P2) = 0. (68)

Applying the normalization conditions (2), the corre-
sponding coupling constants are obtained to be

f (t)γ⊥(P
2) = −2Nc MΛ4

(2π)2

5∑

i, j=1

1∫

0

duWi j V (1)
i j , (69)

f (t)γ ‖ (P
2) = −2Nc MΛ4

(2π)2

5∑

i, j=1

1∫

0

duWi j V (2)
i j , (70)

f (t)γ 3 (P
2) = −2Nc MΛ4

(2π)2

5∑

i, j=1

1∫

0

duWi j V (3)
i j , (71)

f (s)γ ‖ (P
2) = −2Nc MΛ4

(2π)2

5∑

i, j=1

1∫

0

duWi j V (4)
i j . (72)

We note here that in obtaining the results of (69)–(72) (simi-
larly for (85)–(88)), we have used the fact that the integration
of terms containing a factor of k− over u is vanishing, as
expected from the identity (59).

123



Eur. Phys. J. C (2014) 74:2787 Page 9 of 17 2787

Fig. 2 The chiral-odd photon distribution amplitude for n = 1 and Λ = 850 MeV

5.2 Chiral even

For the chiral-even DAs, substituting (45) and (47) into
(103)–(105) and (107) respectively, we have

φ
(v)
γ ‖ (u, P2) = 4i Nc

M f (v)γ ‖ (P2)
D̂F (5), (73)

g(v)γ⊥(u, P2) = 4i Nc

M f (v)γ⊥(P2)
D̂F (6), (74)

g(v)γ 3 (u, P2) = 4i Nc

M f (v)γ 3 (P
2)

D̂F (7), (75)

g(a)γ⊥(u, P2) = 4i Nc

M f (a)γ⊥(P2)
T̂ F (8). (76)

The corresponding coupling constants are

f (v)γ ‖ (P
2) = 4i Nc

M

1∫

0

du D̂F (5), (77)

f (v)γ⊥(P
2) = 4i Nc

M

1∫

0

du D̂F (6), (78)

f (v)γ 3 (P
2) = 4i Nc

M

1∫

0

du D̂F (7), (79)

f (a)γ⊥(P
2) = 4i Nc

M

1∫

0

duT̂ F (8). (80)

After completing the integrations over k, μ, and ω just in
the same way as in the chiral-odd case, we have the explicit
expressions

φ
(v)
γ ‖ (u, P2) = 2Nc

M f (v)γ ‖ (P2)(2π)2

5∑

i, j=1

Wi j V (5)
i j , (81)

g(v)γ⊥(u, P2) = 2Nc

M f (v)γ⊥(P2)(2π)2

5∑

i, j=1

Wi j V (6)
i j , (82)
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Fig. 3 The chiral-even photon distribution amplitude for n = 1 and Λ = 850 MeV

g(v)γ 3 (u, P2) = 2Nc

M f (v)γ 3 (P
2)(2π)2

5∑

i, j=1

Wi j V (7)
i j , (83)

g(a)γ⊥(u, P2) = 2NcΛ
2

M f (a)γ⊥(P2)(2π)2

5∑

i, j=1

Wi j V (8)
i j (84)

for the chiral-even light-cone photon DAs, and

f (v)γ ‖ (P
2) = 2Nc

M(2π)2

5∑

i, j=1

Wi j

1∫

0

duV (5)
i j , (85)

f (v)γ⊥(P
2) = 2Nc

M(2π)2

5∑

i, j=1

Wi j

1∫

0

duV (6)
i j , (86)

f (v)γ 3 (P
2) = 2Nc

M(2π)2

5∑

i, j=1

Wi j

1∫

0

duV (7)
i j , (87)

f (a)γ⊥(P
2) = 2NcΛ

2

M(2π)2

5∑

i, j=1

Wi j

1∫

0

duV (8)
i j (88)

for the corresponding coupling constants, where

Mi j = (MΛ4)2(z j −Λ2)−2(zi −Λ2)−2

and the F (k) and V (k)
i j for k from 5 to 8 are listed in Table 1.

6 Numerical result

The input parameters in our numerical simulation are as fol-
lows: The color number Nc is taken to be three; the parameter
n in the pole form of the effective quark propagator is chosen
to be the one with Λ = 850 MeV (we have demonstrated
that the spectral densities of the effective quark propagator
is almost independent of a change of n). The mass scale M
in the pole-form effective quark propagator is taken to be
M = 350 MeV.

The dependencies of the eight light-cone photon DAs on
the momentum fraction u for different virtualities P2 are
displayed, respectively, in Figs. 2 and 3, where the dot lines
correspond to the virtuality of P2 = −(500 MeV)2, the dash-
dot lines to P2 = −(250 MeV)2, the solid lines to P2 = 0,
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Fig. 4 The chiral-odd couplings versus P2 for n = 1 and Λ = 850 MeV

the dash lines to P2 = (250 MeV)2 and short-dot lines to
P2 = (500 MeV)2.

All the photon DAs are invariant under the exchange
between u and ū, and they have a maximum (or minimum)
in the middle, which is just what we expected from the sym-
metry between quark and antiquark fields in the associated
currents.

Now consider the endpoint behavior of the photon DAs.
From the mentioned figures, we can see that six light-cone
photon DAs, namely φ(t)γ⊥, h(t)γ ‖, and h(t)γ 3 for the tensor case;

and φ(v)γ ‖ , g(v)γ⊥, and g(v)γ 3 for the vector case, are non-vanishing
at the endpoints u = 0 and u = 1, whereas the other two DAs,
namely h(s)γ ‖ for the scalar case and g(a)γ⊥ for the axial vector
case, are vanishing at the endpoints, analogous to the asymp-
totic light-cone pion wave functions. We note here that the
endpoint behavior for the latter in fact arises from our arti-
ficial assumption for the boundary conditions of the photon
DAs corresponding to the scalar and axial currents. There
may appear non-zero values at the endpoints by some phys-

ical arguments, say by comparison with the experimental
data.

For the former, the non-vanishing endpoint behaviors are
still somewhat different for the different cases. In the tensor
case, h(t)γ ‖ and h(t)γ 3 are bent down when closer to the endpoints,
and they are suppressed obviously at the endpoints, and there
is only one single extremum at u = 1/2, which means that
the momentum tends to be distributed equally over the quark
and antiquark. However, in the vector case, the curves of the
light-cone photon DAs, φ(v)γ ‖ , g(v)γ⊥, and g(v)γ 3 , are gradually
bent up closer to the endpoints. In addition, their concavity
changes with varying P2, and φ(v)γ ‖ and g(v)γ⊥ changes sign at

some time-like momentum about P2 ∼ (300 MeV)2 due to
the normalization.

From (69)–(72) and (85)–(88), the dependencies of the
couplings constants for both chiral-odd and chiral-even cases
on the photon virtuality P2 are displayed in Figs. 4 and 5.
From these figures, one can see that all coupling constants
are monotonic functions of P2, which are increasing for the
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Fig. 5 The chiral-even couplings versus P2 for n = 1 and Λ = 850 MeV

chiral-odd case, and decreasing for the chiral-even case. It is
noticed that all coupling constants for the chiral-odd case and
the coupling constant f (a)γ 3⊥ are obviously non-vanishing at

P2 = 0, while the coupling constants for the vector case are
exactly zero at P2 = 0. All coupling constants are finite for
finite P2, which guarantees that only two physical transverse
light-cone photon DAs, φ(t)γ⊥ and g(a)γ⊥, survive to be non-

vanishing at P2 = 0, while the others decouple automatically
from the corresponding quark–antiquark currents.

7 Conclusion and discussion

In the present paper, we have studied systematically the off-
shell light-cone photon DAs and the corresponding coupling
constants for both chiral-odd and chiral-even cases up to twist
four in the instanton vacuum model of QCD. The obtained
main results are as follows.

(1) The transition matrix elements of the gauge-invariant
nonlocal quark–antiquark currents sandwiched between
an off-shell photon state and the vacuum are decomposed
into superpositions of various Lorentz structures with the
coefficients, which define the light-cone photon DAs and
the corresponding coupling constants, just based on the
principle of the Lorentz covariance [33]. This formalism,
in fact, is parallel to the case of the ρ meson [16]. It
is obvious that in this formalism only two transversal
DAs, φ(t)γ⊥(u, P2) and g(a)γ⊥(u, P2), survive, being non-
vanishing in the on-shell limit, and the others decouple
automatically from the corresponding quark–antiquark
currents, as expected.

(2) After transferring the transition matrix elements into
correlation functions, and applying the projection pro-
cedure, the various individual photon DAs multiplied
by their corresponding coupling constants are expressed
in terms of the correlation functions. This means that
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we have solved the coupled equations (12)–(15) for the
photon DAs and their coupling constants when the cor-
relation functions are known, and these solutions are
universal in the sense that their validity is indepen-
dent of the specific dynamical model adopted in the
calculation.

(3) After choosing an appropriate gauge, for example the
fixed-point gauge, where the gauge link becomes a unit
operator, we are in a position to express the leading order
of the correlation functions in terms of the spectral den-
sities of the effective quark propagator. An important
point is that this quark propagator is derived from the
instanton vacuum model of QCD in the singular gauge
of the gauge potential, which obeys the fixed-point gauge
too, as checked in the same way as in [39,40].

(4) Completing the integrations with the help of Lorentz
covariance and a straightforward manipulation, we
obtain the explicit analytical forms for the light-cone
photon DAs and their coupling constants, and we dis-
play the dependence of the photon DAs on the momen-
tum fraction u carried by the quark for various photon
virtualities P2, and the dependence of the corresponding
coupling constants on P2. It is important to note that all
the light-cone photon DAs are regular functions of u and
P2, and their corresponding coupling constants are regu-
lar functions of P2 as well. The only cutoff v, introduced
to evaluate the integrals disappears in the final expres-
sions. This is expected from our first experience [33]
where the integral for obtaining the coupling constant is
already regular by choosing an appropriate integration
contour. In this paper we show that this behavior is a
universal feature of the integrals for all coupling con-
stants. In this sense our treatment may be considered to
be consistent.

Some points to be further discussed are listed now.

(1) It is noticed that there are eight off-shell light-cone pho-
ton DAs appearing in our formalism. In particular, the
photon DA corresponding to the scalar quark–antiquark
current exists in the case P2 
= 0 and/or z 
= 0, and
it vanishes in the case of P2 = 0 and/or z = 0. The
latter characteristic can be seen directly from the defi-
nition (14), and it is naturally expected because there
is no scalar real photon, and the local scalar quark–
antiquark current is rotationally invariant. The corre-
sponding matrix element should be zero due to the trian-
gle rule of the angular momentum addition. However, for
the former, the nonlocal scalar quark–antiquark current
is not rotationally invariant because the rotation operator
does not commute with the complicated operator struc-
ture along the gauge link with the two separated points
z and −z, and thus the corresponding matrix element

does not necessarily vanish, as shown by the explicit
calculation.

(2) Like the other studies [21–23,33], almost all light-cone
photon DAs are non-vanishing at the end points; the two
DAs corresponding to the scalar and axial vector case
with the assumed boundary conditions are exceptions.
This may be a common phenomenon in a model with-
out confinement, such as the instanton vacuum model of
QCD. As pointed in [41], based on a Hamiltonian con-
taining confinement, the configurations where one of the
quarks takes all of the longitudinal momentum and the
other is at rest are expected to be suppressed.

(3) The quarks will propagate near the light-cone, x2 ∼ 0, if
the off-shell photon momentum becomes minus infinity,
P2 → −∞. This fact means that in the limit of P2 →
−∞, the main contribution to the correlation functions
comes from the asymptotic part of the propagator, and
the nonlocal quark–antiquark currents degenerate into
the corresponding local ones, z → 0. Therefore, in that
limit, (12) and (13) reduce to (3) and (4), respectively.
This asymptotic behavior leads to the consequence that
the tensor and vector coupling constants tend to be equal
with each other for P2 → −∞. This tendency can really
be seen in Figs. 4 and 5, respectively.

(4) For the leading twist tensor photon DA, φ(t)γ⊥(u, P2),
our result is the same as the ones derived from low-
energy theory [21–23,33] but different from the predic-
tion asymptotic form [20] even in the real case. The
reason may be that our photon DAs are applicable to the
low-energy scale, while the asymptotic ones are calcu-
lated at the high-energy scale where the conformance of
p-QCD is valid.
The results of our photon DAs and the corresponding
coupling constants are obviously different from those
in Ref. [22], where the semi-bosonized Nambu–Jona-
Lasinio model in a nonlocal generalized form is adopted.
In particular, the extra δ-type singularity of both the pho-
ton DAs and the coupling constants in Ref. [22] does not
appear in our results.

(5) As noticed already in the introduction, the dynami-
cally generated quark mass M F2(k) in the effective
quark propagator (34) is momentum-dependent. This is
a reflection of the nonlocality of the instanton vacuum of
QCD. As a consequence, the local Uem(1) gauge invari-
ance is violated. The following question is then naturally
raised: to what extent are our results in this paper valid?
Or in other words, why can the contribution due to the
nonlocality be neglected? To answer it, we consider a
simple minimally local part of the effective quark prop-
agator (34), namely by freezing the momentum squared
in the form factor to be zero, and we estimate the differ-
ence between the two photon DAs associated with the
nonlocal theory and the local one as well as the differ-
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ence between the corresponding coupling constants. The
result is shown in Appendix C, where we have found that
the deviation of both photon DA and coupling constant
determined by the local theory from that in the nonlocal
theory used in this paper is small. This indicates that the
interaction of the electromagnetic field with the quarks
is indeed dominated by the local or pointlike interaction
derived from the kinetic term in the effective Lagrangian.
The nonlocal or non-pointlike coupling coming from the
momentum-dependent quark mass is in fact parametri-
cally suppressed.
We note here that another local version of (34), for exam-
ple ones using freezing of the space-like momentum
squared in F(k) to have a non-zero constant k2 → −μ2,
is also allowed, and it is unclear to us how to define the
maximally local part of the effective quark propagator
(34). Therefore, the amount of the deviation from local-
ity shown in Appendix C may simply be considered as
the upper bound.
In fact, as analyzed in the introduction, the form fac-
tor F(k) (33) is suppressed in (M(k2 = −μ2)ρ̄)2 for
μ2 � 1/ρ̄. For this reason, we stress that the local
gauge invariance of the electromagnetic interaction is
approximately fulfilled at least at the leading order of
M(k2 = −μ2)ρ̄, and we can work with the local
or pointlike electromagnetic current throughout in this
paper.
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Appendix A: Photon DAs in terms of correlation
functions

The photon DA can be expressed in the representation of τ ,
instead of u, defined by

φ(i)γ (τ, P2) =
1∫

0

dueiξp·zφ(i)γ (u, P2), (89)

in terms of the correlation functions projected on the projec-
tion tensors.

Consider the tensor case: the projection tensors we need
should be of order three, and antisymmetric in the Lorentz

indices μ and ρ due to the same symmetric property in the
corresponding correlation function. It is obvious that there
are only three different independent projection 3-tensors
being antisymmetric in μ and ρ constructed from p and z
(the other independent degrees of freedom, e(λ)⊥μ, disappear
due to averaging the polarizations),

tμνρ(1) = 1

2
(pνzμ pρ − pνzρ pμ),

tμνρ(2) = 1

2
(gνμzρ − gνρzμ),

tμνρ(3) = 1

2
(gνμ pρ − gνρ pμ).

Contracting Π(T )
νμρ with tμνρ(i) , respectively, give rise to

tμνρ(1) Π
(T )
νμρ = − i

P2

2
(p · z) f (t)γ ‖ (P

2)h(t)γ ‖(τ, P2) (90)

tμνρ(2) Π
(T )
νμρ = − i(p · z)

[
f (t)γ ‖ (P

2)h(t)γ ‖(τ, P2)

+2 f (t)γ⊥(P
2)φ

(t)
γ⊥(τ, P2)

]
(91)

tμνρ(3) Π
(T )
νμρ = − i

P2

2

[
f (t)γ ‖ (P

2)h(t)γ ‖(τ, P2)

+2 f (t)γ 3 (P
2)h(t)γ 3(τ, P2)

]
. (92)

We note here that there is, in fact, another projection 3-tensor:

tμνρ(4) = 1

2
(zνzμ pρ − zνzρ pμ) (93)

obeying the requirement. However, using the identity (6) and
the transverse character of the correlation function (18), the
role of tμνρ(4) is equivalent to that of tμνρ(1) .

For the vector case, the projection tensors should be of
order two. One sees that there are only three independent
2-tensors which can be constructed from p and z (the other
independent degree of freedom, e(λ)⊥μ, disappears due to aver-
aging the polarizations), namely gνμ, pνzμ, and pν pμ.

ContractingΠ(V )
νμρ with these three 2-tensors, respectively,

gives rise to

gνμΠ(V )
νμ = − 1

2
M

[
f (v)γ ‖ (P

2)φ
(v)
γ ‖ (τ, P2)

+4 f (v)γ⊥(P
2)g(v)γ⊥(τ, P2)

+ f (v)γ 3 (P
2)g(v)γ 3 (τ, P2)

]
, (94)

pνzμΠ(V )
νμ = −M

p · z

2
f (v)γ ‖ (P

2)φ
(v)
γ ‖ (τ, P2) (95)

pν pμΠ(V )
νμ = 1

4
M P2 f (v)γ 3 (P

2)g(v)γ 3 (τ, P2). (96)

We note that there are, in fact, two other projection 2-tensors,
zνzμ and zν pμ, of which the effects are equivalent to those
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of pνzμ and pν pμ, respectively, by considering (6) and (18)
again.

Further, contracting Π(S)
ν with pν (or equivalently zν)

leads to

pνΠ(S)
ν = − i

2
(p · z)P2 f (s)γ ‖ (P

2)h(s)γ ‖(τ, P2) (97)

for the scalar case, and finally contracting Π(A)
νμ with the

tensor εμνρσ pρzσ leads to

εμνρσ pρzσΠ
(A)
νμ = 2M(p · z)2 f (a)γ⊥(P

2)g(a)γ⊥(τ, P2) (98)

for the axial vector case.
Up to now, we have obtained a series of the linear indepen-

dent equations, namely (90)–(92), (94)–(96) and (97)–(98),
to determine the eight light-cone photon DAs based on the
Lorentz covariance.

To solve the series of equations to get the photon DAs in
terms of correlation functions, we apply the inverse Fourier
transform:

F[φ(i)γ (τ, P2)]= p+

π

∫
dτei2up+τ φ(i)γ (τ, P2)=φ(i)γ (u, P2)

(99)

to both sides of each one of the series of equations, and we
obtain

f (t)γ ‖ (P
2)h(t)γ ‖(u, P2) = F

[
−i

2tμνρ(1) Π
(T )
νμρ

P2(p · z)

]
(100)

f (t)γ⊥(P
2)φ

(t)
γ⊥(u, P2) = F

[
−i t̂μνρ(2) Π

(T )
νμρ

]
(101)

f (t)γ 3 (P
2)h(t)γ 3(u, P2) = F

[
−i t̂μνρ(3) Π

(T )
νμρ

]
(102)

with

t̂μνρ(2) = 1

2(p · z)

[
tμνρ(2) − 2tμνρ(1)

P2

]

t̂μνρ(3) = 1

P2

[
tμνρ(3) − tμνρ(1)

p · z

]

for the tensor case, and

f (v)γ⊥(P
2)g(v)γ⊥(u, P2) = F[v̂νμ(1)Π(V )

νμ ] (103)

f (v)γ ‖ (P
2)φ

(v)
γ ‖ (u, P2) = F

[
−2pμnνΠ(V )

νμ

M(p · n)

]
(104)

f (v)γ 3 (P
2)g(v)γ 3 (u, P2) = F

[
4pν pμΠ(V )

νμ

M P2

]
(105)

with

v̂
νμ

(1) = − 1

4M

(
2gνμ − 2pμzν

p · z
+ 4pν pμ

P2

)

for the vector case, and

f (s)γ ‖ (P
2)h(s)γ ‖(u, P2) = F

[
i

2pνΠ(S)
ν

P2(p · z)

]
(106)

f (a)γ⊥(P
2)g(a)γ⊥(u, P2) = F

[
εμνρσ pρzσΠ

(A)
νμ

2M(p · z)2

]
(107)

for the scalar and axial vector cases, respectively.

Appendix B: Integrals I1 and I2

Consider the integral I1 and I2 defined in (55) and (56),
in which the integrand involves zero and one power of kμ,
respectively. By introducing the dimensionless variables

η = p+k−

Λ2 , t = |k⊥|2
Λ2 , s = P2

Λ2 ,

and completing the integration of δ(k+ −up+), I1 and I2 can
be expressed as

I1 =
∫

dηdt

2(2π)3
1

(ūs − ūη − t − ω)(uη − t − μ)
, (108)

I2 =
∫

dηdt

4(2π)3
η

(ūs − ūη − t − ω)(uη − t − μ)
. (109)

The denominator appearing in the R.H.S. of (108) or (109)
has two poles, which may be assumed to be of the forms

η1 = s − t + ω

ū
, (110)

η2 = t + μ

u
. (111)

By means of the identity (65), for the partial fraction summa-
tion in the numerical simulation, a straightforward manipu-
lation leads to

I1 =
∫

dηdt

2uū(2π)3
1

(η − η1)(η − η2)

= i
∫

dt

2(2π)2
1

−uūs + t + uω + ūμ

= i

2(2π)2
ln

(
1 + v

−uūs + uω + ūμ

)
, (112)

I2 = −
∫

dηdt

4uū(2π)3
η

(η − η1)(η − η2)

= − iπ

4uū

∫
dt

(2π)3
η1 + η2

η1 − η2
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= − iπ

2

∫
dt

(2π)3

(
u − ū + ω − μ− ūs

−uūs + t + uω + ūμ

)

= i

4(2π)2
(μ− ω + ūs) ln

(
1 + v

−uūs + uω + ūμ

)

+ i

4(2π)2
(ū − u)v. (113)

Appendix C: An upper bound for the deviation from
locality

A simple minimally local version of the effective quark prop-
agator (34) is of the form

SF (k) = /k + M

k2 − M2 + iε
. (114)

Take the twist-two and chiral-odd light-cone photon DA as an
example. The counterparts of φ(t)γ⊥ and f (t)γ⊥, namely φ(t,local)

γ⊥

Fig. 6 The deviation of φ(t)local(u, P2) from the ‘local’ one

Fig. 7 The deviation of coupling constant from the ‘local’ one

and f (t,local)
γ⊥ associated with the local version of the propaga-

tor, can be calculated in a similar way. Define the following
three deviations of the quantities in this paper from the local
ones:

Δφ = φ
(t,local)
γ⊥ (u, P2)− φ

(t)
γ⊥(u, P2)

φ
(t)
γ⊥(u, P2)

(115)

Δ f = f (t,local)
γ⊥ (P2)− f (t)γ⊥(P

2). (116)

The curves ofΔφ andΔ f are shown in Figs. 6 and 7, respec-
tively. From these two curves and the first figure in Fig. 4, it
is obvious that the nonlocal part of the dynamical quark mass
contributes within an amount of 30 percent to the total one
for both DA and the correspond coupling, and its effects are
suppressed.
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