
Mobile Information Systems 6 (2010) 155–176 155
DOI 10.3233/MIS-2010-0097
IOS Press

Sensor relocation for emergent data
acquisition in sparse mobile sensor networks

Wei Wua,∗, Xiaohui Lia, Shili Xianga, Hock Beng Limb and Kian-Lee Tana

aSchool of Computing, National University of Singapore, Singapore
bIntelligent Systems Centre, Nanyang Technological University, Singapore

Abstract. In this paper, we study the problem of sensor relocation for emergent data acquisition (initiated by a base station)
in sparse mobile sensor networks. We propose a distributed scheme called BRIDGE that relocates mobile sensors to fulfill an
emergent data acquisition task with the objective to minimize the task completion time. BRIDGE gradually finds a sensor that
is close to the task location and relocates that sensor to the task location, and at the same time relocates some other sensors to
connect that sensor to the base station. BRIDGE exploits the encountered sensors during relocation, and handles the challenges
caused by intermittent connections. Our extensive performance study shows the effectiveness of our proposed scheme.

Keywords: Sensor network, data acquisition, sensor relocation

1. Introduction

Recently an increasing number of research activities are being carried out for Mobile Sensor Networks
(MSNs) [1,5,8,12,15,20] where the sensors are capable of moving. The mobility of the sensors increases
the sensors’ coverage [13], and makes them possible to adapt to the environments, because the sensors
are not constrained by the initial deployment and can be relocated to desirable locations when necessary.

We in this paper consider a class of MSNs applications which involve a base station and a number of
mobile sensors. The sensors’ basic task is to explore a large area and send collected information to the
base station. The base station sometimes may have an emergent data acquisition task that requires one
sensor to sense a specific location and send the data back to the base station as soon as possible.

For the sake of concreteness, let us look at an application example. In battlefield, a command center
(CC) dispatches a small number of UAVs (Unmanned Aerial Vehicle) to scan a big area. These UAVs
scan the area by taking pictures of the region that they fly over. They send back the pictures to the CC
when they have wireless connection to it. Based on the pictures received or some other intelligence
sources, the experts at the CC may find a region suspicious. When this happens, the CC issues an
emergent task about that region and wants the UAVs to collect detailed information about that region and
send the data back as soon as possible.

∗Corresponding author: Wei Wu, School of Computing, National University of Singapore, Singapore 117417. Tel.: +65
6516 1424; Fax: +65 6779 4580; E-mail: wuw@nus.edu.sg.

1574-017X/10/$27.50 2010 – IOS Press and the authors. All rights reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/192672574?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

156 W. Wu et al. / Sensor relocation for emergent data acquisition in sparse mobile sensor networks

We study the problem of relocating mobile sensors to carry out the emergent data acquisition tasks
in sparse MSNs where the connections among the nodes (sensors and the base station) are intermittent.
The aim is to make the sensors complete an emergent task as early as possible.

We study this problem in the context of sparse MSNs because of two reasons. First, MSNs are likely
to be sparse. Mobile sensors are more expensive than stationary sensors, so it may not be feasible to
deploy a large number of them. Moreover, dense MSNs can become sparse due to node failures caused
by environmental hazards or even intentional demages (e.g. by adversaries in the battlefield). Second,
solutions designed for sparse MSNs are more robust and versatile, because they will also work well in
dense MSNs.

Although several works have studied the mobile sensor relocation problem [5,11,22,23,25], our prob-
lem is different in relocation objectives and in system settings and therefore existing approaches cannot
be used to solve our problem. Existing works investigate the problem of relocating certain number of
sensors to a region so that the region is covered by the sensors with a certain density. We are interested
in relocating some sensors so that an emergent data acquisition task can be fulfilled in a short period of
time. Existing works assume a system where all the sensors are connected and reachable. We look at a
system where the sensor network is sparse and the connections in the system are intermittent.

Relocating sensors to fulfill an emergent data acquisition task in a sparse MSNs is challenging. If
all the sensors are connected, then the following straightforward solution would be good enough: find
a sensor near the task location, let it move to the task location to collect data, and use connected nodes
to relay the data back to the base station. However, in sparse networks, this straightforward solution
will not work well, because: 1) when the base station issues the task, most sensors are not reachable,
therefore the base station does not know which sensor is near the task location and have no way to contact
that sensor because the network is partitioned; 2) the base station therefore has to select a sensor that is
connected to it to carry out the task; it may take much time for the sensor to move to the task location; 3)
after collecting the data from the task location, the sensor may have no connection to the base station so
it cannot send the acquired data directly back to the base station; it has to move towards the base station;
again, it may need to move a long way before it is connected to the base station.

We propose a distributed sensor relocation scheme, called BRIDGE, by which the mobile sensors
relocate themselves to carry out an emergent data acquisition task cooperatively. The main idea is to
gradually find a sensor that is close to the task location and at the same time relocate some sensors to
build a connection between the sensor at the task location and the base station. BRIDGE exploits the
connected and encountered sensors to minimize the task completion time, by relocating proper sensors
to proper locations.

The contributions of this paper are:

1. We identify an interesting problem: relocation of mobile sensors for emergent data acquisition in
sparse mobile sensor networks.

2. We propose a distributed relocation scheme in which the mobile sensors relocate themselves to
fulfill an emergent data acquisition task through collaboration. In the scheme we deal with the
various problems caused by intermittent connections.

3. We show through an extensive simulation study that the proposed scheme is effective.

The rest of the paper is organized as follows. In Section 2 we briefly survey the related works. In
Section 3 we describe the system model and the emergent data acquisition task, and define the associated
sensor relocation problem. We present our distributed relocation scheme in Sections 4. Results of
experimental study are shown in Section 5. We finally conclude the paper in Section 6.

W. Wu et al. / Sensor relocation for emergent data acquisition in sparse mobile sensor networks 157

2. Related works

In static wireless sensor networks, various techniques [3,7,16,26] have been proposed to organize
sensors into logical structures to facilitate data collection and query processing. Unfortunately, these
techniques cannot be applied to mobile sensor networks where the topology of the network is very
dynamic.

Task execution using mobile sensors (e.g., UAVs) has attracted much research attention. In [21],
multiple mobile UAVs cooperate to facilitate probabilistic information fusion to achieve high-accuracy
environment perception and target tracking. The objective is to determine the actions a UAV should
carry out so as to maximize the belief of the current information. This is different from our objective,
which is to minimize the time for fulfilling an emergent data acquisition task. There are also works on
multi-task allocation and path planning for cooperating UAVs, to minimize the task completion time,
using market based approach [9] or mixed-integer linear programming [2]. However, these works did
not consider the opportunity that we exploit in this paper, that is, some mobile sensors could be relocated
to certain locations to relay information for a task, to further reduce the task completion time.

[6,14,18,24,28] propose methods for data collection using mobile elements in wireless sensor networks
or mobile Ad-Hoc networks. The basic idea is to use mobile elements as message carriers. They collect
information from sensors when they are in close range to the sensors, buffer the information when they
move around, and pass the information to the base station when they become near to the base station. In
these works, the time a mobile element takes to deliver the information is not critical. Our work differs
from them in that we want to reduce the time the sensors take to fulfill an emergent data acquisition task.

The authors of [27] propose a data acquisition framework called SenseSwarm for mobile sensor
networks. SenseSwarm partitions the sensors into perimeter and core nodes. Perimeter nodes are
responsible for data acquisition while core nodes take care of storage and replication. The aim of the
SenseSwarm framework is to improve data availability.

[5,11,22,23,25] study the mobile sensor relocation problem [23,25] focus on fine-grained relocation to
deal with a coverage hole caused by a sensor failure [5,22] investigate event-based relocation where the
sensor locations and density are adapted to properly sense and control a large event area [11] proposes
self-deployment algorithms for sensors to achieve a focused coverage around a Point of Interest. In all
these studies, the sensor networks under consideration are assumed to be fully connected, and the aim of
relocation or self-deployment is to meet a certain coverage requirement. As mentioned in Section 1, the
differences between our work and these existing studies are twofold: we look at the sensor relocation
problem in sparse sensor networks; the objective of relocation in our work is to fulfill an emergent data
acquisition task as soon as possible.

3. System model and problem definition

3.1. System model

The system consists of a stationary base station BS and n mobile sensors (s 1, s2, . . ., sn) that are
sparsely distributed in an area A. Each mobile sensor knows the BS’s location and its own location.
The mobile sensors and the BS use wireless technology (such as Wi-Fi) for communication and there is
no direct long-range communication. Two sensors (or the BS and a sensor) can communicate directly
only if the distance between them is smaller than the wireless technology’s communication range r. The
sensors and the BS form a mobile ad-hoc network (MANET) where one can communicate with another

158 W. Wu et al. / Sensor relocation for emergent data acquisition in sparse mobile sensor networks

if they are connected either directly or through other sensors. Since the sensors’ communication range
is limited and the sensors are sparse, the network formed by the sensors is not fully connected, and can
even be severely partitioned. The topology of the network changes with time as the sensors move.

The general task of the mobile sensors is to explore (sense) the area A by moving in it following a
certain mobility pattern. The mobile sensors’ move speed is v. Each sensor senses the region that it
passes by, carries the sensed data, and forwards the data to the BS when it is connected to the BS.

3.1.1. Emergent data acquisition task
An emergent data acquisition task (emergent task for short) ET (L) specifies a location L (within

A). Given an emergent task ET (L), the mobile sensors shall carry out the task by having one sensor
going to L, sensing for a period of time Ts, and sending the sensed data back to the BS. Ts models the
time a sensor needs to collect enough information around L, and the length of T s is determined by the
applications. The BS would like the time from the moment an emergent task is issued to the moment
relevant data is received to be as short as possible.

Note that when an emergent task arises, it is possible that only a small number of sensors are connected
to the BS.

3.1.2. Assumptions
Since the focus of this work is on sensor relocation scheme and our optimization metric is the time the

sensors take to fulfill an emergent task, for simplicity we in this paper do not consider energy consumption.
In the class of applications that we are considering, all the sensors are moving to collect information.
The energy spent on moving will be much more than the energy spent on communication. [17] shows
that when a 0.5 kg UAV flies horizontally at a 10–12 m/s speed its minimum energy consumption is
10–25 J(joule). It is reported in [4] that a normal (Lucent) IEEE802.11 wireless network card consumes
about 1.5 J per second when in active transmission mode. Although more powerful wireless transmitters
may be used, they will be equipped only on larger UAVs. Clearly, larger UAVs will need much more
energy for flying, or for simply staying in the air. It is also mentioned in [19,23] that a mobile sensor on
ground spends much more energy on motion than on wireless communication when moving around.

Since all the sensors are moving most of the time, they will spend similar amount of energy no matter
how they communicate with each other and how they move during a relocation. For this reason, we
believe that: 1) trying to save energy by controlling the communication between the sensors will not
be very helpful; 2) although controlling the move distances of the sensors during the relocations may
help save some energy, the save will be marginal because the relocation only happens during the ad-hoc
emergent tasks.

We will also neglect data transmission time, because we believe that in a sparse MSN, the relocation
time will be much longer than the data transmission time so it does not affect our design of the relocation
scheme.

3.2. Problem definition

We define the problem of sensor relocation for emergent data acquisition tasks in the system model
described in Section 3.1 as the following problem: relocating mobile sensors to proper locations so that
a given emergent data acquisition task is fulfilled in a minimum period of time, with the constraint that a
sensor (or the BS) can communicate with another sensor only if they are connected in the sparse MANET
formed by the BS and the sensors.

Let us call the sensor that is assigned to sense the task location L as the Scanner. The time for fulfilling
the task ET (L) can be divided into three parts:

W. Wu et al. / Sensor relocation for emergent data acquisition in sparse mobile sensor networks 159

– Tgo: from the time the task is issued to the moment the Scanner arrives at L;
– Ts: the time for sensing the task location;
– Treturn: from the Scanner finishes sensing the task location to the moment the BS receives the

sensed data.

The goal is to minimize Tgo + Ts + Treturn. Since Ts is fixed for a given task (Ts is determined by the
application), we would like to minimize Tgo + Treturn. Both Tgo and Treturn can be significant in sparse
MSNs because: the Scanner could be far away from L; after sensing the task location the Scanner may
be disconnected from the BS so it has to move to find a connection to the BS. We shall reduce both T go

and Treturn.

4. BRIDGE: A distributed relocation scheme

We propose a distributed relocation scheme called BRIDGE for sparse mobile sensors to carry out
emergent tasks. The main ideas are as follows:

1. relocate the sensor that is the nearest to the task location to sense the task location so that it can
arrive at the task location as early as possible. We call the sensor relocated to the task location as
the Scanner. This is to reduce Tgo.

2. relocate some sensors to help connect the Scanner to the BS so that the Scanner can send the acquired
data to the BS without moving towards the BS. We refer to these sensors as the Connectors. This
is to reduce the Treturn component of the task execution time.

3. adjust the relocation with the sensors encountered during relocation, see whether they can be better
Scanner or better Connectors. This is to exploit the encountered sensors to reduce T go and Treturn.

In BRIDGE, we store the information about the sensors involved in the relocation for an emergent
task in a relocation plan. It basically tells which sensors are involved and what are their relocation
destinations. Details about relocation plan is presented in Section 4.3.

In Fig. 1 we use the processing of an emergent task as an example to illustrate these ideas. In the
figures, the rectangle marked with L is the task location, the circles marked with numbers are the sensors,
the arrows on the sensors indicate the sensors’ moving directions, the sensor in dark (e.g. s 3 in (b)) is the
Scanner, the sensors in light gray (e.g. s1, s2 in (b)) are the Connectors, and the ones in white (e.g. s4, s5,
s6 in (b)) are not involved in the relocation. A line between two sensors means that they are connected.

Figure 1(a) depicts the scenario when the emergent task is issued but before the initial relocation plan
is executed. Figure 1(b) illustrates the initial relocation plan where s3 is assigned as the Scanner and s1

and s2 are assigned as the Connectors. s3 is assigned as the Scanner because it is the nearest to the task
location among the sensors that are connected to the BS. s1 and s2 are relocated to the locations between
the task location and the BS so that they will help connect the Scanner with the BS. Figure 1(c) depicts
the event where s3 encounters s4 and s5. s3 adjusts the initial relocation plan to a new relocation plan
that is depicted in Fig. 1(d). In the new relocation plan, s5 is assigned as the Scanner, s1, s2, s3 and s4

work as Connectors. s5 is selected as the new Scanner because it is nearer to the task location than the
existing Scanner (s3) is. s3 and s4 also work as Connectors because the existing Connectors (s1 and s2)
are not enough to connect the Scanner to the BS. In Fig. 1(e), the Scanner is sensing the task location
and the Connectors connect the Scanner with the BS. After the Scanner finishes sensing the task location
and sending the data to the BS, the emergent task is done. Then all the participating sensors can move
freely to continue their basic exploration task, as shown in Fig. 1(f).

160 W. Wu et al. / Sensor relocation for emergent data acquisition in sparse mobile sensor networks

3

1

2

6

5

BS

4

L

3

1

L

2

6

5

BS

4

3

1

L

2

6 5

BS

4

(a) (b) (c)

(d) (e) (f)

3

1

L

2

6 5

BS

4

3

1

L

2

6
5

BS

4

3

1

2

6
5

BS

4

Fig. 1. A simple example illustrating the BRIDGE.

To realize the ideas of BRIDGE in a sparse MSNs, we have to deal with the problems caused by the
intermittent connections.

First, when the BS has an emergent task, it is likely only few sensors are connected with it. BRIDGE
must enable the BS to initiate the processing of the task by generating an initial relocation plan as long
as at least one sensor is connected with the BS. This problem is solved in BRIDGE with an algorithm
called Init.

Second, during the execution of a relocation plan, involved sensors may encounter sensors that were
not connected. BRIDGE shall make use of the newly connected sensors to generate better relocation
plans. This problem is solved in BRIDGE with an algorithm called Adjust.

Third, sensors involved in a same relocation plan can get disconnected during the relocation. They may
encounter new neighbors. BRIDGE shall let them have enough information to generate better relocation
plans even when being disconnected from other involved sensors. This problem is solved in BRIDGE
by keeping enough information of the emergent task and involved sensors in a relocation plan and letting
each involved sensor have a copy of the relocation plan.

Fourth, since involved sensors may generate different new relocation plans when they are disconnected,
BRIDGE has to help them merge different relocation plans when they get connected again. This problem
is solved in BRIDGE with an algorithm called Merge.

Fifth, after an emergent task is fulfilled, BRIDGE needs to make sure that all the sensors involved in
the relocation finally know that the emergent task is done so that they can return to work on their general

W. Wu et al. / Sensor relocation for emergent data acquisition in sparse mobile sensor networks 161

task. This problem is solved in BRIDGE by letting the sensors keep the information about the emergent
tasks (e.g. whether an emergent task is done) and synchronize the information when being connected.

Before presenting the algorithms, we will first describe the sensor’s states (Section 4.1), the idea and
definition of the ConnectorPoints (Section 4.2), what makes a relocation plan (Section 4.3), and the
execution of a relocation plan (Section 4.4).

4.1. Sensor states

In BRIDGE, a mobile sensor is always in one of the following states: Free, Scanner, Connector, and
Returner.

A sensor is in the Free state if it is not involved in the fulfillment of an emergent task. A Free sensor
works on the general task of the application, e.g. explore the area.

A sensor is in the Scanner state if it is assigned to go to sense the task location. After being assigned
as a Scanner, the sensor moves towards the task location.

A sensor is in the Connector state if its task is to help connect the Scanner with the BS. A Connector
sensor will be given an ID (independent from its sensor ID) called the Connector-ID. A Connector sensor
given a Connector-ID j will be called Connector-j. The Connector-ID tells the Connector where it shall
move to. We will discuss this in Section 4.2.

A sensor is in the Returner state if it is carrying the acquired data of the emergent task. The Returner
is responsible for sending the data to the BS. A Scanner becomes a Returner when it finishes sensing the
task location.

The state of a sensor may change during the relocation because the sensors may adjust the relocation
plan when they encounter new neighbors.

4.2. ConnectorPoints, Connector-ID

To connect the Scanner (at task location) and the BS with a minimum number of Connectors, we
relocate the Connectors onto the line between the BS and the task location, and let them maintain a
distance that is shorter than the sensors’ communication range r from its neighboring Connectors. In
this way, the number of Connectors, denoted as Nc, is minimized. Nc is computed as follows:

Nc = �(Distance(BS,L)/r)� − 1 (1)

Here L is the task location, r is the sensors’ communication range, Distance(BS,L) means the
distance between the BS and the task location.

These Nc Connector sensors can build a link on the line between the task location and the BS.
For example, if the distance between the task location and the BS is 2400 meters and the sensors’
communication range is 500 meters, we will need 4 sensors to work as Connectors. Figure 1 (e) shows
the example.

We define the locations that the Connectors shall move to as the ConnectorPoints of the emergent
task. Let Line(BS,L) be the line segment between the BS and the task location L. There are N c

ConnectorPoints on the Line(BS,L). We define ConnectorPointj as the point on Line(BS,L)
whose distance to the BS is

j ∗ Distance(BS,L)/(Nc + 1) (2)

A Connector sensor given a Connector-ID j moves to the ConnectorPointj.

162 W. Wu et al. / Sensor relocation for emergent data acquisition in sparse mobile sensor networks

4.3. Relocation plan

A Relocation Plan of an emergent task ET (L) is an assignment of a set of sensors to their roles in the
processing of the task. The roles tell the sensors where they shall move to.

A relocation plan RP contains the following information:

– ET (L): the emergent task, which includes the task location information.
– Sensor ID → Scanner: this specifies which sensor shall work as the Scanner. Later we will use

RP.Scanner to refer to it.
– {Sensor ID → Connector-j}, 1 � j � Nc: a map of sensor IDs to the Connector-IDs. This specifies

which sensors shall be Connectors. We will use RP.Connector-j to refer to an entry in it. There
could be fewer than Nc Connectors. If no sensor is assigned as Connector-j, RP.Connector-j is
null.

– The time when the relocation plan is generated.
– The locations of the involved sensors (the Scanner and the Connectors) when the relocation plan is

generated.

Note that in the relocation plan there is information about all the involved sensors, including their
locations at the time the relocation plan is generated. By such, each involved sensor will have enough
information to generate a better relocation plan when it encounters new neighbors as long as it has a
copy of the current relocation plan. This design is important for the involved sensors to deal with the
problems caused by intermittent connections.

4.4. Execution of a relocation plan

To execute a relocation plan, the sensor that computes the relocation plan simply disseminates the
relocation plan to all the connected sensors. Upon receiving a relocation plan, a sensor checks whether
it has a role in the plan. If yes, it saves a copy of the relocation plan and sets its state according to its
role in the plan; otherwise it sets itself to the Free state. The Scanner moves towards the task location.
The Connectors compute their ConnectorPoints based on their Connector-IDs, and then move to their
ConnectorPoints.

If a new relocation plan is generated during the execution of a relocation plan (e.g. when new sensors
are encountered), the new one will be executed in the connected sensors so that all the connected sensors
follow the new plan.

4.5. Initiate a relocation for an emergent task

When the BS has a new emergent task, it uses the Init algorithm presented here to generate an
initial relocation plan based on the Free sensors that are currently connected to it. Init assigns the Free
sensor that is the nearest to the task location as the Scanner and assigns at most N c Free sensors as the
Connectors based on their vicinity to the ConnectorPoints.

The pseudocode of Init is listed in Algorithm 1. In the pseudocode, Nearest(S, location) finds
the sensor in set S that is the nearest to the location. RP.Scanner denotes the information in the
relocation plan while Scanner denotes the corresponding sensor. This also applies to RP.Connector j

and Connectorj. CPj denotes ConnectorPointj.
Let Frees be the set of Free sensors that are connected to the BS. If Frees is empty, the BS has to

wait until there is at least one sensor in Frees. The BS chooses the sensor that is the nearest to the task

W. Wu et al. / Sensor relocation for emergent data acquisition in sparse mobile sensor networks 163

Algorithm 1: Init
Input: an emergent task ET (L)
Output: a relocation plan RP for ET (L)

1 Frees the Free sensors that are connected to BS;
2 RP.Scanner Nearest(Frees,L);
3 Frees Frees− {Scanner};
4 Nc �Distance(BS, L)/r� − 1;
5 m Min(Nc, |Frees|);
6 for j 1 to m do
7 RP.Connectorj Nearest(Frees,CPj);
8 Frees Frees− {Connectorj}
9 return RP

location as the Scanner of the relocation plan (lines 2–3). Among the remaining Free sensors, the BS
selects Connector sensors (lines 4–8) as follows. Let m = Min(Nc, |Frees|). Here Nc is the number of
Connectors that the relocation plan wants, and |Frees| is the number of remaining Free sensors. m will
be the number of Connectors in the initial relocation plan. For each ConnectorPointj (1 � j � m),
the BS finds the sensor in Frees that is the nearest to it, and sets the sensor as the Connector-j of the
relocation plan.

The time complexity of the Init algorithm is O(n ∗ Nc) where n is the number of Free sensors that
are connected to the BS and Nc is the number of Connectors needed in the relocation plan. Nc typically
is a small number. Since n will also be a small number in a sparse mobile sensor network, the initial
plan of an emergent task can be computed efficiently.

Once the initial relocation plan for an emergent task is generated, it is executed among the connected
sensors.

4.6. Adjust a relocation on meeting sensors

In BRIDGE, the participants of a relocation plan always try to find better relocation plans when
they encounter new neighbors during the relocation. They do it using the Adjust algorithm listed in
Algorithm 2. In this algorithm si denotes the involved sensor that encounters a set of new neighbors,
and RP denotes the relocation plan that si currently has.

Algorithm 2: Adjust
Input: a relocation plan RP
Output: a new relocation plan

1 Frees the Free sensors that are connected to si;
2 Scanner′ Nearest(Frees,L);
3 if Scanner′ can reach L earlier than RP.Scanner then
4 if RP.Scanner is connected then
5 Frees Frees + {Scanner}
6 RP.Scanner Scanner′;
7 Frees Frees− {Scanner′};
8 RP AdjustConnectors(RP,Frees);
9 return RP

On encountering new neighbors, si finds out all the Free sensors that it now can reach (line 1). It
first checks whether it can find a better Scanner among the Free sensors (lines 2–7). If there is a better
Scanner, si puts the current Scanner into the Frees set if it is connected, and then updates the relocation
plan with the new Scanner.

164 W. Wu et al. / Sensor relocation for emergent data acquisition in sparse mobile sensor networks

After that, si adjusts the Connectors with the remaining Free sensors using the algorithm
AdjustConnectors which is listed in Algorithm 3. si divides the ConnectorPoints into two sets
(lines 1–2): the ones for which no Connectors are assigned, and the ones with corresponding Connectors
in current relocation plan. It first assigns Free sensors to the ConnectorPoints that have no Connectors
(lines 3–6). Then it tries to find better Connectors for existing Connectors (lines 7–12).

Algorithm 3: AdjustConnectors
Input: a relocation plan RP
Input: a set of Free sensors Frees
Output: a new relocation plan

1 EmptyCPs {j|j � Nc ∧RP.Connectorj = null};
2 ExisingCPs {j|RP.Connectorj �= null};
3 for j in EmptyCPs do
4 if Frees is not empty then
5 RP.Connectorj Nearest(Frees,CPj);
6 Frees Frees− {Connectorj};
7 for j in ExisingCPs do
8 if Frees is not empty then
9 Connector′j := Nearest(Frees,CPj);

10 if Connector′j can reach CPj earlier than RP.Connectorj then
11 RP.Connectorj ← Connector′j ;
12 Frees← Frees− {Connectorj};
13 return RP

The complexity of both Adjust and AdjustConnectors is O(n ∗Nc) where n is the number of
Free sensors that are connected to si (the sensor that adjusts the relocation plan) and Nc is the number
of Connectors needed in the relocation plan.

Note that when si encounters new neighbors, it is possible that some other participants of the relocation
plan are disconnected from si. For example, when there are fewer than Nc Connectors, the Scanner will
get disconnected from the Connectors when it moves to the task location. This kind of disconnection
between the participants of a same relocation plan has two influences on the design of BRIDGE.

First, at the time a participating sensor meets new neighbors it may not be able to connect to other
participating sensors and get up-to-date information from them. However, to find out whether the new
neighbors can be helpful it needs information about current participants. For example, it needs the
location information of the current Scanner to determine whether a new neighbor is nearer to the task
location (as in line 3 of the Adjust algorithm). To resolve this problem, as described in Section 4.3,
in the relocation plan we keep information about each participant’s role and location at the time the
relocation plan was generated. In this way, each participating sensor will have enough information to
compute other participating sensors’ locations using the following information: their starting locations,
their relocation destinations (determined by roles), the elapsed time, and moving speed (all sensors have
the same speed).

Second, disconnected participants will not receive the new relocation plans that are generated by other
participants. In this case, some will have the old relocation plan while the others have a new one.
Furthermore, partitioned groups of participants may independently adjust the relocation plan to new
ones. Therefore, there can be more than one relocation plan for an emergent task being executed. In
such cases, different relocation plans have to be merged when sensors having different relocation plans
get connected again.

W. Wu et al. / Sensor relocation for emergent data acquisition in sparse mobile sensor networks 165

Table 1
Relocation Plans

Relocation Plan Scanner Connectors
RP1 s2 s1:1
RP2 s4 s1:1; s2:2
RP3 s2 s1:1; s3:2; s5:3
RP4 s4 s1:1; s3:2; s2:3

3

1

L

2

5

BS

4

3

1

L

2 5

BS

4

3

1

L

2 5

BS

4

3
1

L

2
5

BS

4

3
1

L

2
5

BS

4

3

1

L

2 5

BS

4

(a) (b) (c)

(d) (e) (f)

Fig. 2. Example for Merge.

4.7. Merge relocation plans

Figure 2 shows an example where participants of a relocation plan get disconnected, generate new
relocation plans, and the participants having different relocation plans meet. The relocation plans are
sketched in Table 1. In the table, “si : j” means that sensor si works as Connector-j.

– Figure 2(a) shows the scene after the initial relocation plan RP1 is executed. As the Scanner (s 2)
moves towards the task location, it gets disconnected from s1.

– When the Scanner (s2) encounters s4 (a Free sensor) as shown in Fig. 2(b), s2 adjusts the initial
relocation plan to a new relocation plan RP2.

166 W. Wu et al. / Sensor relocation for emergent data acquisition in sparse mobile sensor networks

– Figure 2(c) shows the scene after s2 executes RP2. At this time s2 and s4 are disconnected from s1

therefore they cannot update s1 about the new relocation plan.
– As s3 and s5 (two Free sensor) move, they encounter s1 as shown in Fig. 2(d). s1 adjusts its

relocation plan RP1 to a new relocation plan RP3.
– Figure 2(e) shows the scene after s1 executes RP3. Note that when s1 meets s3 and s5 it has the

initial relocation plan RP1. So s1 thinks that s2 is still the best Scanner because it is not aware of s4

and RP2.
– As the sensors move, s2 encounters s3. Figure 2(f) depicts this event. s2 and s3 have two different

relocation plans. RP4 in Table 1 is the resultant relocation plan after s2 and s3 merge their relocation
plans.

In BRIDGE, when two sensors having different relocation plans meet, one of them will merge the
relocation plans to a new relocation plan and execute the new one among the connected sensors. The
algorithm for merging two relocation plans is called Merge. Algorithm 4 lists its pseudocode.

Algorithm 4: Merge
Input: two relocation plans RP1 and RP2
Output: a relocation plan

1 if RP1.Scanner �= RP2.Scanner then
2 Scanners {RP1.Scanner, RP2.Scanner};
3 RP.Scanner Nearest(Scanners,R);
4 if the other Scanner is connected then
5 put it to Frees;
6 else
7 RP.Scanner = RP1.Scanner;
8 for Connectorj in RP1 and RP2 do
9 if Connectorj is connected then
10 Frees Frees + {Connectorj};
11 for For j 1 to Nc do
12 if RP1.Connectorj �= null || RP2.Connectorj �= null then
13 Connectors {RP1.Connectorj , RP2.Connectorj};
14 RP.Connectorj Nearest(Connectors, CPj);
15 RP AdjustConnectors(RP, Frees);
16 return RP

Let si be the sensor that merges two relocation plans. In Merge, si first checks whether the two
relocation plans have the same Scanner. If not, s i chooses the one that can arrive at the task location
earlier as the Scanner in the new plan, and put the other Scanner into the Frees set if it is connected.
Then for all the Connectors in the two relocation plans, if a Connector is connected s i puts it into the
Frees set and clears the corresponding information in the relocation plan (lines 8–10). After this, all the
available sensors will be in the Frees set, and the two input relocation plans only contain information
about Connectors that are currently disconnected. For each Connector slot in the new relocation plan,
if the input relocation plans have disconnected Connector(s) for it, si picks the one that is nearer to the
corresponding ConnectorPoint (lines 11–14). si finally uses the AdjustConnectors algorithm to:
(1) assign Free sensors to empty Connector slots; (2) find better Connectors for disconnected existing
Connectors.

The complexity of the Merge algorithm is O(n ∗ Nc) where n is the number of sensors that are
connected to si (the sensor that merges the relocation plans) and Nc is the number of Connectors needed
in the relocation plan.

W. Wu et al. / Sensor relocation for emergent data acquisition in sparse mobile sensor networks 167

4.8. Relocation after acquiring data

A Scanner becomes a Returner when it finishes sensing the task location. The Returner behaves
according to the following rules.

– If the Returner is connected to the BS through the Connectors, it sends the data to the BS and the
task is done. The Returner and all the connected Connectors are set to the Free state.

– Otherwise, if the Returner is connected to a Connector, it passes the data to that Connector and
changes itself to the Free state. The Connector that receives the data becomes a Returner.

– Otherwise, the Returner moves towards the BS.

4.9. Handle obstacles

In the previous sections, we have implicitly assumed that there are no obstacles in the area. Here we
discuss how BRIDGE handles obstacles.

Obstacles only affects how BRIDGE computes the ConnectorPoints between the BS and the task
location L. If an obstacle is not on the line between BS and L, ConnectorPoints are computed on
Line(BS,L) as described in Section 4.2. If an obstacle is on Line(BS,L), however, then we cannot
relocate sensors onto Line(BS,L) because the obstacle can be a region where the sensors cannot move
into or a region where wireless communication is jammed by adversaries. Figure 3(a) shows an example
where an obstacle intersects the line between BS and L.

The basic idea for handling an obstacle (that intersects Line(BS,L)) is to relocate the Connectors
onto the shortest simple polyline between BS and L that does not intersect with the obstacle. Such a
polyline is computed by first computing the convex hull using BS, L and the vertices of the obstacle,
and then taking the shorter path from BS to L on the convex hull perimeter. Figure 3(b) shows the
convex hull computed for the scenario shown in Fig. 3(a). The polyline BS-v2-L is shorter than the
other polyline between BS and L on the convex hull perimeter, so it is taken as the polyline on which the
ConnectorPoints will be computed.

To make sure that two Connectors at consecutive ConnectorPoints can communicate with each other,
a line of sight between them is necessary (in particular when the obstacle blocks the wireless commu-
nication). This requirement is satisfied as follows. BRIDGE first computes the ConnectorPoints on
the selected polyline (shown in Fig. 3(c)). If the line between any two consecutive ConnectorPoints
intersects the obstacle, the polyline is adjusted by adding a line segment that does not intersect the
obstacle, and then the ConnectorPoints are re-computed on the adjusted polyline. Figures 3(d-f) show
how the polyline is adjusted. In this example (see Figures 3(d)), the line between CP2 and CP3 intersects
the obstacle. Because of this, a line segment near vertex v2 is added and the polyline is adjusted by
incorporating the new line segment (shown in Fig. 3(e)). The length of the new line segment is no
longer than the communication range of the mobile sensors so that the two Connectors relocated on to
the segment can communicate with each other. The ConnectorPoints are re-computed on the adjusted
polyline. Figure 3(f) shows the final polyline and the ConnectorPoints on it.

Note that the obstacles only affect the locations of the ConnectorPoints. The polyline and the
ConnectorPoints are computed (on BS) in the initial relocation plan, and they are fixed during the
relocation. Therefore only the Init algorithm needs to be slightly modified to handle the obstacles in
the field.

168 W. Wu et al. / Sensor relocation for emergent data acquisition in sparse mobile sensor networks

(a) (b) (c)

(d) (e) (f)

Fig. 3. Example for handling an obstacle.

5. Experimental study

We use simulation to study the performance of our proposed BRIDGE scheme. Since this is the first
work on relocation of mobile sensors for emergent data acquisition tasks, there is no existing solution to
compare with. We compare the proposed scheme to two variants: a simpler version (Simple-BRIDGE)
and a motion-aware version (Motion-Aware-BRIDGE).

In the Simple-BRIDGE scheme, we set the number of Connectors (Nc) to 0. By this, a relocation plan
only contains a Scanner and no sensors will be relocated to help connect the Scanner with the BS. The
goal of comparing BRIDGE with this simpler version is to study the effect of relocating some sensors to
connect the Scanner to the BS.

The Motion-Aware-BRIDGE solution is an ideal scheme with perfect information. We assume that the
Scanner know all other sensors’ planned trajectories. Rather than moving directly to the task location,
the Scanner in this version moves to meet a currently disconnected sensor that can reach the task
location earlier. The Scanner finds such a sensor by computing the sensor that minimizes the expression
(Tmeet + Tmove) where Tmeet is the minimal time the Scanner needs to move to meet that sensor and
Tmove is the time that sensor needs to move to the task location. The goal of comparing BRIDGE with
this version is to see how much the BRIDGE algorithm will improve if all sensors’ future trajectories are
given.

W. Wu et al. / Sensor relocation for emergent data acquisition in sparse mobile sensor networks 169

Table 2
Parameter Settings

Parameter Default value Value range
FieldWidth 30 km 10–50 km
FieldHeight 30 km
Number of Sensors n 20 5–50
Sensor speed v 0.05 km/s 0.02–0.2 km/s
Communication range r 5 km 1–10 km
Ts 40 (s) 20–100 (s)

The simulation model follows the System Model that we describe in Section 3. The system parameters
and their values are listed in Table 2. The parameter values are chosen based on the setting used in [10].
This simulates a system where a set of UAVs are carrying out a reconnaissance task and the base station
sometimes issues emergent data acquisition tasks to the UAVs.

In the experiments the mobile sensors are placed randomly in the simulated area and they follow the
Random WayPoint mobility model. Emergent tasks are also placed randomly in the simulated area.
When we generate an emergent task we always generate a new scenario (placement of the sensors) so
that all the solutions have the same start point.

Because obstacles only affect the number of sensors needed to connect BS and a task location, its
effect is the same as shortening the communication range of the mobile sensors. For this reason, we do
not generate obstacles in the experiments.

The performance metric is the average completion time of a large number of emergent data acquisition
tasks.

In the figures that show the experimental results, “Simple”, “BRIDGE”, and “MA” (“S”, “G”, “M” in
some bar figures) denote the Simple-BRIDGE, the BRIDGE, and the Motion-Aware-BRIDGE schemes
respectively. In the figures that show the breakdown of task completion times, the number under each
group of three bars denotes the value of the parameter under investigation. Each bar has three parts: Go,
Scan, and Return. They correspond to the Tgo, Ts, and Treturn times defined in Section 3.

5.1. Basic performance study

Here we study the solutions’ performance under the default parameters setting. Figure 4 shows the
breakdowns of the solutions’ average processing times. We see that BRIDGE and MA have similar
performance and they perform much better than Simple. In particular, BRIDGE and MA spend much
less time in the Return phase. MA performs a little better than BRIDGE because MA spends a little less
time in the Go phase than BRIDGE does. However, the performance difference between BRIDGE and
MA is minor.

We learn two things from this basic performance study. 1) The idea of relocating some sensors to
connect the Scanner with the base station is very effective in reducing task completion time. 2) A more
complex solution (MA) that makes use of sensors’ motion information does not improve BRIDGE much.
They show the merits of the BRIDGE scheme: it is effective and widely applicable (since it does not
make any assumption of the sensors’ mobility pattern).

5.2. Effect of sensors density

We use the average number of sensors that are within each sensor’s communication range as the
measurement of the sensor density. Three parameters affect the sensor density: the number of sensors n,

170 W. Wu et al. / Sensor relocation for emergent data acquisition in sparse mobile sensor networks

0

50

100

150

200

250

300

350

Simple BRIDGE MA

A
vg

 P
ro

ce
ss

in
g

T
im

e
(s

)

Go
Scan

Return

Fig. 4. Default setting.

0

100

200

300

400

500

600

5 10 15 20 25 30 35 40 45 50

A
vg

 P
ro

ce
ss

in
g

T
im

e
(s

)

Number of Sensors

Simple
BRIDGE

MA

Fig. 5. Effect of n.

FieldWidth that controls the field size, and the sensors’ communication range r. As n or r increases,
the sensor density increases; as FieldWidth increases, the sensor density decreases. Figures 5, 6, and
8 show the effect of the three parameters on the solutions’ performance. We have several observations
here.

1) As the sensor density increases, all schemes perform better. This is because when sensor density
increases, more sensors are connected, then it becomes easier to find a sensor that is near to the task
location, and it is more likely that the acquired data can be sent back to the BS directly.

2) BRIDGE’s performance is very close to MA’s. Only in very sparse networks, MA performs a little
better than BRIDGE does. In very sparse networks, the chance of encountering new neighbors during
the relocation is small. In this circumstance, having the motion information of other sensors (in MA)
helps the Scanner to meet more sensors.

W. Wu et al. / Sensor relocation for emergent data acquisition in sparse mobile sensor networks 171

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10

A
vg

 P
ro

ce
ss

in
g

T
im

e
(s

)

Communication Range (km)

Simple
BRIDGE

MA

Fig. 6. Effect of r.

0

50

100

150

200

250

300

350

400

450

500

S G M S G M S G M

A
vg

 P
ro

ce
ss

in
g

T
im

e
(s

)

Number of Sensors

Go
Scan

Return

402010

Fig. 7. Breakdowns, n.

3) When the number of sensors or the communication range increases from small to large (sensor
density increases from very sparse to very dense) in Figs 5 and 6, the performance gap between Simple
and BRIDGE first increases and then decreases. This is explained by Fig. 7 which shows the breakdowns
of the task completion times when the number of sensors is 10, 20 and 40. Please notice the difference
between Simple and BRIDGE’s Return times first increases and then decreases. The gap increases first
because as sensor density increases from very sparse to medium, BRIDGE can find more sensors to work
as Connectors, and this reduces the time of the Return phase greatly. Then, when the sensor density
increases from medium to dense, it is more likely that the Scanner at the task location is connected to the
BS so that it is less necessary to relocate some sensors to work as Connectors.

4) When the field size increases (in Fig. 8), the gap between the Simple and BRIDGE always increases.

172 W. Wu et al. / Sensor relocation for emergent data acquisition in sparse mobile sensor networks

0

100

200

300

400

500

600

20 25 30 35 40 45 50 55 60

A
vg

 P
ro

ce
ss

in
g

T
im

e
(s

)

Field Width (km)

Simple
BRIDGE

MA

Fig. 8. Effect of field size.

0

50

100

150

200

250

300

350

400

450

20 30 40 50 60 70 80 90 100

A
vg

 P
ro

ce
ss

in
g

T
im

e
(s

)

Ts (S)

Simple
BRIDGE

MA

Fig. 9. Effect of Ts.

This is expected as the increase in field size not only makes the sensor network sparser, but also makes the
task location farther from the base station (in the experiments the emergent task locations are randomly
generated in the area). When an emergent task is farther from the BS, it is more important to have some
sensors working as Connectors.

5.3. Other sensitivity study

5.3.1. Effect of Ts

Figure 9 shows the effect of Ts on the schemes’ performance. Figure 10 shows the breakdowns of
processing times when Ts is 40 and 80 (s). From the figures, we see that the task completion times
increase as Ts increases.

W. Wu et al. / Sensor relocation for emergent data acquisition in sparse mobile sensor networks 173

 0

 50

 100

 150

 200

 250

 300

 350

 400

S G M S G M

A
vg

 P
ro

ce
ss

in
g

T
im

e
(s

)

Ts (s)

Go
Scan

Return

8040

Fig. 10. Breakdowns, Ts.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 10 20 30 40 50 60 70 80 90 100

A
vg

 P
ro

ce
ss

in
g

T
im

e
(s

)

Speed (m/s)

Simple
BRIDGE

MA

Fig. 11. Effect of move speed.

5.3.2. Effect of sensor speed
The sensors’ move speed affect the time for a sensor to relocate to a location and the dynamism of

the sensor network’s topology. When sensors move faster, it takes shorter time for a sensor to meet new
neighbors. Figures 11 and 12 show the effect of sensors’ move speed on the solutions’ performance. It
is clear, and as expected, that as sensors’ move speed increases, the processing times.

6. Conclusion and future work

In this paper, we have identified the problem of sensor relocation for emergent data acquisition in
sparse mobile sensor networks. Mobile sensors are tasked to go to a given location to gather information

174 W. Wu et al. / Sensor relocation for emergent data acquisition in sparse mobile sensor networks

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

S G M S G M

A
vg

 P
ro

ce
ss

in
g

T
im

e
(s

)

Speed (m/s)

Go
Scan

Return

4020

Fig. 12. Breakdowns, v.

and to return the sensed data to the base station as early as possible. We proposed a BRIDGE scheme
in which the sensors collaborate to fulfill an emergent task by gradually finding a sensor that is near the
task location and relocating some sensors to connect the base station to the sensor that is responsible
for sensing the task location. Our extensive performance evaluation showed the effectiveness of the
proposed solution.

There are a number of directions in which we would like to expand this research. We are interested, for
example, in how the BRIDGE scheme can be extended to handle multiple emergent data acquisition tasks,
and how to adapt BRIDGE to deal with obstacles that are not known in advance. For multiple emergent
data acquisition tasks, the challenge is to compute a relocation plan so that the average completion time of
several concurrent emergent data acquisition tasks is minimized. In scenarios where not all the obstacles
are known in advance, the requirement for the relocation is dynamic and the relocation plan may have
to be adjusted dramatically during relocation. For example, not only the involved sensors, but also the
locations of the ConnectorPoints will be different after encountering an un-anticipated obstacle. The
challenge here is to coordinate the mobile sensors (whose connections are intermittent) so that they will
be informed when a relocation plan has been changed significantly.

Acknowledgements

This project is partially supported by a research grant R-252-000-352-232 (TDSI/08-001/1A) from the
Temasek Defense Systems Institute.

References

[1] J. Allred, A.B. Hasan, S. Panichsakul, W. Pisano, P. Gray, J. Huang, R. Han, D. Lawrence and K. Mohseni, Sensorflock:
an airborne wireless sensor network of micro-air vehicles, in: SenSys, New York, NY, USA, ACM, 2007, pp. 117–129.

[2] J. Bellingham, M. Tillerson, A. Richards and J.P. How, Multi-task allocation and path planning for cooperating uavs, in:
Conference on Cooperative Control and Optimization, 2001.

W. Wu et al. / Sensor relocation for emergent data acquisition in sparse mobile sensor networks 175

[3] J.Y. Chen, G. Pandurangan and D. Xu, Robust computation of aggregates in wireless sensor networks: Distributed
randomized algorithms and analysis, Transactions on Parallel and Distributed Systems 17(9) (2006), 987–1000.

[4] L.M. Feeney and M. Nilsson, Investigating the energy consumption of a wireless network interface in an ad hoc networking
environment, in: INFOCOM, 2001.

[5] M. Garetto, M. Gribaudo, C.F. Chiasserini and E. Leonardi, A distributed sensor relocatlon scheme for environmental
control, in: MASS, 8–11 Oct. 2007, pages 1–10.

[6] Y.Y. Gu, D. Bozdaǧ, R.W. Brewer and E. Ekici, Data harvesting with mobile elements in wireless sensor networks,
Comput Netw 50(17) (2006), 3449–3465.

[7] H. Gupta, Z.H. Zhou, S.R. Das and Q. Gu, Connected sensor cover: self-organization of sensor networks for efficient
query execution, IEEE/ACM Transactions on Networking 14(1) (Feb 2006), 55–67.

[8] B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko, A. Miu, E. Shih, H. Balakrishnan and S. Madden, Cartel: a
distributed mobile sensor computing system, in: SenSys, New York, NY, USA, ACM, 2006, pages 125–138.

[9] Y. Jin, A.A. Minai and M.M. Polycarpou, Cooperative real-time search and task allocation in uav teams, in: IEEE
Conference on Decision and Control, (Vol. 1), 9–12 Dec. 2003, pp. 7–12.

[10] E. Kuiper and S. Nadjm-Tehrani, Mobility models for uav group reconnaissance applications, in: ICWMC, 29–31 July
2006, pages 33–33.

[11] X. Li, H. Frey, N. Santoro and I. Stojmenovic, Focused-coverage by mobile sensor networks, in: Proc IEEE 6th
International Conference on Mobile Adhoc and Sensor Systems MASS ’09, October 12–15, 2009, pp. 466–475.

[12] X. Li and N. Santoro, An integrated self-deployment and coverage maintenance scheme for mobile sensor networks, in:
Mobile Ad-hoc and Sensor Networks, Second International Conference, 2006, pp. 847–860.

[13] B.Y. Liu, P. Brass, O. Dousse, P. Nain and D. Towsley, Mobility improves coverage of sensor networks, in: MobiHoc,
New York, NY, USA, 2005. ACM, pp. 300–308.

[14] W. Liu, J.P. Wang, G.L. Xing and L.S. Huang, Throughput capacity of mobility-assisted data collection in wireless sensor
networks, in: Proc IEEE 6th International Conference on Mobile Adhoc and Sensor Systems MASS ’09, October 12–15,
2009, pp. 70–79.

[15] J. Luo, D. Wang and Q. Zhang, Double mobility: Coverage of the sea surface with mobile sensor networks, in: Proc
INFOCOM 2009. The 28th Conference on Computer Communications. IEEE, April 19–25, 2009, pp. 118–126.

[16] S. Madden, M.J. Franklin, J.M. Hellerstein and W. Hong, Tinydb: An acquisitional query processing system for sensor
networks, ACM TODS 30(1) (November 2005).

[17] E.D. Margerie, Jean baptiste Mouret, Stphane Doncieux, Jean arcady Meyer, Thomas Ravasi, Pascal Martinelli, and
Christophe Gr. Flapping-wing flight in bird-sized uavs for the robur project: from an evolutionary optimization to a real
flapping-wing mechanism, in: 3rd US-European Competition and Workshop on Micro Air Vehicle Systems (MAV07),
2007.

[18] R.C. Shah, S. Roy, S. Jain and W. Brunette, Data mules: modeling a three-tier architecture for sparse sensor networks,
in: IEEE SNPA Workshop, pages 30–41, 11 May 2003.

[19] G.T. Sibley, M.H. Rahimi and G.S. Sukhatme, Robomote: a tiny mobile robot platform for large-scale ad-hoc sensor
networks, in: Proc. IEEE International Conference on Robotics and Automation ICRA ’02, (Vol. 2), 11–15 May 2002,
pp. 1143–1148.

[20] W. Wang, V. Srinivasan and K.-C. Chua, Trade-offs between mobility and density for coverage in wireless sensor
networks, in: MobiCom, New York, NY, USA, 2007. ACM, pp. 39–50.

[21] S. Sukkarieh, E. Nettleton, J.H. Kim, A. Goktogan and H. Durrant-Whyte, The anser project: data fusion across multiple
uninhabited air vehicles, The International Journal of Robotics Research 22(7–8) (2003), 505–539.

[22] G. Trajcevski, P. Scheuermann and H. Brönnimann, Mission-critical management of mobile sensors: or, how to guide a
flock of sensors, in: DMSN, New York, NY, USA, 2004. ACM, pp. 111–118.

[23] G. Wang, G. Cao, T.L. Porta and W. Zhang, Sensor relocation in mobile sensor networks, in: INFOCOM, (Vol. 4), 13–17
March 2005, pp. 2302–2312.

[24] G.L. Xing, T. Wang, W.J. Jia and M.M. Li, Rendezvous design algorithms for wireless sensor networks with a mobile
base station, in: MobiHoc ’08: Proceedings of the 9th ACM international symposium on Mobile ad hoc networking and
computing, New York, NY, USA, 2008. ACM, pp. 231–240.

[25] N. Santoro, X. Li and I. Stojmenovic, Mesh-based sensor relocation for coverage maintenance in mobile sensor networks,
in: Ubiquitous Intelligence and Computing, 2007.

[26] O. Younis and S. Fahmy, Heed: A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks,
IEEE Transactions On Mobile Computing 3(4) (December 2004), 366–379.

[27] D. Zeinalipour-Yazti, P. Andreou, P.K. Chrysanthis and G. Samaras, Senseswarm: a perimeter-based data acquisition
framework for mobile sensor networks, in: DMSN, New York, NY, USA, 2007. ACM, pp. 13–18.

[28] W. Zhao, M. Ammar and E. Zegura, A message ferrying approach for data delivery in sparse mobile ad hoc networks,
in: MobiHoc, New York, NY, USA, 2004. ACM, pp. 187–198.

176 W. Wu et al. / Sensor relocation for emergent data acquisition in sparse mobile sensor networks

Wei Wu is a research fellow at the School of Computing, National University of Singapore (NUS). He completed his PhD in
computer science in 2009 at Singapore-MIT Alliance, NUS, and received his Bachelor and Master from Nanjing University in
2002 and 2005 respectively. His research interests include data management, mobile computing, and sensor networks.

Xiaohui Li is currently a PHD candidate in School of Computing (SoC), National University of Singapore (NUS). His current
research interest is moving objects data management. He received a B.Comp (Hons.) and a B.S. from NUS. Prior to joining
SoC, he worked as IT Analyst in Center for Life Science (CeLS).

Shili Xiang is a Ph.D. student in Computer Science department at National University of Singapore, under supervision of Pro-
fessor Kian-Lee Tan. Her research interests include query processing in sensor networks, streaming processing and pervasive
computing.

Hock Beng Lim is program director of the Intelligent Systems Center at Nanyang Technological University, Singapore. He
received his BS in Computer Engineering, MS in Electrical Engineering, and PhD in Electrical and Computer Engineering
from the University of Illinois at Urbana-Champaign, and his MS in Management Science and Engineering from Stanford
University. His research interests include sensor networks and sensor grids, cyber-physical systems, cloud computing, parallel
and distributed computing, wireless and mobile networks, computer architecture, embedded systems, performance evaluation,
e-Science and high-performance computing.

Kian-Lee Tan is a Professor of Computer Science at the School of Computing, National University of Singapore (NUS).
He received his Ph.D. in computer science in 1994 from NUS. His current research interests include multimedia information
retrieval, query processing and optimization in multiprocessor and distributed systems, database performance, and database
security. He has published numerous papers in conferences such as SIGMOD, VLDB, ICDE and EDBT, and journals such as
TODS, TKDE, and VLDBJ. Kian-Lee is a member of ACM.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

