
UCLA
Technical Reports

Title
Computation Hierarchy for In-network processing

Permalink
https://escholarship.org/uc/item/97x201c3

Authors
Ram Kumar
Vlasios Tsiatsis
Mani B Srivastava

Publication Date
2003

eScholarship.org Powered by the California Digital Library
University of California

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/192677975?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://escholarship.org/uc/item/97x201c3
https://escholarship.org
http://www.cdlib.org/

 1

Computation Hierarchy for In-network Processing
Ram Kumar Vlasios Tsiatsis

Networked & Embedded Systems Lab
Electrical Engineering Dept., UCLA

LA, CA 90095 USA
{ram, tsiatsis, mbs}@ee.ucla.edu

Mani B. Srivastava

ABSTRACT
In this paper, we explore the network level architecture of
distributed sensor systems that perform in-network processing.
We propose a system with heterogeneous nodes that organizes
into a hierarchal structure dictated by the computational
capabilities. The presence of high-performance nodes amongst a
sea of resource constrained nodes exposes new tradeoffs in the
efficient implementation of network-wide applications. The
introduction of hierarchy enables partitioning of the application
into sub-tasks that can be mapped onto the heterogeneous nodes
in the network in multiple ways. We analyze the tradeoffs
between the execution time of the application, accuracy of the
output produced and the overall energy consumption of the
network for the different mapping of the sub-tasks onto the
heterogeneous nodes in the network. We evaluate the
performance and energy consumption of a typical sensor network
application of target tracking via beamforming and line of bearing
calculations on the different nodes. Our experiments show that
more than 95% of time on average, the hierarchical network
outperforms a homogeneous network for approximately the same
energy budget.

Categories and Subject Descriptors
C.2.1 [Computer Communication Networks]: Network
Architecture and Design; C.3 [Computer Systems
Organization]: Special Purpose and Application-based Systems;

General Terms
Performance, Design, Experimentation

Keywords
In-network processing, Hierarchical architecture, Computation
Offloading

1. INTRODUCTION
1.1 Motivation
Advances in VLSI, MEMS and wireless networking have enabled
device miniaturization and power efficiency [1]. These advances
pushed forward the emergence of a new class of networked
embedded systems, namely sensor networks [2][3][4]. Sensor

networks present the challenge of building large scale distributed
systems that are tightly coupled with the physical world in an
extremely resource constrained environment and need to function
for a long time providing a desirable level of performance.
Some of the common applications envisioned for sensor networks
range from monitoring of habitats for specific birds and animals
[13][7], detection of contaminants and pollutants in fluids [14],
detection of intrusion and tracking of targets [15][16]. All these
applications require processing of the raw data collected by the
distributed sensors in the field. The communication computation
energy tradeoffs [2][5] have shown that in-network processing of
the sensed data is more energy efficient in comparison to the
centralized server model where all the nodes simply collect and
forward data to a powerful user node.
Another interesting observation is that the complexity of the
processing varies significantly from one application to another
and also within an application. For example, the calculation of
the maximum value of the temperature observed over a region
does not demand excessive computation power. However, in
habitat monitoring applications, the identification of a bird based
on the recorded audio waveform requires the computation of the
correlation of the spectrogram of the input waveform with a pre-
stored spectrogram. This is a very demanding signal processing
computation [7] for even the most powerful sensor nodes
available.
There is a rich diversity of sensor node platforms that are
currently available [9][10][38][39]. Later in the paper we present
two different platforms and their characteristics. The platforms
cover a large range of MIPS, which is a metric that measures the
rate of instruction execution in processors [17]. Also, some of
them have specialized architectures (for e.g. custom H/W on
FPGA) which make them efficient for a certain class of
applications. However, a single node platform alone is not
efficiently scalable to the large dynamic range of the
computational complexity of the sensor network applications. The
processors with higher MIPS have higher clock rates which
directly translate into higher power consumption. Therefore, such
processors are inefficient for performing computations that are not
very demanding. Conversely, the processors with low MIPS are
not suitable for demanding applications.
The cost of the sensor network is an important factor to be
considered during design time. It is a norm for the sensor
networks to be comprised of a few hundreds of nodes. Therefore,
the cost of an individual node should be kept at a minimum to
reduce the overall system cost. Multi-processor node architectures
can be made to scale to the current computational load desired of
them, but their overall components, design and fabrication cost
would be very high. Instead of making every node in the network
scalable, economically, the more efficient solution is to have a
heterogeneous network comprising of nodes of varying levels of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WSNA ’03, September 19, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-764-8/03/0009…$5.00.

 2

computational capabilities. Such a network would be scalable at a
lower average cost per node.

1.2 Hierarchical Network Architecture
Instead of choosing a single hardware platform that makes a
particular set of trade-offs, we believe an effective design is one
that uses a hierarchical architecture consisting of heterogeneous
hardware platforms with varying computational capability. Larger
nodes with abundant resources and higher power consumption
(henceforth referred to as macro-nodes) can be sparsely deployed
across the network to assist the smaller, resource constrained
nodes (henceforth referred to as micro-nodes) which would be
densely deployed. The concept is analogous to caches in the
memory sub-system of modern computer architecture [17].
Caches are faster, smaller and expensive memories which exploit
the spatial and temporal locality of memory references. The
caches are backed up by cheaper slower memories with larger
storage capacity. Thereby, the entire memory system appears to
be as fast as the cache but as vast as the secondary storage.
Similarly, the hierarchical network would have a high coverage
and low energy consumption that would resemble a sea of micro-
nodes but yet appears to have a computational capability and
performance comparable to the macro-nodes. We exploit the
spatial locality of the algorithms by creating clusters in the
network comprising of at least one macro-node that would
execute the computationally intensive atomic units of the
application.
The design challenges in instrumenting such a network are
numerous. First and foremost is the partitioning of the application
into sub-tasks that are executed at different nodes in the network.
The sub-tasks are mapped onto nodes that are most efficient for
executing them. The essential criteria dictating the mapping is the
architecture of the macro-nodes and micro-nodes and the
performance and the energy consumption of the sub-tasks on
them.
Secondly, we need to determine the composition of the network in
terms of the number of nodes of every kind. This decision is a
tradeoff between the performance of the system and its overall
cost. The latency of the data transfer between the sub-tasks
mapped onto different nodes has a significant impact on
performance. This latency can be minimized by reducing the
average hop count from a micro node to a macro node which in
turn implies increasing the number of macro nodes in the
network. The overall system cost increases due to the increase in
the number of macro nodes.
Lastly, hierarchical architecture of the networked system
essentially permits computation offloading by the micro-nodes
onto the macro-nodes in the network. However, the offloading
requires a self-configuration algorithm wherein the network is
divided into clusters of micro-nodes headed by a macro-node. The
micro-nodes in the cluster would offload their computation onto
the macro-node which forms the cluster head. Research effort is
required in developing efficient and robust clustering algorithms.

1.3 GALORE: A Hierarchical Network
An example of a hierarchical network is the system developed in
the context of the GALORE project [35]. The architecture is
hierarchical, comprising of random and dense deployment of
MICA motes [8] [9] at the lower level. The higher level of the
hierarchy consists of a sparse and random deployment of

computationally capable nodes like the iPAQ [10] and the
IQinvision [11] camera nodes. The IQinvision cameras are
networked and they can share their computational resources [12].
The iPAQ can communicate with the MICA motes through the
MoteNIC interface [24]. The iPAQ can also communicate with
the camera through the serial interface or a wired ethernet
connection. The communication links between the different layers
in the hierarchy is illustrated in Figure 1. The iPAQ is currently
serving only as a proxy for a smaller form-factor node,
Cerfcube[40]. The architecture of both the nodes is similar except
that the iPAQ has a LCD screen which makes the debugging
easier.

Figure 1: GALORE Hierarchical Network

The objective of the GALORE system is to perform unsupervised
surveillance with multiple sensing modalities. In order to support
comprehensive surveillance and situational awareness, imagers
are required in some form. Important features of the target such as
markings and occupants can be ascertained only by the use of
imagers. However, since the imagers have a higher power
consumption and lower utilization in comparison to the other
system components, it is impractical for them to operate
continuously. Therefore, some low-power sensing modality must
be used for cueing the image sensors. We propose to implement
an acoustic target tracking system on MICA motes and Compaq
iPAQs using beamforming and line of bearing calculation. Upon
detection and localizing a target, the acoustic sensors cue the
image sensors to take over.
In the next section, we describe the acoustic tracking application
via beamforming and describe the computational complexity of
the operations. In section 3, we compare the architectural features
of the two commonly used sensor node platforms and classify
them. The beamforming algorithm was implemented on all the
sensor node platforms discussed and its measured performance
and energy consumption is reported in section 4. In section 5, we
illustrate the performance improvements that can be realized at
the same energy budget by mapping the sub-tasks onto different
nodes in the network. We also comment on the deployment
densities of the different heterogeneous nodes comprising the
network. We conclude with a discussion on future work.

2. ACOUSTIC TARGET TRACKING
The applications that would benefit from the introduction of
hierarchy are those which involve a significant amount of in-
network processing. Such applications require either extensive
resources like memory which is not available on the micro-nodes
or are computationally intensive that it takes prohibitively large
computation time and energy on the micro-nodes. Typically the
execution time of such applications on the micro-nodes is much

RFM RFM

Mote: RFM

iPAQ: MoteNIC

802.11b

Serial
Connection

 3

more than the communication time required in sending the inputs
to the macro-nodes. There are numerous examples of such
applications like target identification [7], tracking [16] etc. We
have chosen acoustic target tracking as our driver application to
illustrate the tradeoffs introduced by the presence of
computational hierarchy in the network. The target tracking via
time domain delay and sum beamforming requires significant in-
network processing of the sampled acoustic data and therefore is a
good representative for the class of applications that would
benefit from computational hierarchy.

Figure 2: Beamforming on sensor nodes

2.1 Delay and sum beamforming
Acoustic beamforming algorithms estimate the line of bearing to
distant acoustic emitters by time-shifting signals from
microphones at known relative locations to form beams from
selected directions [6] [18].
A set of three nodes M1, M2 and M3 (refer to Figure 2) organize
themselves into an array for sampling the acoustic waveform. The
line of bearing is computed at the point P (refer to Figure 2)
which is the center of the circle passing through the three nodes.
The algorithm initially iterates over the possible angles of arrival
Φ. For each angle, the distances d1, d2 and d3 are computed. These
distances are the projections of the radius vector onto the possible
direction of arrival. The distances d1, d2 and d3 are converted into
sample delays N1, N2 and N3 according to (1) where C represents
the speed of sound in the medium and S represents the sampling
rate of the acoustic signals.

()
() {1, 2, 3}, i

i

d
N S i Search Angles

C

Φ
Φ = ∀ ∈ ∀ Φ ∈

(1)
At every node Mi, the sample delays Ni are computed for every
possible angle of arrival and stored in array indexed by the angle
of arrival Φ. Therefore Ni(Φ) represents the number of sample
delays for node Mi when the direction of the arrival of the
acoustic signal is Φ.
Beamforming is accomplished by time-shifting the signals from
an array of microphones to a common position with time delays
prescribed by (2), for an assumed LOB Φ. Beams are formed for a
number of LOB search angles. The gain of the beam is computed
according to the following set of equations:
S: Sampling Rate, T: Sampling Duration, K = T * S = Number of
samples
Each microphone samples from n = 0 to n = K samples.
Si(n) = Samples recorded at microphone i

1 1 2 2 3 3
(,) (()) (()) (())A n S n N S n N S n NΦ = − Φ + − Φ + − Φ (2)

Number of common samples = K + Min(N1, N2, N3) – Max(N1, N2,
N3) = P

1 2 3

1 2 3

(, ,)
2

(, ,)

() (,) /
K M in N N N

n M ax N N N

G A n P
+

=

Φ = Φ∑ (3)

As the search angle approaches the correct LOB of the emitter,
the signals add up in the correct phase. The search angle with the
maximum power in the delay-summed signal is selected as the
estimated LOB. The LOB estimate is refined by a parabolic
interpolation over the adjacent search angles. The RMS error of
the LOB estimate reduces and hence the tracking accuracy
increases with the increase in the number of search angles in the
algorithm [6].

2.2 Computation Complexity Analysis
The beamforming application has been implemented using fixed-
point arithmetic routines [6]. The floating point version of the
application was not used because the sensor node platforms
comprise of integer units only and all floating point operations
will be emulated in software. Therefore, the performance of the
application depends only on the architectural features of the nodes
and is independent of any software library implementation. The
flow graph representing the different steps involved in the
application is denoted in Figure 3.
Sensing operation involves periodic sampling of the signals
received from the microphone and performing an A/D conversion
to store the digitized sample in a buffer. The sampled data bit-
width is 10 bits but it is further scaled to 8 bits in order to filter
out low amplitude noise in the signal. The data is sampled at a
rate of 1 KHz and a total of 64 samples are collected in an interval
of 62.5 ms. The sampling rate is determined by the frequency of
the acoustic signal produced by the target.

Figure 3: Task-graph of Beamforming Application

d2

d3

M3

M1

M2

P Y

X

d1

DELAY CALCULATION

Repeat for all Mics i

 Repeat for all search angles Φ

 Calculate Cosine(Φ)by Cordic Algorithm.

DELAY AND SUM

Repeat for all search angles Φ

 Calculate min Ni(Φ)

 Interpolative shift of all samples and add.

 Square and sum all samples.

 Divide the sum by number of samples.

PICK PEAK

Parabolic interpolation of the angle with

the greatest beam value.

SENSE SENSE SENSE

 4

We analyzed the operations in all the computationally intensive
steps of the algorithm.
Delay Calculation - Cordic Algorithm: The first step of the
computation process is to calculate the delay of the three
microphones at the central point in terms of the number of
samples. The delay calculation involves computation of the cosine
of an angle. Due to the absence of a floating point unit, the cosine
is implemented through a cordic routine. In order to improve the
precision, the delay is computed and stored as 32 bit fixed point
integer. This computation is performed over all possible search
angles for all the microphones. The delay calculation is a one-
time computation for a cluster of three microphones. Once
computed, the delay values can be re-used for the subsequent
iterations of the application with the input data from the same
cluster.
Interpolative shifting - 32 Bit Integer Multiplication: The
shifting by a fraction of time between samples is achieved by
linear interpolation of the samples. Interpolative shifting requires
a 32-bit multiplication between the difference of two adjacent
sample values and the fractional part of the delay. This operation
is performed over all search angles, all microphones and all data-
samples. It constitutes the bulk of the execution time.
Sum and squares – 32 Bit Integer Multiplication: The
calculation of the gain requires square and sum of all the samples
in the signal. The computation of the square requires a 32-bit
multiplication. This operation is performed for all angles and for
all samples.
Gain Calculation – Division: The computed sum and squares
needs to be divided by the total number of samples in order to
calculate the gain for every angle. This requires a 32 bit integer
division operation. This operation is performed once for every
angle.

3. SENSOR NODE ARCHITECTURES
The computation offloading enabled due to the introduction of
hierarchy will be beneficial only if the macro-nodes have superior
performance and abundant resources than micro-nodes. In this
section, we analyze the architectural features that distinguish the
different classes of nodes. We do so by comparing the
architecture of the commonly used sensor node platform, Mica
Mote and a convenient computation platform, Compaq iPAQ.
A sensor node platform comprises of three interacting
subsystems:
Compute Subsystem: The primary task of the computation
subsystem is the execution of the applications. The operating
system in the sensor nodes is at the heart of the computation sub-
system. It is responsible for scheduling operations and managing
resources.
Communication Subsystem: The communication subsystem
manages the data transfer and signaling between the sensor nodes.
It maintains the radio state and executes the network protocols.
Sensing Subsystem: The sensing subsystem is responsible for
managing the state of the multiple sensors hosted by the node.
The state management implies powering the sensor on or off and
maintaining a data transfer channel between the sensor and the
memory to store the samples collected by the sensors.
The sensor nodes differ primarily in the implementation of the
three sub-systems. The following sub-sections contain an
overview of the common sensing platforms.

3.1 Micro-node: Berkeley Mica Motes
The MICA motes [9] from Berkeley are the current generation
low-power sensor nodes. It is a COTS node with very limited
resources and low energy consumption. The block diagram of the
MICA node is shown in Figure 4. The key components
constituting the node are a main board hosting Atmel’s
ATMEGA128L (AVR) [19] microcontroller, RF Monolithics
TR1000 radio [20] and a sensor board hosting a large array of
sensors.

Figure 4: Block diagram of the MICA Mote

The ATMEGA128L is a RISC CPU that delivers 4 MIPS at 4
MHz [19]. The on-chip memory on the ATMEGA128L is limited
comprising of only 4 Kbytes of SRAM (used as data-memory)
and 128 Kbytes of flash memory (used for program storage). The
micro-controller hosts a large number of peripheral devices such
as timers, ADC (Analog to Digital Converter), SPI and UART
etc. that enhance the functionality of the CPU and provide means
for communicating with the other components on the board. The
ATMEGA128L supports multiple power modes with varying
current consumption. The TR1000 radio [20] from RF
Monolithics is the core of the communication subsystem. It is a
short range radio operating at 916.7 MHz that supports data
transmission rates up to 115.2 kbps. The radio supports a low
power consuming sleep mode which makes it suitable for sensor
node. The sensor board hosts a photocell, thermistor,
magnetometer, accelerometer, microphone and a sounder [9]. The
sensor board is connected to the main board through a 51-pin
connector. The power supply to each sensor is individually
controlled using power switches. The sensor board also contains
analog circuits to amplify the signals received from the different
sensors. The analog signals are fed to the on chip ADC of the
ATMEGA128L.

3.2 Macro-node: Compaq iPAQ
The iPAQ H3600 [10] is a small form-factor PDA with versatile
expansion capabilities. The hardware organization of the iPAQ is
proprietary and hence the block diagram is not available.
However, we present the block diagram of Itsy-v2 PocketPC [21]
by Compaq. The Itsy-v2 has a very similar system architecture
and organization to the iPAQ and therefore is a good reference.
The iPAQ is driven by the StrongArm SA-1110 [22]
microprocessor. The SA-1110 is a 32-bit RISC CPU delivering
235 Dhrystone 2.1 MIPS [23] at 206 MHz. The processor has an
on-chip I-cache of 16 Kbytes and a D-cache of 8 Kbytes. There is
an integrated dual-slot PCMCIA controller built into the chip
which enables the addition of extra peripheral devices to the chip.

ATMEGA128L
Analog I/O
Digital I/O

RFM

Radio

Flash

Voltage
Regulator

Crystal

 5

SA-1110 has advanced power-management logic. The processor
has multiple sleep and idle states and also supports dynamic
voltage scaling.
The wireless communication in the iPAQ is through the PCMCIA
channels. There are currently two possible setups for enabling the
radio link in the iPAQs. The first method is to use the 802.11b
standard based WLAN cards. The alternate method is to connect a
MICA mote with the RFM radio to the iPAQ through a RS-232
serial link. The RS-232 serial link card plugs into the PCMCIA
slot of the iPAQ. This arrangement is known as the MoteNIC
[24].

Figure 5: Itsy v2 Architecture

The iPAQ can be used as a sensing platform by attaching a host of
sensors to the serial port of the device. For example, the magnetic
sensor HM2300 from Honeywell [25] has a serial interface
through which it can communicate with the iPAQ. In addition, the
iPAQ contains an audio-system that can act as an acoustic sensor.
The audio-system comprises of a Philips UDA1341 [26] codec
chip that provides A/D and D/A functionality. The codec chip is
connected to an on-board microphone that is used for sensing the
acoustic signals. The codec has a programmable sampling rate.
The acoustic samples upon sensing are streamed to the main CPU
through a serial bus interface.

3.3 Platform Comparisons
Having presented the key components of the architecture of all
the two platforms, we now compare them along the axes of
performance, memory resources, power consumption and cost.
The overall performance of the system is dependent on the
processing core of the architecture. The capability of the cores is
summarized in Table 1 [19] [22]. The SA-1110 has a double
advantage over ATMEGA128L. In addition to a higher clock rate
and hence a higher MIPS, the ALU on the SA-1110 is 32 bits
wide. Therefore, operations on 32-bit integers require fewer
cycles to execute on SA-1110. Signal processing algorithms
employing fixed point representation of the data benefit from the
wider ALU significantly.

Table 1: Performance comparison of processing core

Platform Core MIPS MHz Data Path

MICA ATMEGA128L 4 4 8 bits

iPAQ SA-1110 235 206 32 bits

The memory is a very crucial resource in embedded systems. The
total available data memory on the MICA motes is limited to only
4 Kb. Therefore, they are not suited for signal processing
applications that require large buffers. The iPAQ has abundant
memory resources in the form of on-chip memories and on-board
SRAM and FLASH chips. The 32-bit memory bus increases the
processor memory bandwidth.

Table 2: Computation core power consumption

Platform Power

MICA, ATMEGA128L, 4 MHz, 3 V 15 mW

iPAQ, 133 MHz, 1.3 V 246.4 mW

iPAQ, 206 MHz, 1.5 V 387.3 mW

Since energy consumption is crucial to sensor networks, we also
present the power consumption for the two platforms in Table 2
[19] [22]. The higher capability of the SA-1110 processor comes
at the cost of higher power consumption.

Table 3: Acoustic sampling power consumption

The power consumption of the acoustic sub-system is summarized
in Table 3. This value includes the power consumed by the
microphone, ADC and the computation core during the process of
acoustic sampling. The values for the MICA mote were obtained
by measuring the current consumption of the node while sampling
acoustic signals at 1 KHz. The iPAQ values were obtained from
the data-sheet current consumption numbers of the components
[22] [26]. The iPAQ sampling rate was set to 4 KHz.
Based upon the numbers obtained in Table 1, Table 2 and Table
3, we can conclude that operations with low computation
requirement like thresholding of a signal etc. are more suited to be
performed on MICA motes due to its lower power consumption
for sensing and computation. But compute intensive operations
are better suited for iPAQ class platforms. Even though these
platforms have higher power consumption, the performance
improvement is more dominating due to resource-rich
architecture.

4. IMPLEMENTATION
4.1 Performance Measurements
The performance measurements of beamforming application for
the individual platforms are given below.

4.1.1 MICA Mote
The beamforming application was compiled using the NesC-1.1
compiler [27] targeted towards the ATMEGA128L micro-
controller. The entire application was implemented as a set of
tasks in the TinyOS-1.x [28]. The execution time for the
application was measured by capturing the trace of an IO signal
from the ATMEGA128L which was asserted every time the
algorithm was initiated and was de-asserted upon the completion

Platform Power

MICA, microphone + AVR ADC + Amplifier 27 mW

iPAQ, UDA 1341TS + SA-1110 (206 MHz) 445.8 mW

 6

of the algorithm. The averages of the observed values are plotted
in the graph shown in Figure 6. The execution time varies linearly
with the number of search angles. This is expected because the
computationally intensive operations of the application depend
linearly upon the number of search angles. The computation takes
2098 ms for 90 search angles. Such a high value makes MICA
mote an inefficient platform for performing the beamforming
application.

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

1600

1800

2000

MICA Performance (4 MHz)

Number of search angles

E
xe

cu
tio

n
T

im
e

(m
S

)

Figure 6: Mica Mote Performance

4.1.2 Compaq iPAQ
The application was compiled using the arm-linux-gcc compiler
for the SA-1110 processor. The system was running the
FAMILIAR Linux version [29] operating system. The execution
time of the application was measured using the gettimeofday()
function of the linux system library for a clock frequency of 206
MHz. The computation takes 3.2 ms for 90 search angles. The
execution time of the application for the other clock frequencies
was measured using JouleTrack [30], a performance and power
analysis tools for the StrongARM SA-1110 processor. The
execution times are plotted in Figure 7.

0 10 20 30 40 50 60 70 80 90 100
0

2000

4000

6000

8000

10000

12000
iPAQ Performance

Number of search angles

E
xe

cu
tio

n
T

im
e

(u
S

)

59 MHz
89 MHz
133 MHz
177 MHz
206 MHz

Figure 7: iPAQ performance

4.2 Energy Measurements
Energy measurements were carried out for the computation of
LOB, acoustic sampling and the data transfer over the radio link.

4.2.1 Beamforming Algorithm
The energy consumption for the MICA platform was obtained by
sampling the current drawn by the AVR core for the duration of
the computation. The averaged drawn current was multiplied with
the supply voltage and the computation time to obtain the total

energy consumed. The iPAQ energy consumption was measured
using Jouletrack [30]. The operating voltage and the frequency
was varied for the iPAQ. The energy measurements were carried
out for different number of search angles in the Beamforming
algorithm. The obtained results are summarized in Figure 8.

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35
Energy per beamforming operation (MICA Mote)

Number of search angles

E
ne

rg
y

(m
J)

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400
Energy per beamforming operation (iPAQ)

Number of search angles

E
ne

rg
y

(u
J)

59 MHz
89 MHz
133 MHz
177 MHz
206 MHz

Figure 8: Beamforming energy consumption

4.2.2 Acoustic Sampling
The target tracking application requires the collection of 64
samples of the audio signal sampled at the rate of 1 KHz. Table 4
summarizes the energy required for the acoustic sampling task.

Table 4: Energy and latency of acoustic sampling

Operation Energy Time

MICA Mote: 8 bit audio sampling 1.688 mJ 62.5 ms

iPAQ: 16-bit audio sampling 27.844 mJ 62.5 ms

The sampling energy for iPAQ is much higher than for the MICA
motes due to the much higher power consumption of the SA-1110
CPU and the audio codec. This is primarily because the sampling
operation in the iPAQ is implemented as blocking read function
by the audio port driver. The processor is active during the entire
duration of sampling and therefore consumes much higher energy.
On the MICA mote, the processor draws much lower power
during sampling. Also, the audio sensing sub-system in the iPAQ
consumes much higher power due to the presence of the UDA-
1341TS audio codec.

4.2.3 Wireless Data Transfer
The data transfer for the beamforming application requires
transmitting a 64 byte buffer from the sensing node to the node

 7

performing the beamforming operation. The data transfer is done
by splitting the buffer into three packets. This is because the
physical layer packet size payload is constrained to be only 29
bytes for reliable packet transmission in the Berkeley Comm
Stack in TinyOS-1.x. The effective data-rate obtained over a link
was 13.3 Kbps. The energy measurements were carried out by
sampling the current drawn during the transmit and the receive of
the buffer. From this, the energy of transfer of the buffer over a
single hop was obtained to be 6.2 mJ. The values of the
operations are compared in Figure 9.

Mote iPAQ
0

5

10

15

20

25

30

35
Energy Per Operation

Platform

E
ne

rg
y

(m
J)

Beamforming Operation (90 Search Angles)
Acoustic Sampling (64 samples @ 1 KHz)
Data Transfer − 64 byte buffer − 1 hop

Figure 9: Energy per operation for acoustic target tracking

5. ANALYSIS AND RESULTS
5.1 Task Mapping: Energy Latency Trade-off
Task mapping is the process of assigning tasks to the macro-nodes
and micro-nodes in the network. It determines the set of
operations that are to be performed locally at the micro-nodes and
the set of operations that are to be performed at the macro-nodes.

Figure 10: Network Topologies

We map the three sub-tasks of acoustic target tracking onto a
network comprising of MICA motes and iPAQs. The three
mapping scenarios considered are:
Mote-Mote: Acoustic sampling on MICA motes and local
beamforming on one of the three MICA motes that collected the
samples.
iPAQ-iPAQ: Acoustic sampling on the iPAQs and local
beamforming on one of the three iPAQs that collects the samples.
Mote-iPAQ-x: Acoustic sampling on the MICA motes and
beamforming on a iPAQ that is one or more hops away from the
motes collecting the samples. The suffix x denotes the number of
hops between the audio sampling motes and the iPAQ.

The topologies chosen for evaluation are as shown in the Figure
10.
For each scenario, we calculate the total energy consumed for
calculating one beam angle and the total latency of the
computation. The total energy consumed is the sum of acoustic
sampling energy, acoustic buffer transfer energy and the
beamforming computation energy. The total latency of the
application is obtained by summing up the computation latency
and the network latency for wireless data transfer. The results are
show in Figure 11.
The energy measurements in Figure 9 and Figure 11 indicate that
for very small number of search angles, it is most energy efficient
to map the sampling and the beamforming sub-tasks to the motes.
However, increasing the number of angles increases the
computation energy on the motes drastically, so much so that it
becomes cheaper to transfer the sensed data over the network to
an iPAQ. Hence, the mapping of the sampling sub-task to the
motes and the beamforming sub-task to the iPAQ (which is one or
two hops away) is more energy efficient even with the higher
communication energy cost. But when the number of hops
increases to three, the communication energy begins to dominate
and the initial configuration with all the sub-tasks mapped onto
the motes becomes energy efficient. The configuration with both
the sampling and the beamforming sub-tasks mapped to the
iPAQs has the highest energy consumption. This is primarily due
to the high cost of performing acoustic signal sampling on the
iPAQs.

0 10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

80

90

100
Task Mapping: Energy Comparison

Number of search angles

E
ne

rg
y

(m
J)

Mica − Mica
iPAQ − iPAQ
Mica − iPAQ − 1
Mica − iPAQ − 2
Mica − iPAQ − 3

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500
Task Mapping: Latency Comparison

Number of search angles

La
te

nc
y

(m
s)

Mote − Mote
iPAQ − iPAQ
Mote − iPAQ − 1
Mote − iPAQ − 2
Mote − iPAQ − 3

Figure 11: Mapping latency and energy

The latency has two components, the computation latency and the
network latency. The computation latency is obtained from the
performance measurements of the beamforming application. The
network latency is calculated assuming global time

Mote - Mote

Mote – iPAQ - 2

iPAQ - iPAQ

 8

synchronization between the nodes [34]. This requirement is not
very strict for the current application because we require micro-
second accuracy time synchronization for the acoustic sampling
operation. Also there is no other cross-traffic in the network. The
latency over a link for a node is computed using the packet size
and the data-rate of the radio. The three sampling micro-nodes
coordinate amongst themselves to decide the order of data-
transfer to the macro-node. We have implemented an ordering
based upon the node identities. The iPAQ-iPAQ mapping of both
sensing and beamforming sub-tasks on the iPAQs has the
minimum latency. The mote-iPAQ-1 mapping of sensing on
motes and beamforming on iPAQs has a higher latency due to the
greater overhead of communication, as in this case, three buffers
of 64 bytes need to be transferred over one hop versus only two
buffers in the previous case. Similary, mappings mote-iPAQ-2
and mote-iPAQ-3 have higher latencies. The mote-mote mapping
of both sensing and beamforming on the motes has the highest
latency due to the poor performance of the ATMEGA128L in
performing the beamforming sub-task. By observing carefully, it
can be easily concluded that the computation latency on iPAQ is
negligible in comparison to the network latency. Therefore, there
is not much impact of increasing the number of search angles.
However, the computation latency constitutes the bulk of the
overall latency on the MICA motes

5.2 Macro-node Density
From the results presented in the previous sub-section it is clear
that the overall energy consumption of computation offloading at
three hops and beyond is more than with no offloading. The
number of hops from a micro-node to the closest macro-node is
determined by the density of the macro-nodes in the network
relative to the micro-nodes and their deployment. We consider
only the random deployment of iPAQs and motes in a uniformly
distributed manner over the network terrain.

1 2 3 >3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Hop Count Histogram

Hop Count

P
ro

ba
bi

lit
y

Mote Density: iPAQ Density = 15:5
Mote Density: iPAQ Density = 15:3
Mote Density: iPAQ Density = 15:1

Figure 12: Hop count histogram

We simulated a hierarchical network on NESLsim [36], a
PARSEC based sensor network simulator. In our simulations, we
kept the density of the micro-nodes in the network to be a
constant. The density was chosen to ensure connectivity of the
micro-node network with a very high probability. A total of 120
micro-nodes were deployed randomly with a uniform distribution
over a square terrain of dimension L (= 100). We varied the
density of the macro-nodes in the network. Events were generated
randomly throughout the network and a cluster of three micro-
nodes that was closest to the event was chosen to sample it. The
hop-count is equal to the length of the shortest path to the closest

macro-node from the cluster of three micro-nodes. The
simulations were averaged over 1000 networks and 10 events
were generated for each network. A histogram of the observed
hop-counts for varying densities of the macro-nodes is show in
Figure 12.
The hop count is the significant determinant of the overall
network latency. The delay due to medium access would be much
lower than the transmission times due to two factors. First, the
three micro-nodes that sample are time synchronized and they
transmit the data in a coordinated manner to the macro-node.
Second, there is no other cross traffic in the network to pose any
contention for the wireless channel. Retransmission in the case of
packets being dropped is not required. The macro-node simply
flushes the incomplete buffers and does not compute the LOB.
From the histogram, we can infer that in a hierarchical network
with only one iPAQ for a cluster of 15 motes, the hop count to the
closest iPAQ is more than 3 hops only about 5% of the times.
Barring these cases, the performance and the energy consumption
of a hierarchical network would be superior to all Motes or an all
iPAQ network (about 95% of the instances).

6. RELATED WORK
Computation offloading has been studied in the context of low-
power handheld systems. [31] uses profiling information during
computation time and data sharing at the level of the procedure
calls to construct a cost graph for a given application program. A
partitioning scheme is then applied to statically divide the
program into client tasks (running on the hand held) and server
tasks (running on workstation) such that the energy consumed by
the program is minimized. The method of task mapping that we
have employed is also somewhat similar as we partition and map
the functionality based upon the overall energy dissipation. The
major difference between the two scenarios is that in distributed
sensor systems, we also need to consider the energy consumption
of the macro-nodes as even they have a limited energy supply.
However, in the proposed cost graph approach, the available
energy for the workstation is infinite. Also, overall performance
of the application is not an optimization issue in the cost graph
approach. Network portable terminals like the Infopad [32] have
also been used in the wireless environments. Such systems have
only a network I/O device with no computational power, relying
on network servers to run major processes. However, such
systems are not self configuring and they require extensive
infrastructure support.
Computation hierarchy in the context of sensor network was
proposed by [13] for a habitat monitoring application. They
pointed out to the notion of using heterogeneous hardware for
performing different kinds of computations. However, they did
not propose any system composed of the heterogeneous nodes.
The tiered system in [7] is the closest to the notion of hierarchy
proposed in this paper. But the paper focused on the collaborative
strategies between the macro-nodes and the micro-nodes to reduce
the communication energy costs. The proposed strategies were
limited to the application of habitat monitoring. They did not
focus on any of the aspects of system design and the performance
of the application. [33] proposed a tiered sensor network for
habitat monitoring on the Great Duck Island. They use a tiered
architecture solely for the purposes of communication. The
computation hierarchy has not been considered.

 9

7. CONCLUSION
In this paper, we have introduced the notion of computational
hierarchy in networked embedded systems. The need for
hierarchy stems from the fact that a single architecture cannot be
optimal for the entire range of operations that are required to be
performed in a typical sensor network application. We validated
this claim through a case study of the acoustic beamforming
application. We demonstrated that the sampling operation is more
efficient on MICA motes while the computationally intensive
beamforming routine is more efficient on the iPAQs.
Therefore, to have a scalable system, we advocate a hierarchical
network level architecture comprising of a few macro-nodes in a
sea of micro-nodes. Through our experiments, we verified that
such architecture gives superior performance and lower power
consumption than a homogeneous network of either all macro-
nodes or all micro-nodes. Our experiments show that for the
acoustic tracking application, a 15:1 ratio of the number of iPAQs
to the number of MICA motes in the network performs better than
a homogeneous network 95% times on an average.

8. FUTURE WORK
Currently, the research in hierarchical network architecture is still
in its nascent stages. We have explored only a two-level hierarchy
comprised of iPAQs and MICA motes. We have ported the
beamforming application to the Atmel FPSLIC platform [37].
This is a unique architecture composed of a Micro-controller and
a FPGA (Field Programmable Gate Array) on the same die. This
architecture offers hardware on demand to the applications that
seek more computation power. It would be interesting to study the
trade-offs in a multi-level organization composed of three classes
of nodes. Issues related to resource discovery and management
needs to be resolved. Currently, we assume that only one
application is being executed by the network. In the presence of
multiple applications, it is possible that a macro-node close to a
micro-node may be utilized to its full capacity. In such a situation,
the micro-nodes need to have a mechanism to discover alternate
resources in the network to off-load their computation onto. We
envision a network wide distributed resource manager that is
responsible for allocating computation resources to the micro-
nodes on demand.
Another interesting area of future research is to explore the
sensing hierarchy. Currently, the quality of acoustic sampling on
the iPAQ is far superior to the Mica motes. In this scenario, it is
possible to devise a collaborative strategy wherein the iPAQs are
turned off all the time and can be woken up only by the micro-
node. Therefore, the micro-nodes perform low-power coarse
sensing mainly to detect events and then hand off to the superior
nodes. This can be further extended to multiple sensing modalities
like vision etc. that can be triggered by the low power sensing
modalities. We are currently exploring this issue in the GALORE
project.

9. ACKNOWLEDGEMENTS
This paper is based in part on research performed under the
DARPA PAC/C and DARPA NEST programs. The views
expressed in this paper are those of the authors and do not
necessarily express those of the funding agencies.

10. REFERENCES
[1] Deborah Estrin, Chair, et al, “Embedded, Everywhere: A

Research Agenda for Networked Systems of Embedded

Computers”, Computer Science and Telecommunications
Board (CSTB)
Report.(http://www.cstb.org/web/pub_embedded

[2] K. Sohrabi, J. Gao, V. Ailawadhi, G. Pottie, “Protocols for
Self-Organization of a Wireless Sensor Network,” IEEE
Personal Communications Magazine, Vol.7, No.5, pp. 16-
27, Oct. 2000.

[3] L. Clare, G. Pottie, J. Agre, “Self-Organizing Distributed
Sensor Networks,” SPIE - The International Society for
Optical Engineering, Orlando, FL, pp. 229-237, April 1999.

[4] D. Estrin, R. Govindan, J. Heidemann, S. Kumar, “Next
Century Challenges: Scalable Coordination in Sensor
Networks”, ACM Mobicom Conference, Seattle, WA, August
1999.

[5] G. J. Pottie, W. J. Kaiser, “Wireless Integrated Network
Sensors”, Communications of the ACM, Vol. 43, no 5, May
2000.

[6] Ronald Riley, Brian Schott, Joseph Czarnaski and Sohil
Thakkar, “Power aware acoustic processing.”, Second
international workshop, IPSN 2003, Palo-Alto, CA, USA,
April 22-23, 2003

[7] Hanbiao Wang, Deborah Estrin and Lewis Girod,
“Preprocessing in a Tiered Sensor Network for Habitat
Monitoring”, EURASIP JASP special issue of sensor
networks, vol. 2003, no. 4, pp. 392-401, March 15, 2003.

[8] J. Hill, R. Szewcyk, A. Woo, D. Culler, S. Hollar and K.
Pister, “System Architecture Directions for Networked
Sensors”, ASPLOS 2000

[9] MICA Sensor Node, http://www.xbow.com

[10] Compaq iPAQ, http://www.compaq.com/products/iPAQ

[11] IQinVISION: IQeye3 Camera, http:///www.iqinvision.com

[12] Ram Kumar, Soheil Ghiasi and Mani Srivastava, "Dynamic
Adaptation of Networked Reconfigurable Systems",
Workshop on Software Support for Reconfigurable Systems
(SSRS), February 2003.

[13] Alberto Cerpa, Jeremy Elson, Deborah Estrin, Lewis Girod,
Michael Hamilton and Jerry Zhao , “Habitat monitoring:
Application driver for wireless communications technology”,
2001 ACM SIGCOMM Workshop on Data Communications
in Latin America and the Caribbean, Costa Rica, April 2001.

[14] Kim, J-Y., Bendikov, T. Park, Y. and Harmon, T.C.,
“Networked Sensing in Support of Real-Time Transport
Model Parameter Estimation”, Proceedings of the European
Geological Society-American Geophysical Union-European
Union of Geosciences Joint Assembly, April 6-11, 2003,
Nice, France.

 10

[15] Chen, J. C.; Yao, K.; Hudson, R. E.; "Source Localization
and Beamforming", IEEE Signal Processing Magazine,
March 2002.

[16] Zhao, F.; Shin, J.; Reich, J.; "Information-Driven Dynamic
Sensor Collaboration for Tracking Applications, IEEE Signal
Processing Magazine, pp. 61-72, March 2002.

[17] D.A.Patterson and J.L.Hennessy, “Computer Architecture: A
quantitative approach”, Morgan Kaufmann Publishers Inc.,
San Francisco,1996.

[18] J.C. Chen, L. Yip, J. Elson, H. Wang, D. Maniezzo, R.E.
Hudson, K. Yao, and D. Estrin, “Coherent Acoustic Array
Processing and Localization on Wireless Sensor Network”,
to apprear in IEEE Proceedings, Mid 2003.

[19] Atmel ATMEGA128L Datasheets,
http://www.atmel.com/avr

[20] RFM TR1000 radio datasheet,
http://www.rfm.com/products/data/tr1000.pdf

[21] ITSY PocketPC Compaq,
http://research.compaq.com/wrl/projects/itsy/

[22] Intel StrongARM SA-1110 Microprocessor Brief Datasheet,
http://developer.intel.com/design/strong

[23] EEMBC, Embedded Micro-processor Benchmark
Consortium, http://www.eembc.com

[24] MoteNIC Overview,
http://lecs.cs.ucla.edu/Noteworthy/quadcharts/thanos_lecs.pp
t

[25] Honeywell Magnetic Sensors,
http://www.ssec.honeywell.com/magnetic/

[26] Philips UDA1341TS Datasheet, http://www-
us.semiconductors.philips.com/pip/UDA1341TS.html

[27] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer and
D. Culler., “The nesC Language: A Holistic Approach to
Network Embedded Systems.”, ACM SIGPLAN Conference
on Programming Language Design and Implementation
(PLDI), June 2003

[28] TinyOS Operating System, http://webs.cs.berkeley.edu/tos

[29] Faimilar Linux, http://familiar.handhelds.org

[30] A. Sinha and A. Chandrakasan, “JouleTrack – A Web Based
Tool for Software Energy Profiling”, Proceedings of the 38th
Design Automation Conference, Las Vegas, June 2001

[31] Z Li, C. Wang and R. Xu, “Computation offloading to save
energy on handheld devices: A partition scheme,” Proc. of
International Conference on Compilers, Architectures and
Synthesis for Embedded Systems, Nov. 2001, Atlanta,
Georgia, pp. 238--246, ACM Press.

[32] S. Narayaswamy and et al. Application and network support
for infopad. IEEE personal Communications, 3(2):4–17,
April 1996.

[33] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J.
Anderson,“Wireless sensor networks for habitat monitoring,”
in 1st ACM International Workshop on Wireless Sensor
Networks and Applications (WSNA 2002), Atlanta, Ga, USA,
September 2002.

[34] Jeremy Elson, Lewis Girod and Deborah Estrin, “Fine-
Grained Network Time Synchronization using Reference
Broadcasts”,
In Proceedings of the Fifth Symposium on Operating Systems
Design and Implementation (OSDI 2002), Boston, MA.
December 2002.

[35] Galore Project: http://galore.cs.ucla.edu

[36] NESLSim: A Parsec Event Simulator:
http://www.ee.ucla.edu/~saurabh/NESLsim

[37] Atmel FPSLIC Datasheets:
http://www.atmel.com/products/FPSLIC

[38] A. Savvides and M. B. Srivastava, “A Distributed
Computation Platform for Wireless Embedded Sensing”,
Proceedings of International Conference on Computer
Design 2002, Freiburg, Germany.

[39] Sensoria Corporation: http://www.sensoria.com

[40] Cerfcube – Intrinsyc Corporation:
http://www.intrinsyc.com/products/cerfcube/

