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ABSTRACT
We study in this paper the problem of broadcasting de-
pendent data for unordered queries. However, most prior
studies on dependent data broadcasting are limited to the
premise of no data replication. Different from other prior
studies, we investigate the effect of data replication in this
paper. Specifically, we first derive several theoretical prop-
erties for the average access time by analyzing the model
of dependent data broadcasting. On the basis of the theo-
retical results, we develop a genetic algorithm to generate
broadcast programs with replication. In order to compare
the performance of the proposed algorithm and the prior
studies, several experiments are conducted. Our experimen-
tal results show that with the analytical results derived, the
theoretical results derived are able to guide the search of
the genetic algorithm very effectively, and lead to solution
broadcast programs of higher quality than those of the prior
studies.
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1. INTRODUCTION
Most works in data broadcasting were under the premise

that each user requests only one data item at a time and
the requests for all data items are independent. However,
in many real applications, there exists dependency among
data items, and a mobile user may submit a query to re-
trieve multiple data items. Explicitly, queries of multiple,
dependent data can be categorized into the following two
types according to the constraint of the sequence of these
data items:

Ordered queries In an ordered query, the required data
items should be retrieved in a predetermined order.
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Unordered queries Similar as an ordered query, an un-
ordered query could be one issued by a mobile user for
requesting multiple data items simultaneously. How-
ever, unlike an ordered queries, these required data
items may be retrieved in any order.

In both types of queries, data allocation algorithms as-
suming independent requests are not able to effectively op-
timize the performance of the broadcast programs. This
phenomenon attracts a series of studies on solving the prob-
lem of dependent data broadcast. Note that for each ordered
query, the required data items of this query should be re-
trieved according to a predetermined order, and there will
be exactly one retrieval order. In contrast, the number of re-
trieval orders of an unordered query Qi is |Qi|! where |Qi| is
the number of required data items of Qi. This feature makes
the broadcasting of dependent data for unordered queries be
more difficult than that for ordered queries.

It is noted that the most prior studies of dependent data
broadcast do not consider data replication. That is, each
data item appears exactly once in the broadcast programs
as shown in the example in Figure 1b. A broadcast program
without replication is also called a flat broadcast program.
As shown in the prior studies on independent data broad-
cast [1], employing data replication in broadcast program
generation is able to optimize the broadcast programs more
effectively than flat broadcast programs especially when the
access probability for each data item is skewed. Let Di(j)
represent the j-th copy of data item Di. As shown in Figure
1c, one can replicate hot data items (i.e., items with high
access probabilities) into several copies in the broadcast pro-
gram to further reduce the average access time. However,
none of the above studies on dependent data broadcasting
considered data replication which is practically important.

Consequently, we address the problem of the broadcast
program generation for dependent data with unordered queries
in this paper. Unlike [2][6], data replication is employed in
our study. Specifically, several special cases of the problem
of broadcasting dependent data are shown to be NP-hard
[2]. In view of this, we shall employ the Genetic Algorithm
[3] (abbreviated as GA) in this paper to address the prob-
lem of broadcasting dependent data for unordered queries
with data replication. Basically, GAs are iterative proce-
dures that search the problem solutions by an evolutionary
process based on natural selection. GA maintains a popula-
tion of individual candidate solutions to specific problems.
An individual candidate solution can be represented as a list
called a chromosome. In GA, a fitness function has to be



Item Size Item Size Item Size

D1 6 D3 5 D5 5
D2 8 D4 6 D6 7

(a) The sizes of all data items

D1D3 D6D5 D4 D2

(b) The broadcast program without data replication

D4(1)D3(1) D6(1)D6(2) D1(2)D2(1)D1(1) D5(1) D3(2)

(c) The broadcast program with data replication

Figure 1: An example of a broadcast program with
data replication

Query(Qi) Pr(Qi)

Q1 = {D1, D2, D3} 50%
Q2 = {D1, D3, D4} 20%
Q3 = {D4, D6, D1} 20%
Q4 = {D1, D2, D5} 5%
Q5 = {D5, D3, D4, D6} 5%

Figure 2: An example query profile

designed to evaluate the fitness of each chromosome,and the
design of the fitness function is key to the effectiveness of
the GA algorithms.

Explicitly, in this paper we first model the problem of
broadcast program generation for unordered queries with
replication. By analyzing the model of dependent data broad-
casting, we derive several theoretical properties for the av-
erage access time. In light of the theoretical results, we
then formulate the fitness function for one GA to generate
broadcast programs with replication. Sensitivity analysis on
several parameters is conducted. Our experimental results
show that with the analytical results derived, the theoretical
results derived are able to guide the search of the genetic al-
gorithm very effectively, and lead to solution broadcast pro-
grams of higher quality than those of the prior studies. In
addition, the experimental results also show that the data
replication technique employed can lead to more efficient use
of network bandwidth. To the best of our knowledge, there
is no prior work on the broadcast program generation for
unordered queries with data replication. This fact distin-
guishes this paper from others.

The rest of this paper is organized as follows. Section 2
presents the preliminaries of this study. Analytical models of
the problem of broadcasting dependent data with unordered
queries are derived in Section 3. In light of the analysis in
Section 3, we devise a GA-based algorithm in Section 4.
Performance evaluation on varies parameters is conducted
in Section 5. Finally, Section 6 concludes this paper.

2. PROBLEM FORMULATION
Same as in [1], it is assumed that the database D contains

|D| data items, D1, D2, · · · , D|D| and each data item is read-
only. The size of Di is assumed to be size(Di). Thus,

the size of the whole database is size(D) =
P|D|

i=1 size(Di).
From the users’ perspective, a query is an indivisible request

of single or multiple data items as defined below.

Definition 1 An unordered query Qi = {Dqi(1), Dqi(2), · · · ,
Dqi(|Qi|)} is a non-empty subset of all data items where |Qi|
represents the number of required data items in Qi. Note
that 1 ≤ qi(j) ≤ |D| for all j where 1 ≤ j ≤ |Qi|, and
qi(j) = k means that the j-th accessed data item in Qi is
Dk.

The query profile is the aggregation of the access behavior
of all users. Formally, we have the following definition.

Definition 2 A query profile Q consists of a set of 〈Qi, P r(Qi)〉
pairs where |Q| indicates the number of queries in Q. Pr(Qi)
represents the probability that a query Qi is issued by users.

It is noted that
P|Q|

i=1 Pr(Qi) = 1.

The problem of broadcast program generation with repli-
cation can be divided into two subproblems: (1) determining
the number of replicas needed for each data item and (2) de-
termining the placement of these replicas into the broadcast
program. The first subproblem indicates that the system
should determine how many copies for each data item to be
placed in the broadcast program. According to the property
shown in [4], the total average access time will be minimized
if the copies of each data item are equally spaced and for any
two data items Di and Dj ,

n(Di)

n(Dj)
=

q
Pr(Di)

size(Di)q
Pr(Dj)

size(Dj)

. (1)

where n(Di) is the number of replicas of Di and Pr(Di) is
the access frequency of Di. Pr(Di) can be obtained by the
following equation:

Pr(Di)

=

|Q|X
j=1

�
Pr(Qj)× the number of occurrences of Di in Qj

�
.

Let L be the length of broadcast program with replication
as determined in accordance with system capacity. Note
that L ≥ size(D) since all data items should be broadcast
at least once. With the same reason, at first each data item
appears exactly once in the broadcast program. There will
be a space with size L − size(D) left. Denote the number
of extra copies of Di appearing in the rest of the broadcast

program as n
′
(Di). Then we have

|D|X
i=1

n
′
(Di)× size(Di) = L− size(D).

Let the relationship of n
′
(Di), i = 1, 2, · · · , |D| follow Equa-

tion (1). Thus, the above equation can be rewritten as

n
′
(D1)×

|D|X
i=1

�
n(Di)

n(D1)
× size(Di)

�
= L− size(D).

Since only one unknown variable is in the above equation,

n
′
(D1) can be solved. All other n

′
(Di)s are obtained by

Equation (1), and then, n(Di) is determined as dn′(Di)e+1.
After determining n(Di) for each data item Di, we revise

the original database by considering the number of replicas
for each data item as D∗ which is defined as follows,



D∗ =

|D|[
i=1

0@n(Di)[
j=1

n
Di(j)

o1A ,

where Di(j) indicates the j-th copy of data item Di. The
size of the revised database D∗ (denoted as size(D∗) ) is as
follows,

size(D∗) =

|D|X
i=1

n(Di)× size(Di) = L.

After determining the number of replicas for each data
item, the broadcast program with replication can be stated
as follows.

Definition 3 A broadcast program P with replication is a
placement of all data items in D∗ into a list with length L,
where L is a predetermined number and L ≥ size(D). In
addition, each data item Di will appear n(Di) times in the
broadcast program P .

To facilitate the further discussion, we utilize the function
offset(i, j) to represent the offset of the j-th copy of Di in
the broadcast program. offset(i, j) is equal to the sum-
mation of the sizes of all data items with smaller broadcast
order than the j-th copy of Di.

We take access time as the measurement for the quality
of broadcast programs. As a result, given the number of
broadcast channels, the database D and a query profile Q,
the problem of broadcast program generation with replica-
tion is to determine a broadcast program P with replication
which minimizes the average access time of the query profile
Q. Denote, respectively, the average access time of a query
Qi as TAccess(Qi) and the average access time of a query pro-
file Q as TAccess(Q). The average access time of the query
profile Q can be formulated as the following equation,

TAccess(Q) =

|Q|X
i=1

h
TAccess(Qi)× Pr(Qi)

i
. (2)

3. ANALYTICAL MODELS
To facilitate the derivation of the average access time, we

first decompose the access time of an query Qi into two
parts:

1. Startup time: When a mobile user submits a query Qi,
the mobile device should wait until the system starts
to broadcast any required data item of Qi. This time
interval is called startup time.

2. Retrieval time: Retrieval time is defined as the time
intervals between the moment that the mobile device
starts to read data items from broadcast channels and
that the mobile device finishes Qi.

Obviously, the access time of an query is the summation of
the startup time and retrieval time. Denote the bandwidth
of each broadcast channel as B. Then we have the following
example.

Without loss of generality, we assume that the user sub-
mits Qi in the m-th broadcast cycle and the time interval
between the start time of the m-broadcast cycle and the
time that the user submits Qi (i.e., s0 in Figure 3) is a

D4(1)D3(1) D6(1)D6(2) D1(2)D2(1)D1(1) D5(1) D3(2)

s1 s2
Time

A mobile user
issues a query

The mobile user
finishes the query

s0

Figure 3: An example scenario of a query

uniform distribution over (0, L). To facilitate the following
discussion, we define the candidates of the first retrieved
data items of Qi as follows.

Definition 4 The candidates of the first retrieved data items
of Qi , Cand = {Cand(1), Cand(2),· · · }, is an ordered set of
all copies of date items in Qi. Cand is sorted according to
the offsets of all elements in an ascending order. In addition,

the number of the candidates of Qi is equal to
P|Qi|

i=1 n(Dqi
j
).

To simplify the further derivation, we define a series a(j),
j = 1, 2, · · · , b, to represent the offsets of all data item in
Cand (i.e., a(j)=the offset of the data item Cand(j)), where
b represents the number of candidates (i.e., b = |Cand|).

Denote the average startup time of Qi as TStartup(Qi).
We have

TStartup(Qi)

=
1

L×B
×

8><>:b−1X
i=1

h
a(i + 1)− a(i)

i2
2

+

h
L− a(b) + a(1)

i2
2

9>=>;
(3)

In order to derive the average retrieval time of Qi, we
first let p(j) represent the probability that the user retrieves
“the j-th candidate (i.e., Cand(j)) of the first retrieved data
items” as the first required data item of Qi. We can formu-
late p(j) as follows:

p(j) =

� L−a(b)+a(1)
L

: if j = 1,
a(j)−a(j−1)

L
: otherwise.

(4)

Denote the average retrieval time of Qi as TRetr.(Qi) and
let T j

Retr.(Qi) be the retrieval time of Qi when Cand(j) is
the first retrieved data item. It is obvious that TRetr.(Qi)
can be obtained by the following equation.

TRetr.(Qi) =

bX
j=1

p(j)× T j
Retr.(Qi) (5)

Without loss of generality, we assume that the mobile device
will retrieve Cand(j) as the first retrieved data item at the
m-th broadcast cycle. Also let the retrieval point represent
the point that the mobile device starts to retrieve the first
required data item of Qi. Assume that Cand(j) is the y-th
copy of Dx (i.e., Cand(j) = Dx(y)). Therefore, the distance
between the start time of the m-th broadcast cycle and the
corresponding retrieval point is offset(x, y). Since the mo-
bile device will try its best to minimize the access time, for
each data item Dk in Qi, k = qi(1), qi(2), · · · , qi(|Qi|), the



mobile device will retrieve the first appeared copy of Dk

after the retrieval point. To simplify the following deriva-
tion, we let PointRetr. = offset(x, y), and then, we have
the following lemma.

Lemma 1 Let the function NEAREST (PointRetr., k) rep-
resent the distance between the retrieval point and the point
that the mobile device starts to retrieve Dk. The function
NEAREST (PointRetr., k) can be formulated as

NEAREST (PointRetr., k)

=

8>>>>>>>><>>>>>>>>:

min
n

offset(k, i)
���i = 1, 2, · · · , n(Dk) and

offset(k, i) ≥ PointRetr.

o
− PointRetr.

: if there exists at least one copy of Dk, say Dk(r),
where offset(k, r) ≥ PointRetr.

L− PointRetr. + min
n

offset(k, i)
���i = 1, 2, · · · , n(Dy)

o
: otherwise.

By Lemma 1, the distance between retrieval point and
the point that the nearest copy of Dk has been completely
retrieved is NEAREST (PointRetr., k)+size(Dk). Since the
mobile device will stop retrieving data items when all data
items in Qi have been completely retrieved, T j

Retr.(Qi) can
be formulated as

T j
Retr.(Qi)

= max
k=qi(1),qi(2),··· ,qi(|Qi|)

n
NEAREST (offset(PointRetr., k)

+size(Dk)
o
× 1

B
. (6)

Then, TRetr.(Qi) can be obtained by Equations (5) and
(6). By the definition of access time, TAccess(Qi) can be
formulated as

TAccess(Qi) = TStartup(Qi) + TRetr.(Qi).

TAccess(Qi) for i = 1, 2, · · · , |Q| can be obtained by the
above equation, and finally, TAccess(Q) can calculated by
Equation (2).

4. DESIGN OF GENETIC ALGORITHM
As described before, fitness is the measurement of the

quality of the chromosomes, and the GA is designed to
search the chromosome with the highest fitness (i.e, max-
imize the fitness). Since the goal of broadcasting dependent
data is to minimize the average access time of the given
query profile, the fitness function is defined as

Fitness(P ) =
1

TAccess(Q)
.

According to Equation (2), TAccess(Q) is the weighted
summation of all TAccess(Qi). Consequently, TAccess(Q) can
be obtained by the following procedure with the analytical
results derived in Section 3.

Procedure CalAccessTime(Q, P )

Input: A query profile Q and a broadcast program P .
Output: TAccess(Q) over the broadcast program P .

1: TAccess(Q) ← 0
2: for i = 1 to |Q| do
3: TAccess(Q) ← TAccess(Q) +

CalAccessT imeOfQuery(Qi, P )× Pr(Qi)

Parameters Values

The number of generations (nGen) 20
The size of population (nPop) 5
The probability of crossover (PC) 0.9
The probability of mutation (PM ) 0.5
The size of a page 1K bytes
The bandwidth of each channel (B) 100K byte/sec.
The number of data items (|D|) 450

The replication factor
�

size(D∗)
size(D)

�
2

The number of queries (|Q|) 300
The value of fanout 15
The Zipf distribution (θ) 2.5

Table 1: System parameters

4: end for
5: return TAccess(Q)

Function CalAccessTimeOfQuery(Qi, P )

Input: A query Qi and a broadcast program P .
Output: TAccess(Qi) on the broadcast program P .

1: Calculate TStartup(Qi) in accordance with the result of
Equation (3)

2: Find the candidates of the first retrieved data items of
Qi (i.e., Cand) according to Definition 4.

3: TRetr.(Qi) ← 0
4: for j = 1 to |Cand| do

5: Calculate T j
Retr.(Qi) according to Equation (6)

6: Calculate p(j) on the basis of Equation (4)

7: TRetr.(Qi) ← TRetr.(Qi) + p(j)× T j
Retr.(Qi)

8: end for
9: TAccess(Qi) ← TStartup(Qi) + TRetr.(Qi)

10: return TAccess(Qi)

5. PERFORMANCE EVALUATION

5.1 The Simulation Model
For performance studies, we implemented the GA-based

algorithms with GAlib [5], and also a query profile generator.
The simulator and query profile generator are both coded in

C++. We define the replication factor as size(D∗)
size(D)

to repre-

sent the degree of replication. The probability of the query

Qi issued by users is assumed to be Pr(Qi) =
( 1

i
)θPn

j=1( 1
j
)θ

where θ is the parameter of the Zipf distribution. Let the
data size for each data item follows a normal distribution
with mean 10 pages and variance 4 pages, and one page is
set to be 1K bytes. Table 1 shows the system parameters in
our experiments.

In addition to the proposed scheme, we also implement
QEM [2] for comparison purposes. Note that QEM can
generate broadcast programs for unordered queries without
replication. To evaluate the effect of the proposed algorithm
on the quality of solutions and the execution time, several
experiments are conducted. For performance comparison,
the performance gain of scheme A over scheme B is defined
as

Avg. access time of scheme A− Avg. access time of scheme B

Avg. access time of the scheme B
.

5.2 The Effect of the Number of Generations
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In the first experiment, we investigate the evolution pro-
cess of the proposed GA by varying the value of nGen. Note
the change of the value of nGen does not affect the results of
scheme QEM. Figure 4 shows the effect of different values of
nGen ranging from 0 to 50 on the average access times of the
resulting broadcast programs. The corresponding execution
times of the schemes are presented in Figure 5. Note that
nGen = 0 represents the case of randomly generating nPop

solutions. As observed in Figure 4, the average access time
of the result broadcast program decreases as the value of
nGen increases. However, the speed of convergence becomes
slow when nGen is larger then 20. Therefore, we set nGen

to be 20 in the following experiments. In addition, the per-
formance gain of GA over QEM increases from 28% to 55%
when nGen increase from 0 to 50.

As shown in Figure 5, the execution time of scheme GA
increases linearly as the value of nGen increases. We also ob-
serve that scheme GA is about 30 times slower than scheme
QEM when nGen = 20. However, scheme GA still out-
performs scheme QEM when nGen = 0 (i.e., the execution
of scheme GA is smaller than that of scheme QEM) which
shows the importance of data replication in broadcast pro-
gram generation.

5.3 The Effect of the Number of Queries
Figures 6 and 7 show the experimental results with the

number of queries (i.e., |Q|) varied. As observed in Figure
6, the performance gain of GA over QEM ranges from 36% to
44% when the number of queries increases from 200 to 500.
However, the performance gain of GA over GA-Timed de-
creases from 21% to 8%. It is because that a smaller number
of queries indicates less constraints in broadcast program op-
timization, and therefore, GA outperforms GA-Timed since
GA has more time in optimization than GA-Timed. On the
other hand, when the number of queries is large, most effort
in optimization will be in vain since the number of con-
straints is large. In addition, as observed in Figure 7, the
execution times of scheme GA and QEM increase linearly
as the number of queries increases.

6. CONCLUSION
We explored in this paper the problem of broadcasting

dependent data for unordered queries and explicitly investi-
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gated the effect of data replication. By analyzing the model
of dependent data broadcasting, we derived several theo-
retical properties for the average access time. In light of
the theoretical results, we developed a genetic algorithms
to generate broadcast programs for unordered queries with
data replication. Our experimental results showed that with
the analytical results derived, the theoretical results derived
were able to guide the search of the genetic algorithm very
effectively, thus leading to solution broadcast programs of
very high quality. It is also shown by the experimental
results that the data replication technique employed can
lead to more efficient use of network bandwidth than prior
schemes.
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