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We investigate theoretically the generation of squeezed states in spontaneous and stimulated six-wave mixing process quantum
mechanically. It has been found that squeezing occurs in field amplitude, amplitude-squared, amplitude-cubed, and fourth power
of field amplitude of fundamental mode in the process. It is found to be dependent on coupling parameter “g” (characteristics of
higher-order susceptibility tensor) and phase values of the field amplitude under short-time approximation. Six-wave mixing is a
process which involves absorption of three pump photons and emission of two probe photons of the same frequency and a signal
photon of different frequency. It is shown that squeezing is greater in a stimulated interaction than the corresponding squeezing in
spontaneous process. The degree of squeezing depends upon the photon number in first and higher orders of field amplitude. We
study the statistical behaviour of quantum field in the fundamental mode and found it to be sub-Poissonian in nature. The signal-
to-noise ratio has been studied in different orders. It is found that signal-to-noise ratio is higher in lower orders. This study when
supplemented with experimental observations offers possibility of improving performance of many optical devices and optical
communication networks.

1. Introduction

Over the past three decades, particular attention has been
focused on theoretical investigations and experimental
observations in generation of squeezed light, for improv-
ing the performance of many optical devices and optical
communication networks. The concept of squeezed light is
concerned with reduction of quantum fluctuations in one
of the quadrature, at the expense of increased fluctuations
in the other quadrature. In general, the two important
nonclassical effects, squeezing and antibunching (or Sub-
Poissonian photon statistics), are not interrelated; that is,
some states exist that exhibit the first but not the second and
vice versa. However, squeezing can be detected using simple
photon counting in higher-order sub-Poissonian statistics.

A lot of work has appeared in the literature on the
theoretical and experimental investigations on generation
of squeezed states of electromagnetic field. Mandel [1]
found squeezed state of the second harmonic when a
beam of light propagates through a nonlinear crystal. Later,
Hillery [2] defined amplitude-squared squeezing and showed

that amplitude-squared squeezed states can be of use in
reducing noise in the output of certain nonlinear optical
devices. Hong and Mandel [3, 4] introduced the notion
of Nth-order squeezing as a generalization of the second-
order squeezing. Zhan [5] proposed the generation of
amplitude-cubed squeezing in the fundamental mode in
second and third harmonic generation. Jawahar and Jaiswal
[6] extended the results obtained by Zhan for amplitude-
cubed squeezing in the fundamental mode during second
and third harmonic generations to kth order. The significant
experimental observations include gravity wave detection
[7–10], in optical communication [11], in nanodisplace-
ment measurement [12], and in optical storage [13], and
interferometer enhancement [14, 15]. The experimental
detections and applications confirm the importance of the
theoretical investigations into various optical processes such
as four- and six-wave mixing [16–20], eight-wave mixing
[21], higher-order harmonic generation [22–25], parametric
amplification [26], Raman [27] and hyper-Raman processes
[28], and so forth. Higher-order sub-Poissonian statistics
have been studied by a number of authors such as those in
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[29–31]. The conversion of higher-order squeezed light into
nonclassical light with high sub-Poissonian statistics and its
experimental detection has been discussed in [31–33].

Recently, Giri and Gupta [19] have investigated the sque-
ezing effects in six-wave mixing process. In this paper, we
propose a different model for the same interaction process.
Also, this paper shows one of the distinguished examples of
nonlinear processes when light exhibits both squeezing and
sub-Poissonian photon statistics at the same time. Squeezing
in field amplitude, amplitude-squared, amplitude-cubed,
and in fourth-order amplitude has been studied in funda-
mental mode for the proposed model. The photon statistics
and dependence of squeezing on photon number have also
been investigated.

2. Definition of Squeezing and Higher-Order
Squeezing

Squeezing is a purely quantum mechanical phenomenon
which cannot be explained on the basis of classical physics.
The coherent states do not exhibit nonclassical effects, but a
superposition of coherent states can exhibit normal squeez-
ing, higher-order squeezing, and sub-Poissonian photon
statistics. A coherent state changes to a superposition of
coherent states when it interacts with a non linear medium.
Squeezed states of an electromagnetic field are the states with
reduced noise below the vacuum limit in one of the canonical
conjugate quadratures. Normal squeezing is defined in terms
of the operators

X1 = 1
2

(
A + A†

)
, X2 = 1

2i

(
A− A†

)
, (1)

where X1 and X2 are the real and imaginary parts of the
field amplitude, respectively. A and A† are slowly varying
operators defined by

A = aeiωt, A† = a†e−iωt. (2)

The operators X1 and X2 obey the commutation relation

[X1,X2] = i

2
(3)

which leads to the uncertainty relation (� = 1)

ΔX1ΔX2 ≥ 1
4
. (4)

A quantum state is squeezed in Xi variable if

ΔXi <
1
2

for i = 1 or 2. (5)

Amplitude-squared squeezing is defined in terms of opera-
tors Y1 and Y2 as

Y1 = 1
2

[
A2 + A†2

]
, Y2 = 1

2i

[
A2 − A†2

]
. (6)

The operators Y1 and Y2 obey the commutation relation
[Y1,Y2] = i(2N + 1), where N is the usual number operator
which leads to the uncertainty relation

ΔY1ΔY2 ≥
〈(

N +
1
2

)	
. (7)

Amplitude-squared squeezing is said to exist in Yi variable if

(ΔYi)
2 <

〈(
N +

1
2

)	
for i = 1 or 2. (8)

Amplitude-cubed squeezing is defined in terms of the
operators

Z1 = 1
2

(
A3 + A†

3
)

, Z2 = 1
2i

(
A3 − A†3

)
. (9)

The operators Z1 and Z2 obey the commutation relation

[Z1,Z2] = i

2

(
9N2 + 9N + 6

)
. (10)

Relation (10) leads to the uncertainty relation

ΔZ1ΔZ2 ≥ 1
4

(
9N2 + 9N + 6

)
. (11)

Amplitude-cubed squeezing exists when

(ΔZi)
2 <

1
4

〈(
9N2 + 9N + 6

)〉
for i = 1 or 2. (12)

Real and imaginary parts of fourth-order amplitude are given
as

F1 = 1
2

(
A4 + A†4

)
, F2 = 1

2i

(
A4 − A†4

)
. (13)

The operators F1 and F2 obey the commutation relation

[F1,F2] = i

2

(
16N3 + 24N2 + 56N + 24

)
(14)

and satisfy the uncertainty relation (� = 1)

ΔF1ΔF2 ≥ 1
4

〈(
16N3 + 24N2 + 56N + 24

)〉
. (15)

Fourth-order squeezing exists when

(ΔFi)
2 <

1
4

〈(
16N3 + 24N2 + 56N + 24

)〉
for i = 1 or 2.

(16)

3. Squeezing in Fundamental Mode in
Six-Wave Mixing Process

The model considers the process involving absorption of
three pump photons of frequency ω1 each, going from state
|1〉 to state |2〉 and emission of two probe photons from state
|2〉 to state |3〉 with frequency ω2 each. The atomic system
returns to its original state by emitting one signal photon of
frequency ω3 from state |3〉 to |1〉. The process is shown in
Figure 1.

The Hamiltonian for this process is as follows (� = 1)

H = ω1a
†a + ω2b

†b + ω3c
†c + g

(
a3b†2c† + a†3b2c

)
, (17)

in which g is a coupling constant. A = aeiω1t, B = beiω2t , and
C = ceiω3t , respectively, are the slowly varying operators for
the three modes at ω1, ω2, and ω3. a(a†), b(b†), c(c†) are the
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Figure 1: Six-wave interaction model.

usual annihilation (creation) operators associated with the
relation 3ω1 = 2ω2 + ω3.

The Heisenberg equation of motion for mode A is

Ȧ = ∂A

∂t
+ i[H ,A]. (18)

Using (17) in (18), we obtain

Ȧ = −3igA†2B2C. (19)

Similarly, we obtained the relations for Ḃ and Ċ as

Ḃ = −2igA3B†C†,

Ċ = −igA3B†2.
(20)

Expanding A(t) using Taylor’s series expansion by assuming
the short-time interaction of waves with the medium and
retaining the terms up to |gt|2, we obtain

A(t) = A− 3igtA†2B2C +
3
2
g2t2

×
(

6A†A2B†2B2C†C + 6AB†2B2C†C

− 4A†2A3B†BC†C

− 2A†2A3C†C − A†2A3B†2B2C†C

− 4A†2A3B†BC†C − 2A†2A3
)
.

(21)

The real quadrature component for squeezing of field
amplitude in fundamental mode A is given as

X1A(t) = 1
2

[
A(t) +A†(t)

]
. (22)

For spontaneous interaction, we consider the quantum state
as a product of coherent state for the fundamental mode A
and the vacuum state for the modes B and C, that is,

∣∣ψ〉 = |α〉A|0〉B|0〉C , (23)

where α is the complex field amplitude of the fundamental
mode. Using (21)–(23), we obtain the expectation values as
〈
ψ
∣∣X2

1A(t)
∣∣ψ〉

= 1
4

[
α2 + α∗2 + 2|α|2 + 1

−6g2t2
(
α2|α|4 +α2|α|2 +α∗2|α|4 +α∗2|α|2 +2|α|6

)]
,

(24)

〈
ψ|X1A(t)|ψ〉2

= 1
4

[
α2 + α∗2 + 2|α|2 − 6g2t2

(
α2|α|4 + α∗2|α|4 + 2|α|6

)]
.

(25)

Therefore,

[ΔX1A(t)]2 = 〈X2
1A(t)

〉− 〈X1A(t)〉2

= 1
4

[
1− 6g2t2

(
α2|α|2 + α∗2|α|2

)]
,

(26)

[ΔX1A(t)]2 − 1
4
= −3g2t2|α|4 cos 2θ, (27)

where θ is the phase angle, with α = |α|eiθ and α∗ = |α|e−iθ .
The right-hand side of the expression (27) is negative,

indicating that squeezing will occur in the first-order ampli-
tude in the fundamental mode in six-wave mixing process for
which cos 2θ > 0 for spontaneous interaction.

In parallel to the spontaneous interaction, the stimulated
emission is caused due to the coupling of the atom to the
other states of the field. Therefore, the study of squeezing in
stimulated interaction in six-wave mixing process requires
initial quantum state as a product of coherent states for
modes 1, 2 and vacuum state for 3, that is,

∣∣ψ〉 = |α〉A
∣∣β〉B|0〉C. (28)

Retaining the terms up to g2t 2, we obtain

〈
ψ|X1A(t)|ψ〉2

= 1
4

[
α2 + α∗2 + 2|α|2 − 3g2t2

(
α2|α|4 + α∗2|α|4 + 2|α|6

)

×
(∣∣β

∣∣4 + 4
∣∣β
∣∣2 + 2

)]
,

〈
ψ
∣∣X2

1A(t)
∣∣ψ〉

= 1
4

[
α2 + α∗2 + 2|α|2 + 1− 3g2t2

×
(
α2|α|4 + α2|α|2 + α∗2|α|4 + α∗2|α|2 + 2|α|6

)

×
(∣∣β

∣∣4 + 4
∣∣β
∣∣2 + 2

)]
.

(29)

Therefore,

[ΔX1A(t)]2 − 1
4
= −3

2
g2t2|α|4

(∣∣β
∣∣4 + 4

∣∣β
∣∣2 + 2

)
cos 2θ,

(30)
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which is negative, indicating that squeezing will occur for
those values of θ for which cos 2θ > 0, in the funda-
mental mode in stimulated interaction under short-time
approximation. The effect of the stimulated interaction is
represented by the factor (|β|4 + 4|β|2 + 2).

Using (21) and (23), the second-order amplitude is
expressed as

A2(t) = A2 − 6igt
(
A†2A + A†

)
B2C − 3g2t2

×
(
A†2A4 + A†A3

)(
B†2B2 + 4B†B + 2

)
.

(31)

For second-order squeezing, the real quadrature component
for the fundamental mode is expressed as

Y1A(t) = 1
2

[
A2(t) + A†2(t)

]
. (32)

Using (23) and (31) in (32), we get the expectation values in
spontaneous six-wave mixing process as

〈
ψ|Y1A(t)|ψ〉2

= 1
4

[
α4 + α∗4 + 2|α|4 − 12g2t2

×
(
α4|α|4 + α4|α|2 + α∗4|α|4 + α∗4|α|2 + 2|α|8

+2|α|6
)]

,

(33)

〈
ψ
∣∣Y 2

1A(t)
∣∣ψ〉

= 1
4

[
α4 + α∗4 + 2|α|4 + 4|α|2 + 2− 12g2t2

×
(
α4|α|4 + 3α4|α|2 + 2α4 + α∗4|α|4 + 3α∗4|α|2

+2α∗4 + 2|α|8 + 4|α|6
)]
.

(34)

Therefore,

[ΔY1A(t)]2

= 〈Y 2
1A(t)

〉− 〈Y1A(t)〉2

= 1
4

[
4|α|2 +2−24g2t2

(
α4|α|2 +α4 +α∗4|α|2 +α∗4 +|α|6

)]
.

(35)

The number of photons in mode A may be expressed as

N1A(t) = A†(t)A(t)

= A†A + 3igt
(
A3B†2C† − A†3B2C

)

− 3g2t2A†3A3
(
B†2B2 + 4B†B + 2

)

+ 9g2t2
(
A†2A2 + 4A†A + 2

)
B†4B4C†C.

(36)

Thus, using condition (23), we get
〈
N1A(t) +

1
2

	
=
[
|α|2 +

1
2
− 6g2t2|α|6

]
. (37)

Subtracting (37) from (35), we get

[ΔY1A(t)]2 −
〈
N1A(t) +

1
2

	
= −12g2t2

(
|α|6 + |α|4

)
cos 4θ.

(38)

Using initial condition (28), we obtain squeezing for the
stimulated process as

[ΔY1A(t)]2 −
〈
N1A(t) +

1
2

	
= −6g2t2

(
|α|6 + |α|4

)

×
(∣∣β

∣∣4 + 4
∣∣β
∣∣2 + 2

)
cos 4θ.

(39)

The right-hand sides of (38) and (39) are negative for all
values of θ for which cos 4θ > 0 and thus shows the existence
of squeezing in the second order of the field amplitude in
spontaneous and stimulated interaction under short-time
approximation.

Using (21), cubed-amplitude is expressed as

A3(t) = A3 − 3igt
(

3A†2A2 + 6A†A + 2
)
B2C

− 18g2t2
(
A†4A + 3A†3

)
B4C2 − 3

2
g2t2

×
(

3A†2A5 + 6A†A4 + 2A3
)(
B†2B2 + 4B†B + 2

)
,

(40)

and the real quadrature component for third-order squeez-
ing in the fundamental mode is expressed as

Z1A(t)

= 1
2

[
A3(t) + A†3(t)

]

= 1
2

[
A3 + A†3 − 3igt

(
A†2A2 + 6A†A + 2

)
B2C

+ 3igt
(
A†2A2 + 6A†A + 2

)
B†2C†

−18g2t2
(
A†4A+3A†3

)
B4C2

−18g2t2
(
A†A4 +3A3

)
B†4C†2 − 3

2
g2t2

×
(

3A†5A2 +6A†4A+2A†3 +3A†2A5 +6A†A4 +2A3
)]
.

(41)

Using (23) and (41), we get the expectation values for sponta-
neous interaction as

〈
ψ|Z1A(t)|ψ〉2

= 1
4

[
α6 + α∗6 + 2|α|6 − 6g2t2

×
(

3|α|4 + 6|α|2 + 2
)(
α6 + α∗6 + 2|α|6

)]
,

(42)
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〈
ψ
∣∣Z2

1A(t)
∣∣ψ〉

= 1
4

[
α6 + α∗6 + 2|α|6 + 9|α|4 + 18|α|2 + 6

− 6g2t2
(

3|α|4 + 15|α|2 + 20
)(
α6 + α∗6)

+6|α|10 + 30|α|8 + 40|α|6
]
.

(43)

Subtracting (42) from (43), we get

[ΔZ1A(t)]2 = 1
4

[
9|α|4 + 18|α|2 + 6− 54g2t2

×
(
|α|2 + 2

)(
α6 + α∗6) + 2|α|8 + 4|α|6

]
.

(44)

Using (23) and (36), we have

1
4

〈
9N2

1A(t) + 9N1A(t) + 6
〉

= 1
4

[
9|α|4 + 18|α|2 + 6− 108g2t2

(
|α|8 + 2|α|6

)]
.

(45)

Subtracting (45) from (44), we get

[ΔZ1A(t)]2 − 1
4

〈
9N2

1A(t) + 9N1A(t) + 6
〉

= −27g2t2
(
|α|8 + 2|α|6

)
cos 6θ.

(46)

Using (28), we obtain the stimulated process as

[ΔZ1A(t)]2 − 1
4

〈
9N2

1A(t) + 9N1A(t) + 6
〉

= −27
2
g2t2

(
|α|8 + 2|α|6

)(∣∣β
∣∣4 + 4

∣∣β
∣∣2 + 2

)
cos 6θ.

(47)

The right-hand sides of (46) and (47) are negative, for all
values of θ for which cos 6θ > 0, indicating the existence of
squeezing in cubed amplitude in the fundamental mode in
the spontaneous and stimulated processes.

For fourth-order squeezing, amplitude is expressed as

A4(t) = A4 − 12igt
(
A†2A3 + 3A†A2 + 2A

)
B2C − 6g2t2

×
(
A†2A6 + 3A†A5 + 2A4

)(
B†2B2 + 4B†B + 2

)
.

(48)

The real quadrature component for fourth-order squeezing
in fundamental mode is given as

F1A(t) = 1
2

[
A4(t) +A†4(t)

]
. (49)

Using (23) and (48) in (49), we get the expectation values as

〈
ψ|F1A(t)|ψ〉2 = 1

4

[
α8 + α∗8 + 2|α|8 − 24g2t2

×
{(
|α|4 + 3|α|2 + 2

)(
α8 + α∗8)

+2|α|12 + 6|α|10 + 4|α|8
}]

,

(50)

〈
ψ
∣∣F2

1A(t)
∣∣ψ〉 = 1

4

[
α8 + α∗8 + 2|α|8 + 16|α|6 + 72|α|4

+ 96|α|2 + 24− 24g2t2

×
{(
|α|4 + 7|α|2 + 14

)(
α8 + α∗8)

+2|α|12 + 18|α|10 +64|α|8 +68|α|6
}]
.

(51)

Therefore, subtracting (50) from (51), we obtain

[ΔF1A(t)]2 = 1
4

[
16|α|6 + 72|α|4 + 96|α|2 + 24− 24g2t2

×
{(

4|α|2 + 12
)(
α8 + α∗8) + 12|α|10

+ 60|α|8 + 68|α|6
}]
.

(52)

Using (23) and (36), we have

1
4

〈
16N3

1A(t) + 24N2
1A(t) + 56NA + 24

〉

= 1
4

[
16|α|6 + 72|α|4 + 96|α|2 + 24

−24g2t2
(

12|α|10 + 60|α|8 + 68|α|6
)]
.

(53)

Subtracting (53) from (52), we get

[ΔF1A(t)]2 − 1
4

〈
16N3

1A(t) + 24N2
1A(t) + 56NA + 24

〉

= −48g2t2
(
|α|10 + 3|α|8

)
cos 8θ.

(54)

Using (28), we obtain the stimulated process as

[ΔF1A(t)]2 − 1
4

〈
16N3

1A + 24N2
1A(t) + 56N1A(t) + 24

〉

= −24g2t2
(
|α|10 + 3|α|8

)(∣∣β
∣∣4 + 4

∣∣β
∣∣2 + 2

)
cos 8θ.

(55)

The right-hand sides of (54) and (55) are negative,
for all values of θ for which cos 8θ > 0, indicating the
existence of squeezing in fourth-order field amplitude in
the fundamental mode in the spontaneous and stimulated
processes, respectively.

Using (23) and (36), the statistics of fundamental mode
in six-wave mixing is found to be sub-Poissonian, given as

〈ΔN1A〉2 − 〈N1A〉 = −12g2t2|α|6. (56)
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Figure 2: Dependence of first-order squeezing (a) sX with |α|2 in spontaneous and (b) s′X with |α|2 and |β|2 in stimulated six-wave mixing
process.
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Figure 3: Dependence of amplitude-squared squeezing (a) sy with |α|2 in spontaneous and (b) s′y with |α|2 and |β|2 in stimulated six-wave
mixing process.

4. Signal-to-Noise Ratio

Signal-to-noise ratio is defined as ratio of the magnitude of
the signal to the magnitude of the noise. With the approxi-
mations θ = 0 and |gt|2 � 1, the maximum signal-to-noise
ratio (in decibels) in field amplitude and higher orders is
given in the following.

Using (25) and (26), signal-to-noise ratio in field ampli-
tude is defined as

SNR1 = 20∗ log10
〈X1A(t)〉2

[ΔX1A(t)]2 = 20∗ log10

(
2|α|2

)
. (57)

Using (33) and (35), SNR in amplitude-squared squeezing is
given as

SNR2 = 20∗ log10

(
2|α|4 + |α|2

)
(

3|α|2 + 2
) . (58)

Using (42) and (44), SNR in amplitude-cubed squeezing is
expressed as

SNR3 = 20∗ log10

(
3|α|4 + 6|α|2 + 2

)
(

9|α|2 + 18
) . (59)
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Figure 4: Dependence of amplitude-cubed squeezing (a) Sz with
|α|2 in spontaneous and (b) S′z with |α|2 and |β|2 in stimulated six-
wave mixing process.

Using (50) and (52), SNR in fourth-order squeezing is expre-
ssed as

SNR4 = 20∗ log10

(
|α|6 + 3|α|4 + 2|α|2

)
(

5|α|4 + 21|α|2 + 17
) . (60)

5. Results

The results show the presence of squeezing in field ampli-
tude, amplitude-squared, amplitude-cubed, and fourth-
order field amplitude of fundamental mode in six-wave mix-
ing process. To study squeezing, we denote the right-hand
sides of relations (27), (38),(46), and (54) by Sx, Sy , Sz, and S f
for spontaneous and right-hand sides of relations (30), (39),
(47), and (55) by S′x, S′y , S′z, and S′f for stimulated interaction
for field amplitude, amplitude-squared, amplitude-cubed,
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Figure 5: Dependence of fourth-order field amplitude squeezing
(a) S f with |α|2 in spontaneous and (b) S′f with |α|2 and |β|2 in
stimulated six-wave mixing process.
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and for fourth-order field amplitude, respectively. Taking
|gt|2 = 10−4 and θ = 0, the variations of Sx, Sy , Sz, and S f
with photon number |α|2 for spontaneous interaction and of
S′x, S′y , S′z, and S′f with |α|2and |β|2for stimulated interaction
are shown from Figures 2, 3, 4, and 5.

A comparison between results of spontaneous and
stimulated processes shows the occurrence of multiplication
factor (|β|4 + 4|β|2 + 2). It implies that squeezing in the
fundamental mode in stimulated interaction is greater than
corresponding squeezing in spontaneous interaction. It is
also seen that maximum squeezing occurs when θ = 0. The
signal-to-noise ratio is found to be higher in lower orders as
shown in Figure 6.

6. Conclusion

Figures 2, 3, 4, and 5 show that squeezing increases nonlin-
early with |α|2, which is directly dependent upon the number
of photons. The squeezing in any order during stimulated
interaction (Figures 5(b), 4(b), 3(b), and 2(b)) is higher
than the squeezing in corresponding order in spontaneous
(Figures 5, 4, 3, and 2) interaction by a factor (|β|4+4|β|2+2).
The squeezing is higher in higher orders in both processes.
Thus, the higher-order squeezing associated with higher
order nonlinear optical processes makes it possible to achieve
significant noise reduction.

It has also been found that the fundamental mode of field
amplitude shows sub-Poissonian behavior as shown in rela-
tion (56). The signal-to-noise ratio is higher in lower orders
squeezed states as reported earlier for Raman process [34].
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