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Influence of the short-range lateral disorder in the meta-atoms positioning on the effective parameters of the metamaterials
is investigated theoretically using the multipole approach. Random variation of the near field quasi-static interaction between
metaatoms in form of double wires is shown to be the reason for the effective permittivity and permeability changes. The obtained
analytical results are compared with the known experimental ones.

1. Introduction

Metamaterials are artificial media that allow tailoring the
macroscopic properties of the light propagation by a careful
choice of a design for the microscopic unit cell (called the
meta-atom). By controlling the geometrical shape and the
material dispersion of the meta-atom, novel effects such
as negative refraction [1–3], optical cloaking [4–9], as well
as series of optical analogues to phenomena known from
different disciplines in physics could be observed [10–14].
Despite the possibility to rely on rigorous computations
for describing the light propagation on the microscopic
level, an enduring problem in metamaterial research is the
question on how the effective material tensor looks like for
a certain metamaterial. A simple and versatile analytical
model describing propagation of electromagnetic waves in
metamaterials has been recently developed following classical
approach of Maxwell equation averaging procedure [15].
This transition from the microscopic to macroscopic system
of Maxwell equations takes into account all peculiarities
of carriers dynamics under the action of the resulted
electromagnetic field through the introduction of multipole
moments which are supposed to be represented as the
functions of the macroscopic electric and magnetic fields
[16]. One of the great advantages of this model is the
ability to evaluate straightforwardly influence of the charge
dynamics of the meta-atoms on the effective properties
of the metamaterials. In fact, the multipole moments are
calculated through the averaged charge dynamics in the

meta-atoms. Any factors influencing the charge dynamics
(e.g., interaction between the meta-atoms, extra coupling
of the meta-atoms with the other objects, etc.) cause the
changes in the multipole expressions, which in turn change
the effective parameters. It is important for the analysis
presented here that the interaction between the meta-atoms
and hence its influence on the effective permittivity and
permeability can be straightforwardly taken into account
[17].

The interaction between the small particles, both dielec-
tric and metallic, and propagation of an optical exci-
tation in a regular chain of such particles have been
intensively investigated [18–23]. Interest to the chains of
metallic nanoparticles is stipulated mainly by the request
for subwavelength guiding structures for a new generation
of the optoelectronic components for communication and
information processing. Nevertheless, theoretical tools for
the modeling of these chains (irrespective to the nature and
sizes) remain invariant: the electromagnetic excitation in the
particles are supposed to be described by taking into account
all possible eigen modes [18, 20] and interaction between
all particles in a chain. There are several approximations
which are typically accepted in this kind of problems. First,
depending on the size of the particles, the model can be
restricted by consideration of dipole moment only (for
metallic nanoparticles) [19, 23]; the higher moments can be
taken into consideration as well in the case of investigation
of magnetic response [22, 24]. Usually, for the problem
of electromagnetic excitation propagation along the chain,



2 Advances in OptoElectronics

the dipole approximation is enough [25], provided distance
between particles is not less than about three times their
sizes. Second, the interaction between the particles in a
chain can be considered in the frame of the quasi-static
approximation, where no retardation between particles is
retained; otherwise, interaction between dipoles contains
terms proportional to the 1/r and 1/r2 in addition to the
quasi-static term 1/r3 (r is the distance between dipoles). The
problem possesses an exact solution for the infinite chain
in the quasistatic case, while taking into consideration the
retardation leads to known math difficulties and requires
continuation into the lower half frequency plane [19].
Consideration of the finite chain is free from these excessive
math problems but can be treated only numerically; the
respective solutions for both longitudinal and transverse
modes are presented in [19, 26].

Natural expansion of the developed models of the elec-
tromagnetic excitation transport on a chain of particles with
randomly varying parameters revealed several interesting
peculiarities. The problem of wave propagation through
disordered systems attracts great attention in both quantum
and classical physics [27]. In disordered chains of different
dimensions, destructive interference between scattered waves
gives rise to an existence of the localized modes, exponen-
tially decaying in space—this effect has been originally found
in solid state physics and is known as Anderson localization
[28]. The existence of delocalized modes that can extend over
the sample via multiple resonances and have a transmission
close to 1 was found in [29, 30] and experimentally con-
firmed in [31, 32]. Disorder-induced change of the guiding
properties in a chain of plasmonic nanoparticles under small
random uncontrollable disorder was considered in [26], and
analogy of the Anderson localization in a chain of such
particles was theoretically investigated in [33]. In the present
analysis, the effect of Anderson localization is not considered;
nevertheless, it is believed, that the developed analytical tool
in this paper turns out to be suitable for the treatment of
the similar effect in metamaterials with different types of
disorder.

An influence of various types of disorder on the effective
properties of the metamaterials was intensively investigated
as well. Light propagation and Anderson localization in
superlattices were theoretically considered in [34, 35] using
the model of multilayered system with phenomenological
permittivity and permeability (positive and negative) in each
of the layers. The effect of the statistical distribution of the
sizes of the meta-atoms on the increase of losses in the
operation frequency band was considered in [36] using gen-
eralized Clausius-Mossotti relation. A significant influence of
a small (10%) deviation of the parameters of the microscopic
resonances on the propagation wave in a wide frequency
range was found in [37] using quasistatic expressions
for the effective parameters. Averaging of the Lorenz-type
expressions for the effective permittivity and permeability
using a phenomenological probability distribution function
showed that passband and negative refraction are still present
under small positional disorder [38]; the results were proven
experimentally as well. Interaction in a chain of magnetic
particles and its influence on the effective permeability
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Figure 1: (a) Regular and (b) laterally (along z direction) random
positioning of the meta-atoms in a metamaterial. Plane wave
propagation is in y direction, and electric field polarization
coincides with the x axis and with the elongation of the nano wires.
Note that only one layer, which the metamaterial consists of, is
shown in the figure.

were investigated in [24]. Using the introduced concept
of “coherent” and “incoherent” metamaterials, authors of
[39] showed that the influence of disorder on long-range
correlated metamaterials is significantly more pronounced
in comparison with the same effect in short-range ordered
metamaterials. Random variation of interaction between
meta-atoms was shown to be a main reason for the disap-
pearance of the long-range correlation and consequently of
the “coherent” state [39].

In the presented work, attention is primarily devoted to
the extension of the multipole approach to describe in-plane
disorder in metamaterials, which means the randomness in
positioning of the meta-atoms in the plane of the substrate;
see Figure 1. In [26], it was shown that the variations of
the electromagnetic properties of the inclusions are less
important than the disorder in their positions. Metamaterials
formed by a self-organization display exactly this kind of
disorder [40–43]. Results of control experiments with the
2D metamaterials exhibiting such in-plane disorder [44] are
used as a test of the model. The most notable discovery is
the fact that although disorder has a deterrent effect on the
permittivity, the permeability seems to remain practically
unaffected. A theoretical model for such a class of random
metamaterials should reproduce these observations.

The qualitative explanation of the influence of the
spatial disorder on the effective parameters is in following.
The positional disorder creates different conditions for the
charged dynamics in the meta-atoms due to the interaction
between them [21, 22]. This in turn leads to the changes
of the averaged dipole, quadrupole, and magnetic dipole
moments of the media and results in the changes of
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the effective parameters, which are expressed through these
averaged multipole moments [15, 45].

This qualitative hypothesis requires further development
of the existing theoretical multipole model; in particular,
the interaction between the meta-atoms [17] has to be
incorporated and adopted to the random character of this
interaction. Let us assume that the charge dynamics in the
microscopic multipole moments of the meta-atoms depends
on the distance δk between them (see Figure 2). Following
the approach of [15], it is necessary to average the resulted
charge dynamics in the multipole moments over all possible
representations; in other words, the microscopic multipole
moments have to be additionally averaged over all possible
distances between the meta-atoms, which mathematically
is expressed as an integral over a probability distribution
function PDF(δk); namely,

χmacro =
∫
χmicro(δk)PDF(δk)dδk, (1)

Here, χmicro(δ) is the microscopic multipole moment of the
meta-atoms, and PDF(δk) governs the distribution over all
possible interseparation distances δk in a randomly arranged
ensemble of the meta-atoms. In case of regular spatial
distribution, each metaatom is affected by the same fields,
PDF(δk) is reduced to the delta function, and averaging (1)
restores the microscopic multipole moments.

The quest to obtain such PDF(ρk) and the effort to
incorporate the effect of disorder into the existing multipole
model are discussed in details here. The paper is organized
as follows. First, the probability model used to incorporate
positional disorder into the multipole theory is described. As
a test of principle and in order to create a systematic model,
the approach is then applied to the simple case of randomly
arranged dipoles. Then the treatment is extended to the
case of randomly arranged quadrupoles. The probabilistic
approach is applied to the specific case of randomly posi-
tioned meta-atoms, and the obtained results are compared
with the experimental observations [44]; the mathematical
procedures used to account for the other forms of disorder
are highlighted.

The main difference of the approach here in comparison
with the previous ones in the use of the multipole model
is that the charge dynamics in meta-atoms is primarily
considered and calculated taking into account the interaction
between meta-atoms, which is expressed as a function of
distance between them. Finally, averaging over all possible
realization of the inter-metaatom distance gives the expres-
sion for the effective parameters. This paper is primarily
devoted to the elaboration of the model and to the effective
parameters calculation; further applications of the presented
approach (disorder in propagation direction, transition
“coherent-incoherent” states, influence of the Anderson
localization on the effective parameters, etc.) will be done
elsewhere. Interaction between meta-atoms is taken into
account using a simplest way of dipole-dipole near field
interaction in quasi-static limit; extrapolation of the model
on the dynamic case is left for the future work. The inter-
action between quadrupoles is treated the same way, which
makes the presented approach suitable for consideration of
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Figure 2: Geometry for the probability function elaboration,
the spheres show meta-atoms. The first row shows a regular
arrangement of the meta-atoms, where each meta-atom occupies
the center of a slot of length equal to the mean period. The second
row depicts an arrangement of the meta-atoms exhibiting random
uncorrelated positional disorder (denoted by ρk), the extent of the
disorder being governed by the PDF(ρk) as shown in the last row.
The interseparation δk between the two subsequent meta-atoms is a
function of the random variables ρk and ρk−1, and the analytic form
of the PDF(δk) can be obtained by the use of the statistical methods
if the analytic form of the PDF(ρk) is given.

the magnetic properties of the metamaterials. In spite of
the excessive simplification of the interaction, the presented
model treats the effective parameters (especially magnetic
response) in much more correct way than it was done
before by just introduction of permeability and/or magnetic
susceptibility, and is believed to provide a suitable platform
for analytical or semianalytical treatment of the problems,
appearing in the case of disordered metamaterials.

2. Modeling of Positional Disorder

The problem of the positional disorder modeling can be
tackled in several ways. The most general formulation of the
problem requires a Markovian treatment. As an illustration,
the one-dimensional equivalent of the problem is considered
here. Supposing that the meta-atoms are introduced one by
one on a line of given length, the probability that a particle
will take up a certain position on the line, and hence the
probability of a particular inter separation distance, depends
not only on the last particle, but also on the history and
existing configuration. This is the essence of the Markovian
approach. Standard techniques exist for tackling such prob-
lems, formulating a rigorous treatment. Nevertheless, due to
its complex nature, an alternative simpler math treatment is
developed in the present paper.

The math treatment accepted in the presented work is
stipulated by the real technological chains for the producing
of the nanostructure. When performing control experi-
ments, masks for random metamaterials are manufactured
by e-beam lithography methods. The writing algorithms are
modified so that instead of a periodic grid a randomized one
is generated by the scanner. The extent of randomness can be
specifically controlled, and statistically relevant parameters
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such as the mean period and the variance can be assigned to
each mask. Translating the above approach to mathematics,
one assumes that the meta-atoms are initially placed in well-
defined slots of equal length (see Figure 1) and then are
perturbed from their mean positions. The perturbation is
described by PDF(ρk). This PDF describes the extent of
the perturbation and also ensures that the displacement is
not beyond a certain space slot. However, PDF(ρk) is the
positional disorder distribution function not the PDF for
the metaatom interseparation PDF(δk); the latter has to
be found based on given PDF(ρk), and PDF(δk) can then
be used in averaging procedure (1) to obtain the required
material parameters. In this work, interseparation PDF(δk)
is obtained by employing a characteristic function approach.
The characteristic function Qρ(ω) is given by a Fourier
transformation of given PDF(ρk):

Qρ,k(ω) =
∫∞
−∞

PDF
(
ρk
)
eiωtdρk, (2)

where PDF(ρk) satisfies the normalization condition:

∫∞
−∞

PDF
(
ρk
)
dρk = 1. (3)

Alternatively, the characteristic function can be considered as
an expectation value of function eiωt:

Qρ,k(ω) =
〈
eiωt

〉∣∣∣
PDF(ρk)

. (4)

The one-dimensional equivalent of the problem is formu-
lated as follows. A periodic arrangement of N meta-atoms
on a given length L is considered (see Figure 1). The spacing
period for the slots is given by z0 = L/N , and the location of
the kth metaatom can thus be given as zk = (z0/2)(2k + 1).
Now, the perturbation of the kth metaatom from its mean
position can be given using a random function ρk, such that.

zk = z0

2
(2k + 1) + ρk, −zk

2
< ρk <

zk
2
. (5)

So, the spacing between the meta-atoms is given by.

Δk = zk+1 − zk = z0 +
(
ρk+1 − ρk

) = z0 + δk. (6)

The random functions ρk and ρk+1 are completely indepen-
dent from each other. For the present problem, the random
function of interest is

δk = ρk+1 − ρk. (7)

The mathematical form of PDF(δk) has to be found. The
form of the above probability function can be obtained by
using characteristic functions. The characteristic function
formed by a sum or difference of two or more PDFs is
nothing but the product of the characteristic functions of the
ingredient PDFs. That is, if one is interested in a probability
distribution function for variable z, given by

z = y1 + y2 + · · · + yn, (8)

where y1, y2 and so forth are independent random functions
and Qi(ω) are their mutually independent characteristic
functions, then the characteristic function of z will be given
by

QZ(ω) = Q1(ω)Q2(ω) · · · QN (ω). (9)

So, the form of z can be simply obtained by an inverse
Fourier transformation on the product of the characteristic
functions.

Define the characteristic functions for ρk and ρk+1 as

Qρk (ω) =
∫∞
−∞

PDF
(
ρk
)
eiρkωdρk,

Q−ρk+1(ω) = Q∗ρk+1(ω) =
∫∞
−∞

PDF
(
ρk+1

)
e−iρ,k+1ωdρk+1.

(10)

Then making use of the above-stated method, the character-
istic function Qδ(ω) of the required PDF(δk) is.

Qδ,k(ω) = Qρk+1(ω)Q∗ρ,k (ω). (11)

Then, required PDF(δk) can be obtained by simply using the
convolution theorem:

PDF(δk) = FT−1
[
Qρk+1(ω)Q∗ρk (ω)

]

=
∫∞
−∞

PDF
(
ρk
)
PDF∗

(
δk − ρk

)
dρk

=
∫∞
−∞

PDF
(
ρk
)
PDF

(
δk − ρk

)
dρk.

(12)

Hence, required PDF(ρk) is the autocorrelation function of
the positional disorder PDF(ρk). The integral is taken over
the displacement of the metaatom from its mean position
and limited by the finite values of the slot length. The
strength of the method is the fact that no explicit assumption
has been made regarding the form of PDF(ρk) describing the
positional disorder.

The mathematical procedure has to ensure that the
perturbation does not become so large that the meta-atoms
overlap each other. In the analysis, the particles are assumed
to be placed in average in the center of the slots of a
length equal to the mean spacing period. The particles can
randomly move within their own slot, and the extent of the
displacement from the center of the slot is given by PDF(ρk).
A consequence of such a restraint is that PDF(ρk) has to be
restricted and normalized within this slot. Figure 5 shows
how the autocorrelation function approaches a triangular
function from its initial Gaussian form, as the position of
the particle within the slot becomes completely random (i.e.,
PDF(ρk) takes a rectangular form). A simple algebraic form
of the probability distribution function cannot be obtained
due to this truncation. Hence, the following approach was
adopted: the normalized versions of PDF(δk) for the inter
separation were obtained using numerical code, and they
were subsequently used for numerical integration (according
to (1)) for obtaining the effective material parameters.
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Figure 3: Geometry of propagation for randomly arranged dipole
ensemble.

3. Case of Randomly Positioned Dipoles

In this section, using the above mentioned principles, the
effect of disorder in a chain of periodically placed dipoles
is investigated. The geometry is given in Figure 3. The bold
arrow shows the direction of propagation of the electro-
magnetic wave.

The system can be mathematically modeled as follows.
Considering the coupling dynamics between two equal
adjacent oscillators, one can write the equation describing
their dynamics as

∂2x1

∂t2
+ γ

∂x1

∂t
+ ω2

0x1 + σx2 = q

m
Ex,

∂2x2

∂t2
+ γ

∂x2

∂t
+ ω2

0x2 + σx1 = q

m
Ex.

(13)

The term on the right side is the same for both oscillators,
and as the same field impinges on both of them. By
substituting the time ansatz xi(t) = xi(ω) exp(−iωt), the
system can be easily solved for x1(ω) and x2(ω) as follows:

[
R σ
σ R

] [
x1(ω)
x2(ω)

]
= q

m

[
Ex(ω)
Ex(ω)

]
,

R = ω2
0 − ω− iγω.

(14)

Thus,

x1(ω) = x2(ω) = q/m

ω2
0 − ω − iγω + σ

Ex(ω),

σ = σ(z) = σ0
a3

0

z3
.

(15)

Here, σ0 and a0 are the coupling constant and the distance
between the oscillator. It is assumed that the interaction
between the oscillators is the near field one between the
dipoles that stipulates the inverse cubic distance dependence
in the second equation in (15).

Normally incident em-field,
with E-field polarized
along y-axis

Randomly arranged
quadrupole ensemble
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Figure 4: Geometry of propagation for randomly arranged
quadrupole ensemble.

The response of the system can thus be obtained by mon-
itoring the susceptibility of the medium. The polarization of
the system can be written as

Px(z,ω) = 2q2η

m

1
ω2

0 − ω − iγω + σ(z)
Ex(ω), (16)

so that the effective susceptibility is

χx(z,ω) = 2q2η

m

1
ω2

0 − ω− iγω + σ(z)
. (17)

To incorporate the effect of disorder, following (1), the
averaged form of the above susceptibility can be obtained as

〈
χ(z0,ω)

〉
z
=
∫∞
−∞

PDF(δ,D)χ(z0, δ,ω)dδ (18)

or
〈
χ(z0,ω)

〉
z

= 2q2η

m

∫∞
−∞

PDF(δ,D)
(z0 + δ)3

(
ω2

0 − ω− iγω
)
(z0 + δ)3 + σ0a

3
0

dδ,

(19)

where PDF(δ,D) is the inter separation PDF and D here
quantizes the amount of disorder presented in the system.

4. Case of Randomly Positioned Quadrupoles

The extension of the above model to metamaterials (i.e.,
taking into account the magnetic response) firstly requires
that the interaction between the adjacent meta-atoms is
taken into consideration. The system is taken to be similar as
the one shown in Figure 3, but the dipoles are now replaced
by quadrupoles (Figure 4). The long axis of the cut wires
is oriented along the x-axis. The cut wires forming the
quadrupole are separated along the y direction. The meta-
atoms are arranged randomly (in terms of above described
random positioning in the respective slots) along the z di-
rection.
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Assuming that a plane electromagnetic wave now prop-
agates through the ensemble along the y direction, while
its electric vector is polarized along the x direction, the
coupled dynamics of two meta-atoms can be modeled via
four coupled oscillator equations:

∂2x1

∂t2
+ γ

∂x1

∂t
+ ω2

0x1 + ax2 + bx3 + cx4 = q

m
Ex,1,

∂2x2

∂t2
+ γ

∂x2

∂t
+ ω2

0x2 + ax1 + bx3 + cx4 = q

m
Ex,2,

∂2x3

∂t2
+ γ

∂x3

∂t
+ ω2

0x3 + ax4 + bx1 + cx2 = q

m
Ex,3,

∂2x4

∂t2
+ γ

∂x4

∂t
+ ω2

0x4 + ax3 + bx2 + cx1 = q

m
Ex,4,

(20)

where

a = σ0, b = σ0
y3

0

z3
, c = σ0

y3
0(

y2
0 + z2

)3/2 , (21)

and σ0 is the value of the coupling constant measured for the
interseparation y0. The magnitude of the coupling constant
varies inversely as the cube of the distance, and so its value
can be obtained for other interseparations—here z and the

diagonal distance (y2
0 + z2)

1/2
. The exponential phase factors

in the right side take into account the retardation effect. It
is clear that a change in the excitation conditions will affect
the form of the right hand side of the above equations,
while a change in the configuration of the meta-atoms can
be accounted by a change in the form of the coupling
coefficients. The procedure of determining the response of
the medium then remains the same—one seeks to determine
effective susceptibilities (corresponding to the symmetric
and antisymmetric modes of oscillation), average them over
all possible coupling configurations, and then use these
values for ascertaining the effective material parameters.

The first step is to find the solution of the above set of
equations. They can be transferred to the Fourier domain by
using ansatz xi(t) = xi(ω) exp(−iωt), i = 1, 2, 3, 4, so that
the system can be rewritten in a matrix form:

⎡
⎢⎢⎢⎣
R a b c
a R c b
b c R a
c b a R

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
x1(ω)
x2(ω)
x3(ω)
x4(ω)

⎤
⎥⎥⎥⎦ =

q

m

⎡
⎢⎢⎢⎣
Ex(ω) exp

(
iky1

)
Ex(ω) exp

(−iky1
)

Ex(ω) exp
(
iky1

)
Ex(ω) exp

(−iky1
)

⎤
⎥⎥⎥⎦,

R = ω2
0 − ω − iγω.

(22)

The modes of oscillation of interest are given by x1(t) ±
x2(ω). The system can be solved to obtain the values of
x1(t) and x2(ω), and the modes of the system can be written
as.

x1(t) + x2(ω) = qEx
m

2 cos
(
ky1

)
ω2

0 − ω − iγω + (a + b + c)
,

x1(t)− x2(ω) = qEx
m

2 cos
(
ky1

)
ω2

0 − ω − iγω− (a− b + c)
,

(23)

and hence one can define the effective susceptibilities:

χ±(z0, δ,ω) = qEx
m

2 cos
(
ky1

)
ω2

0 − ω− iγω ± (a± b + c)
, (24)

where the z0 and δ dependences are due to a, b, and c.
Due to this form of definition, the functional forms of
the polarization, quadrupole moment, and magnetizaton re-
main the same:

P = 2qηy1

⎛
⎜⎝

2χ+(ω) cos
(
ky1

)
0
0

⎞
⎟⎠Ex(y,ω

)
,

Q = qηy1

⎛
⎜⎝

0 2iχ−(ω) sin
(
ky1

)
0

2iχ−(ω) sin
(
ky1

)
0 0

0 0 0

⎞
⎟⎠

× Ex
(
y,ω

)
,

M = qηy1

⎛
⎜⎝

0
0

2iχ−(ω) sin
(
ky1

)
⎞
⎟⎠Ex(y,ω

)
.

(25)

The effect of disorder can then be taken into account by
carrying out the extra averaging integration (1):

〈
χ±(z0,ω,D)

〉
=
∫∞
−∞

PDF(δ,D)χ±(z0, δ,ω)dδ, (26)

or, more explicitly:

〈
χ±(z0,ω,D)

〉
=
∫∞
−∞

PDF(δ,D)
1

(
ω2

0 − ω − iγω
)± σ0

(
1±

(
y3

0/(z0 + δ)3
)

+
(
y3

0/
(
y2

0 + (z0 + δ)2
)3/2

))dδ, (27)

where z0 is the mean period. The limits of the integration
indicate that the autocorrelation procedure for PDF(δ,D)

has been already carried out. This integral can be solved
numerically for a given value of frequency.
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With the effective susceptibility as defined above, one
may now consider a planar metamaterial, which is formed
by the identical rows of the randomly positioned meta-
atoms. The effect of randomness is taken into account by the

averaging procedure, and hence the dispersion relation and
the effective material parameters can be written in analogy
to [16]. Adhering to the same conditions of geometry and
excitation, the following expressions can be utilized:

k2
y(ω) = ω2

c2

1 + A
〈
χ+(z0,ω,D)

〉

1 + (ω2/c2)Ay2
1

(
(1/2)

〈
χ+(z0,ω,D)

〉
−
〈
χ−(z0,ω,D)

〉) ,

εeff = 1 + A
〈
χ+(z0,ω,D)

〉

− A
k2
y y

2
1

2

(
1
2

〈
χ+(z0,ω,D)

〉
−
〈
χ−(z0,ω,D)

〉)
,

μeff = 1

1 − (ω2/c2)Ay2
1

〈
χ−(z0,ω,D)

〉 .

(28)

The previous expressions can be easily carried over to a
numerical code to obtain the material parameters of interest.
The following section presents the results and compares
them with the experimental observations.

5. Method of Numerical Implementation

For convenience, the integrations and other expressions have
been converted to their normalized versions. The frequencies

are normalized with respect to the resonant frequency ω0 of
the independent cut wire, while the distances are normalized
with respect to the cut-wire spacing a0. Specifically, the
susceptibilities for the case of dipoles and quadrupoles are

〈
χ±(z0,ω)

〉
z
=
∫∞
−∞

PDF(δn,Dn)
(1 + δn)3

(
1− ω2

n − i(ωn/Q)
)
(1 + δn) + σ0/ω

2
0
dδn,

〈
χ±(z0,ω)

〉
z
=
∫∞
−∞

PDF(δn,Dn)
(
1− ω2

n − i(ωn/Q)
)± σ0

(
1± 1/((z0)n + δn)3 + 1/

(
1 + ((z0)n + δn)2

)3/2
)dδn,

(29)

where

δn = δ

a0
, Dn = D

a0
, ωn = ω

ω0
(30)

PDF(ρk,D) is assumed to be Gaussian:

PDF
(
ρk,D

) = 1√
2D

exp

(
− ρ2

k

2D2

)
, −a0

2
< ρk <

a0

2
,

PDF
(
ρk,D

) = 0, −a0

2
< ρk, ρk >

a0

2
.

(31)

The excursion of the dipoles around their mean posi-
tions had to be limited within the interval [−a0/2, a0/2];
recalculation PDF(ρk,D) into PDF(δk,D) is given by (12).
The integrals cannot be taken analytically and was done
using the mathematical software MATLAB. Truncation of
the positional PDF was achieved by coding. To obtain the
autocorrelation of the PDF, a standard subroutine was used.
The results of the operations are shown in Figure 5.

All the constants used in the analysis were taken from
[16]. The spacing between the cut wires a0 was taken to be
65 nm, and the resonant frequency of an isolated cut wire was
taken as ω0 = 1.39 × 1015 rad s−1. The damping coefficient
was taken to be γ = 9.42 × 1013 rad s−1. The mean periodic
spacing z0 = 1.8 (the mean spacing between the meta-atoms
was taken to be 1.8 times the cut wire spacing y0).

To verify the correct functioning of the code, the results
for a very small disorder were compared with the result for
a perfectly ordered system (with neighboring meta-atoms
interacting with each other); see Figure 6.

6. Results

The results of the analysis for dipoles are presented in
Figure 7, and the results of the analysis for quadrupoles are
presented in Figures 8 and 9.

The analysis was carried out for two values of the
spacing period zn, namely, zn = 1.2 (Figure 8) and zn = 1.8
(Figure 9). The positional PDF was taken for the four
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Figure 5: Relationship between the positional disorder function
(a) and the interseparation probability distribution function (b). As
the positional PDF (b) deviates from the Gaussian form for higher
values of disorder (due to restrained excursion), the interseparation
PDF approaches a triangular form.

different values of the standard deviation D, and conse-
quently the inter separation PDF(δn,D) was obtained using
numerical coding in MATLAB. The effective susceptibilities
were calculated by numerical implementation of the integra-
tion (29) and (31), and then the effective material parameters
(28) were calculated.

The following features are clearly noted.

(i) For the disordered dipole ensemble, the fall in the
permittivity with increasing disorder is clearly visible
(Figures 7(e), 7(f), 7(g), and 7(h)). The Im(ε) curve
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Figure 6: Verification of the code—typical values from [16] were
used in the computer code written for the calculation of the
effective material parameters for metamaterials with positional
disorder having a very small amount of disorder (D = 0.01). The
results obtained match with those in [16]—this is expected as the
nature of coupling considered in the present theory should have
negligible influence upon the material parameters for very large
spatial periods (zn > 3).
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Figure 7: Effective material parameter curves for dipole ensembles exhibiting positional disorder. The effective permittivity and permeability
curves for disordered dipole ensembles are presented for different values of disorder. The first column pertains to values obtained for a mean
period of zn = 1.2, while the second column pertains to those obtained for a mean period of zn = 1.8. For the respective periodicities: (a)
and (b) the positional disorder function; (c) and (d) the respective interseparation PDFs; (e) and (f) scaled real part of the permittivity; (g)
and (h) scaled imaginary parts of the permittivity. Clearly, increase in disorder brings about a fall in the maximums of the response of the
system.



10 Advances in OptoElectronics

40

20

0

P
D

F 
(ρ

k
)

−4 −2
ρk

0 2 4

(a)

40

20

0

P
D

F 
(δ

k
)

−2 −1 0 1 2
δk

(b)

0
0

0.5

1.5

21

1

3

ωn

R
e

(k
y
a 0
/2

)

(c)

0 21 3
ωn

0

0.5

1.5

1

Im
(k

y
a 0
/2

)

(d)

0 21 3

ωn

50

0

−50

R
e 

(ε
ef
f
)

(e)

0 21 3

ωn

50

25

0

Im
 (
ε e
ff

)

(f)

0.5

1.5

1

0 21 3
ωn

R
e 

(μ
ef
f
)

Dn = 0.01

Dn = 0.5

Dn = 1

Dn = 3

(g)

0.5

1

0
21 3

ωn

Im
 (
μ
ef
f
)

Dn = 0.01

Dn = 0.5

Dn = 1

Dn = 3

(h)

Figure 8: Dispersion and effective material parameter curves for quadrupole ensemble with zn = 1.2: (a) positional disorder function PDF;
(b) interseparation PDF; (c) and (d) real and imaginary part of k-vector (in normalized units of cut-wire separation distance a0/2); (e) and
(f) real and imaginary parts of effective permittivity; (g) and (h) real and imaginary parts of effective permeability.

is symmetric for very small values of the variance
(here, D = 0.01). But as the disorder increases, the
peak shifts towards lower frequencies, and the curves
becomes broadened and asymmetric. The reason for
these observed effects can be explained as follows. A

disordered system can be thought to be made up of
several different periodic systems. The resonant fre-
quency for each periodic ensemble depends inversely
on its spatial period. If the response of the disordered
system is approximated by the sum of the responses
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Figure 9: Dispersion and effective material parameter curves for quadrupole ensemble with zn = 1.8: (a) positional disorder function; (b)
interseparation PDF; (c) and (d) real and imaginary part of k-vector (normalized with the cut-wire separation distance a0/2) (e) and (f) real
and imaginary parts of effective permittivity; (g) and (h) real and imaginary parts of effective permeability.

of its constituent periodic systems, it becomes evident
that the final curve will develop a tail approaching
the blue end of the spectrum. The asymmetry can
thus be attributed to an inverse power relationship
between resonance frequency and interseparation.
The effect of broadening is a consequence of
particle conservation. On the other hand, the lowest
frequency/largest wavelength of response is not
a function of the periodicity, but is actually limited
by the eigenfrequency of the independent oscillator.
In fact, the resonance frequency approaches the
eigenfrequency for a periodic assembly of dipoles,

when the spatial period becomes large. Hence, as the
disorder in the system increases, the curves become
broadened and asymmetric, and the peak response
shifts towards the eigenfrequency of the independent
oscillator.

(ii) In the case of the quadrupole ensemble, a decrease
in the value of the electric permittivity is observed
as D is increased. This is in agreement with the
experimental results. However, there is also a de-
crease in the value of the magnetic permeability.
This decrease is more pronounced for zn = 1.2 as
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Figure 10: Disorder along the cut-wire axis direction—the figure shows a one-dimensional disorder arrangement of meta-atoms. The extent
of disorder can be quantified in terms of the angle, the total range of variation being limited to (−π/2,π/2).

(a) (b)

Figure 11: (a) Rectangular and (b) Gaussian forms of distribution function used for governing the positional disorder of the metamaterials
along the lateral direction. The positional disorder is expressed in terms of the relative angle between two neighboring meta-atoms. The
effective material parameters of the ensemble are derived and presented in Figure 12 for three different values of disorder.

compared to zn = 1.8. This is an unexpected result,
as the magnetic response should remain almost
unaffected. The reason for this discrepancy could lie
in the simple form of the probabilistic model chosen
to describe the randomness.

(iii) Generally speaking, the final expressions for the
permittivity and the permeability were derived under
several approximations, associated with (1). The
observed discrepancy could also be attributed to
these approximations. Above all, the fundamental
limitations of the multipole theory itself could affect
the final results as well. These possibilities have to be
investigated further.

In the light of the above arguments, it is concluded that
as the observed positions of the resonances and the relative
magnitudes of the parameters are within the limits of
approximation, the analysis is valid and can be used to
roughly predict the properties of metamaterials with incor-
porated randomness.

7. Other Forms of Disorder

In the preceding analysis, the effect of positional disorder
(arising due to aperiodicity) on the averaged material
parameters was considered. In a random metamaterial other
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Figure 12: Effective material parameters for metamaterials exhibiting positional disorder along the lateral direction (y direction) governed
by the rectangular distribution function (Figure 11(a)). The first column gives the material parameters for a metamaterial ensemble having
a mean period of zn = 1.2, while the second column is for metamaterials having a mean period of zn = 1.8.

forms of disorder can exist as well. A particular case of
interest is positional disorder along the cut-wire axis; see
Figure 10.

If this form of positional disorder is taken into consid-
eration along with the aperiodicity, the model would then
be a step closer to emulate a true self-organized random
metamaterial [46]. In the multipole model, the individual
cut wires are replaced by dipoles. In case the quadrupoles
are disarrayed, the coupling between them will also be

a function of their relative angular positioning. This angular
dependence can be introduced into the coupling terms of the
dynamic equations. More specifically, the coupling constants
b and c in the differential equations will include the angular
dependence. All other mathematics remaining the same, the
averaging procedure can now be carried out between angles
(−π/2,π/2).

The curves in Figures 12 and 13 summarize the results
obtained by using the multipole approach.
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Figure 13: Effective material parameters for metamaterials exhibiting positional disorder along the lateral direction (x-direction) governed
by the Gaussian distribution function (Figure 11(b)). The first column gives the material parameters for a metamaterial ensemble having a
mean period of zn = 1.2, while the second column is for metamaterials having a mean period of zn = 1.8.

Two forms of the distribution function were used in the
analysis (Figure 11). The extent of disorder is correlated to
the relative angular position of the dipoles. The first form of
the angular PDF distribution function used was a rectangular
function (see Figure 11(a)). The second form used was a
Gaussian distribution (Figure 11(b)), the random variable
being the relative angular position. The function is centered
about 0 degrees, the extent of disorder being quantified by
the standard deviation D; b and c are multiplied by the
term cos(θ) to incorporate the angular dependence. Clearly

then, when θ = π/2, there is no interaction between the
cut wires. The Riemannian integration is limited between the
values (−π/2,π/2). The constants were again taken from the
original reference [22], and the mean periodicity was taken
to be zn = 1.8. The results (Figures 12 and 13) show that
both the effective permittivity and permeability are clearly
affected by the angular disorder. In a similar fashion, in-plane
and out-of-plane skew disorders of meta-atoms can also be
accounted by the model, by making appropriate changes to
the coupling terms.
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8. Conclusions

In extending the multipole approach [16] to the case of
random metamaterials, the effect of spatial distribution
of the meta-atoms was taken into account by considering
the near field coupling between neighboring meta-atoms.
The effective susceptibility was expressed as a function
of the inter-separation between meta-atoms, the ensemble
averaged susceptibility was then obtained as an expectation
value, weighed by the probability distribution function
of all possible inter-separations. In the present work, the
disorder was considered only along one direction (in-
plane, perpendicular to cut-wire long axis), assuming that
adjacent rows of meta-atoms do not interact with each
other. Results obtained by the numerical implementation
of the equations indeed confirm the experimental finding
that increasing disorder has a more pronounced effect on
the effective electrical permittivity than on the effective
magnetic permeability. For smaller periodicities, however,
the electrical permittivity and magnetic permeability are
affected equally. This conflicting result could be caused by a
coupling of the quadrupole moments of neighboring meta-
atoms. This has not been explicitly considered in the present
version of the model. Also, other factors such as the effect
of incident polarization, or the coupling between adjacent
rows, have not been considered in the present theory. The
understanding gained from the study of this simple case can
now be used to account for the above specific and more
involved cases.
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[43] R. Glass, M. Möller, and J. P. Spatz, “Block copolymer micelle
nanolithography,” Nanotechnology, vol. 14, no. 10, pp. 1153–
1160, 2003.

[44] C. Helgert, C. Rockstuhl, C. Etrich et al., “Effective properties
of amorphous metamaterials,” Physical Review B, vol. 79,
Article ID 233107, 2009.

[45] J. Petschulat, C. Menzel, A. Chipouline et al., “Multipole
approach to metamaterials,” Physical Review A, vol. 78, no. 4,
Article ID 043811, 2008.

[46] D. A. Pawlak, S. Turczynski, M. Gajc et al., “How far are
we from making metamaterials by self-organization? the
microstructure of highly anisotropic particles with an SRR-
like geometry,” Advanced Functional Materials, vol. 20, no. 7,
pp. 1116–1124, 2010.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


