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The multisource thermal model is revised for relativistic and quantum situations. It is shown
that the quantum effect can be neglected due to a very small result. The distributions of particle
momenta, momentum components, transverse momenta, kinetic energies, and velocities in both
the classical and relativistic situations are presented to give comparisons.

1. Introduction

The multisource thermal model (or previously the multisource ideal gas model) was
suggested by us in the past years [1–4]. This model assumes that many emission sources of
produced particles and nuclear fragments are formed in high-energy collisions. Each
emission source is treated as a thermal equilibrium system of classical ideal gas. Then,
the classical Maxwell’s ideal gas model and corresponding distributions [5] can be used
in the multisource thermal model. Because the classical Maxwell’s ideal gas model has no
consideration of the relativistic and quantum effects, some revisions are needed when we
consider the model’s application in high-energy collisions.

In this paper, the relativistic and quantum effects are considered for each emission
source. The multisource thermal model [1–4] is then revised for the relativistic and quantum
situations. Distributions of particle momenta, momentum components, transverse momenta,
kinetic energies, and velocities in both the classical and relativistic situations are given and
compared.
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Figure 1: Momentum distributions of relativistic nonquantum particles (solid curves), bosons (dotted
curves), and fermions (dashed curves) in ideal gas model calculated by (2.6) and (2.7), respectively, with
m0 = 938MeV/c2 and μ = 937MeV. The results are given for four temperatures indicated in the figure.

2. Formulations and Comparisons

Let k and T denote the Boltzmann constant and temperature of thermal equilibrium system,
respectively, and m0, p, px,y,z, pT , EK, v, θ, and ϕ denote the rest mass, momentum,
momentum components, transverse momentum, kinetic energy, velocity, emission angle, and
azimuth of a concerned particle, respectively. In our discussions, we define the beam direction
to be the oz axis and the reaction plane to be the xoz plane in high-energy collisions.

In the classical Maxwell’s ideal gas model [5], we have the distributions of particle
momenta, momentum components, transverse momenta, kinetic energies, and velocities to
be
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Figure 2: Proton momentum distributions in relativistic (nonquantum) ideal gas model (solid curves)
and classical ideal gas model (dashed curves). The different curves are calculated by (2.6) and (2.1),
respectively, and are given for four temperatures indicated in the figure. The solid curves in Figure 2 are
the same as those in Figure 1.
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respectively.
Considering the relativistic effect [6, 7], we have

fp
(
p
)
=

1
N

dN

dp
= Cp2 exp

⎛

⎜
⎝−

√
p2 +m2

0

kT

⎞

⎟
⎠, (2.6)

where C = (1/m2
0kT)(1/K2(m0/kT)) is the normalization constant and K2(m0/kT) is the

modified Bessel function of order 2. In the above equation, we have taken the natural unit
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Figure 3: Proton momentum component distributions in relativistic ideal gas model (solid and dotted
curves) and classical ideal gas model (dashed curves). The different curves are calculated by (2.8), Monte
Carlo method, and (2.2), respectively, and are given for four temperatures indicated in the figure.

system in which the speed c of light in vacuum is 1. Considering the quantum effect [8], we
have
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where C1 is the normalization constant, μ is the chemical potential, +1 denotes fermions,
and −1 denotes bosons, respectively. Our calculations show that, comparing with (2.6), the
quantum effect in (2.7)with μ having large dispersion fromm0 is so small that we do not need
to consider it in studying momentum distributions in high-energy collisions. The chemical
potential also causes a very small effect in the case of neglecting ±1. Only the combination of
quantum effect and μ ≈ m0 causes an obvious dispersion from (2.6). As an example, by taking
m0 = 938MeV/c2 and μ = 937MeV, the calculated momentum distributions for relativistic
nonquantum gas (see (2.6)), boson gas (see (2.7) with −1), and fermion gas (see (2.7) with
+1) at kT = 10, 20, 50, and 100MeV are shown in Figure 1 by the solid, dotted, and dashed
curves, respectively. One can see obvious differences in momentum distributions among the
three kinds of ideal gases. Especially at higher temperature, this difference is more obvious.

As the relativistic and quantum revisions of (2.1), (2.7) can be used in the multisource
thermal model. To avoid the unbending choice of μ and ±1, in the following we use (2.6)
to give comparisons with (2.1)–(2.5). In Figure 2, the particle momentum distributions
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Figure 4: Proton transverse momentum distributions in relativistic ideal gas model (solid and dotted
curves) and classical ideal gas model (dashed curves). The different curves are calculated by (2.9), Monte
Carlo method, and (2.3), respectively, and are given for four temperatures indicated in the figure.

at kT = 10, 20, 50, and 100MeV calculated by (2.6) and (2.1) are given by the solid and
dashed curves, respectively. In the calculation, we take m0 = 938MeV/c2 which means
that an ideal proton gas is considered. One can see that the difference between the classical
distribution and relativistic one is not obvious at lower temperatures (10 and 20MeV), while
the difference is obvious at higher temperatures (50 and 100MeV).

The momentum components can be given by px = p sin θ cosϕ, py = p sin θ sinϕ, and
pz = p cos θ, respectively. An isotropic ideal gas model gives the same distribution of three
different components, and the emission angular and azimuthal distributions are fθ(θ) =
(1/2) sin θ and fϕ(ϕ) = 1/2π , respectively. Combining with (2.6), we can use the Monte
Carlo method and analytical expression to give the momentum component distributions
at relativistic energy. In Figure 3, the dashed curve represents the classical distribution (see
(2.2)) of px, and the dotted and solid curves represent the relativistic distributions by using
the Monte Carlo method and analytical expression
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respectively, where C2 is the normalization constant. All the distributions are given at four
temperatures mentioned in the figure. We see that the difference between the classical and
relativistic distributions at lower temperature is not obvious, and the difference at higher
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Figure 5: Proton kinetic energy distributions in relativistic ideal gas model (solid curves) and classical
ideal gas model (dashed curves). The different curves are calculated by (2.10) and (2.4), respectively, and
are given for four temperatures indicated in the figure.

temperature is obvious. The relativistic distributions obtained by the Monte Carlo method
and analytical expression are almost the same. This result confirms the two methods all
together.

The transverse momentum is given by pT = p sin θ. Combining with (2.6), we can
use the Monte Carlo method and analytical expression to give the transverse momentum
distribution at relativistic energy. In Figure 4, the dashed curve represents the classical
distribution (see (2.3)) of pT , whereas the dotted and solid curves represent the relativistic
results by using the Monte Carlo method and Boltzmann distribution
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respectively, where C3 is the normalization constant. All the distributions are given at
four temperatures. We see again that the difference between the classical distribution and
relativistic one is small at lower temperature and large at higher temperature. The relativistic
results obtained by theMonte Carlo method and Boltzmann distribution are almost the same.
This confirms the two methods all together.
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Figure 6: Proton velocity distributions in relativistic ideal gas model (solid curves) and classical ideal gas
model (dashed curves). The different curves are calculated by (2.12) and (2.5), respectively, and are given
for five temperatures indicated in the figure.

The kinetic energy in relativistic situation can be given by EK =
√
p2 +m2

0 − m0;
combining with (2.6), we have the distribution of kinetic energy in relativistic situation to
be
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For ideal gas in classical situation, the energy is only the kinetic energy due to zero potential
energy. The comparisons between the kinetic energy distributions in classical situation
(dashed curves) and relativistic case (solid curves) are presented in Figure 5. The two curves
at lower temperature are almost the same, and those at higher temperature are very similar.
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The relationship between momentum and velocity at relativistic energy gives p =
m0v/

√
1 − v2. Combining with (2.6), we have the distribution of velocity to be
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The comparisons between the velocity distributions in classical situation (dashed curves)
and relativistic case (solid curves) are presented in Figure 6. There are small differences at
lower temperatures and large differences at higher temperatures. One sees v > c in classical
situation at around 100MeV. Especially, the probability of particles with v > c is very large at
400MeV. Obviously, the relativistic effect has to be considered at these higher temperatures.

3. Conclusion

In conclusion, the multisource thermal model [1–4] is revised in this paper for relativistic
and quantum situations. The quantum effect in particle momentum distributions in high-
energy collisions is very small when the chemical potential has a large dispersion from the
rest mass of the concerned particle. The chemical potential also causes a very small effect
when we neglect ±1. Only the combination of quantum effect and nearly the same chemical
potential and rest mass causes an obvious dispersion from the classical distribution. In the
distributions of particle momenta, momentum components, transverse momenta, kinetic
energies, and velocities, the relativistic effect is small at lower temperatures and large at
higher temperatures. This is a natural result. Because of the present work, the classical
distributions used in the multisource thermal model [1–4] can be replaced by the revised
distributions.
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