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Some interactions between the dynamic and tribological behaviour of geared transmissions are examined, and a number of
experimental and simulation results are compared. A model is introduced which incorporates most of the possible interactions
between gears, shafts and hydrodynamic journal bearings. It combines (i) a specific element for wide-faced gears that includes
the normal contact conditions between actual mating teeth, that is, with tooth shape deviations and mounting errors, (ii) shaft
finite elements, and (iii) the external forces generated by journal bearings determined by directly solving Reynolds” equation. The
simulation results are compared with the measurement obtained on a high-precision test rig with single-stage spur and helical
gears supported by hydrodynamic journal bearings. The experimental and simulation results compare well thus validating the

simulation strategy both at the global and local scales.

1. Introduction

Despite their inherent drawbacks such as the generation
of noise, vibrations, and contact failures, geared systems
are commonly used in mechanical transmissions for their
high efficiency and power transmission capacity. In some
applications for which noise can be a critical issue, such as
marine propulsion, journal bearings offer a viable alternative
to rolling element bearings because of their interesting
damping properties which, however, can be counterbalanced
by instabilities and nonlinear phenomena. From a modelling
point of view, the coupling of all these mechanical parts
requires simultaneous treatment of the structural problem
associated with the shaft lines and the contact problems not
only between the mating teeth but also at the shaft/bearing
interfaces. Each of these individual mechanical topics has
generated a vast body of literature over the years. Concerning
journal bearings, the first seminal papers date back to the sec-
ond half of the 20th century [1-4], and a valuable synthesis

can be found in [5] for the basic phenomena. The influences
of thermal effects [6], oil injection properties, lubricant
rheology, shaft misalignments, [7] and the local elastic
deflections on shafts and bearings [8] have been studied over
the past 40 years and are, today, correctly mastered; however
the computational costs can be prohibitive, particularly in
an industrial context. On the other hand, gear dynamics
has been extensively analyzed in recent decades based on
increasingly refined models [9, 10] which usually combine
rigid gears, discrete stiffness, and damping elements [11,
12]. Later, time-varying mesh stiffness along with mounting
errors and tooth shape modifications have been considered
[13, 14], and gear body deflections have been introduced via
shaft [15] or 3-dimensional solid finite elements.

Several models dealing with the interactions between
gears and bearings can be found in the literature, but,
most of them, do not consider either gear mesh or bearing
nonlinearities. Theodossiades and Natsiavas [17] and Chen
et al. [18] used a simplified mesh interface coupled with
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FIGURE 1: Model of the test-rig.
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(b) Schematic representation of the test rig

FIGURE 2: Presentation of the test rig.

the nonlinear properties of journal bearings. Baud and
Velex [16] simulated journal bearings via stiffness and
damping coefficients while employing the sophisticated
gear model presented in [14]; a number of comparisons
with the evidence from a test rig were presented. More
recently, journal bearing-gear nonlinear interactions have
been studied by Baguet and Jacquenot [19] who coupled gear
and shaft elements along with bearing forces calculated using
a multigrid method.

The present work is in the continuation of [19] but
a more refined simulation of the interactions is proposed
which relies on the original mesh model of [15], an efficient
bearing approximation [6, 20], and introduces updated
centre-distance, pressure angle, misalignments, and mesh
characteristics in relation to the positions of the shafts in the
bearings. Bearing and meshing models have been chosen to
deal with most of the possible parameters and phenomena
met in real ship transmissions: wide-faced gear bodies with
profile modifications (necessary for high power transmission
and silent running) and finite length journal bearing model
with oil injection area, cavitation, and thermal effects. The
model is fully configurable in terms of geometry and running
conditions, and its results are compared with the experimen-
tal findings of Baud and Velex [16]. The comparisons deal
with tooth contacts (dynamic amplification) and the bearing
behaviour (steady-state position) for various geometries and
running conditions.

2. Mechanical Model

A hybrid model has been developed which incorporates the
gear simulation presented in [15], in which a pinion and
a gear are assimilated to two deformable shafts linked by
a time-varying series of nonlinear stiffness elements dis-
tributed along the potential contact lines on the base plane.
The shafts are modelled by two-node Timoshenko beam
elements which account for traction, torsion, and bending
whereas the other components such as couplings and load
machines, are represented by lumped stiffness and/or inertia
elements. Following [21], the bearings contribute via exter-
nal force vectors calculated by solving Reynolds’ equation in
relation to the instant shaft positions and velocities in each
bearing [5].

The mesh stiffness elements are evaluated from the
bidimensional results of Weber and Banaschek [22] for
structural deflections (tooth bending, base) and Lundberg’s
formula for contact compliance [23]. As tooth flanks move
relative to each other, the contact geometries and global mesh
stiffness are updated based on rigid-body displacements.
Tooth friction is neglected, and only the normal compressive
forces are considered. Any given stiffness element which is
not in compression is set to zero (e.g., in the case of partial
contacts on tooth flanks) and the gear stiffness matrix and
forcing terms are recalculated until convergence is achieved.
It is also checked that there is no compression outside
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FIGURE 4: Comparisons between the simulated and measured local dynamic coefficient with C, = 1540 N-m (a) maximum bearing spacing;

and (b) minimum bearing spacing.

the contact area. Further details about the mathematical
developments can be found in [14, 15].

Bearing reactions are considered as external lumped
forces acting at one shaft node which are calculated by
integrating the pressure field p over the bearing area.
The classic method of Rhode and Li [20] (also known
as the generalised short-bearing theory) is used which
relies on the hypothesis of a parabolic pressure variation
in the axial direction so that the remaining unknown is
the circumferential pressure distribution. By so doing, the
size of the problem is considerably reduced, and systematic
parameter analyses are possible. A finite difference scheme
combined with a Gauss-Seidel method is employed to find
the angular pressure distribution. This method is very
accurate for bearings such that the ratio L/D < 1 (with L,
the bearing length, and D, the shaft diameter) can deal with
realistic boundary conditions for oil injection and cavitation

(Reynolds’ conditions p(0) = 0 and dp/d0 = 0 at the rupture
abscissa) when using Christopherson’s algorithm [24]. The
bearing model is coupled with (i) a global thermal model
[5] in which the temperature increase AT is calculated by
equating a percentage of the heat generated by the fluid
shearing with the heat ejected at the bearing edges, along
with (ii) a fluid circulation model [6] so that the lubricant
density and viscosity can be updated separately in each
bearing using the empirical laws given in [25].

The coupling of all the system components leads to
the parametrically excited nonlinear equations of motion of
unknown X:

[Ms +M; )X + [C]X + [Ks + Ky (£, X) + K¢ X

(1)
= Fext(t) + Fp(Xg, X, X) + Fu(t,X) — [Kc]Xg,
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FIGURE 5: Effect of a load variation on the dimensionless tooth root stress, gauge PA2, (a) simulation results, (b) measurements [16].
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FiGure 6: Comparisons between the simulated and measured dimensionless tooth root stress (helical gear case), with C, = 1540 N-m and

maximum bearing spacing, (a) on gauge PA2, (b) on gauge PA4.

where [Msg] and [Mj] are, respectively, the mass matrix of
the shafts and additional inertial elements and [C] is the
damping matrix.

Index “X” in stiffness matrices [Kx] and external force
vectors Fx, respectively, refers to shafts for “S,” gear mesh for
“M,” external couplings for “C” and bearings for “b.” Fex
contains the equivalent nodal forces corresponding to the
external torques, mass imbalance, and weight of the parts.

X represents the rigid-body displacement field which is
used as the datum for the DOFs, mesh geometry, and shaft
misalignments (deviation and inclination).

The nonlinear system (1) is directly solved by com-
bining a Newmark scheme, a Newton-Raphson algorithm,
and an iterative process aimed at updating the dynamic
characteristics of the meshing process. At each time step,

the bearing reaction forces are calculated by integrating the
pressure distribution as opposed to the classic linear theory
which relies on first order expansions in the vicinity of the
static solution and leads to stiffness and damping dynamic
coefficients.

The initial conditions are X(t = 0) = 0 and X(t = 0) =
Xo with X, solution to

[Ks + Ky + Kc]Xo = Fext + Fio(Xg, Xo) — [Kc]Xz,  (2)
where [Ky] is an averaged mesh stiffness matrix.

The static equilibrium is found by iterating with updated
values of oil viscosity, density, and conductivity in each
bearing until the running temperature of each bearing has
converged.
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FIGURE 7: Comparisons of the simulated (a) and measured [16] (b) positions of the shaft centre inside the bearings at static equilibrium,
spur gear set, C, = 1540 N-m, 50 rad/s < Q; < 700 rad/s.
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Figure 9: Comparisons of the simulated (a) and measured [16] (b) position of the shaft centre inside the bearings at static equilibrium

(helical gear set) C, = 1540 N-m, 50 rad/s < Q; < 700 rad/s.

3. Test Rig and Simulation

The test rig represented in Figure 1 and Figures 2(a) and
2(b) consists in a single-stage spur or helical geared system
with parallel shafts resting on four hydrodynamic journal
bearings which are fixed to the pedestal. The reduction unit
is mounted on a cast iron base which is fixed to a reinforced
concrete block lying on springs and dampers. The shafts were
made to close tolerances, and particular care was taken in the
manufacture of the test rig in order to be consistent with
the accuracy of the gears (ISO precision grade 4, close to
those used in ship reducers). The gears are jet lubricated
from the oil circulating system common to the gears and
the bearings (ISO VG 100). Thermostatic control is provided
to keep the unit temperature as constant as possible, and
the temperature of the oil in the sump is 45°C for all tests.
Prior to recording data, the transmission was heated until oil
temperatures and displacements of the base were stabilized.
The pinion speed varies between 50 and 700 rad/s, and the
maximum output torque is 4200 N-m. The spur and helical
gear tooth profiles are modified by short linear tip relief of
amplitude 20 ym (spur gears) and 13 ym (helical gears) over
20% of the nominal active profile on the pinion and the gear
teeth. The peak to peak of cumulative pitch errors is within
10 ym for the pinion and 20 ym for the gear.

The instrumentation comprises (i) torque measure-
ments, (ii) displacement probes which are positioned in pairs
90 degrees apart at four locations on each shaft, and (iii)
strain gauges at the root of several teeth. Three successive
teeth on the pinion are strain-gauged at the tensile side

as shown in Figures 3(a) and 3(b) with four active gauges
across the face width. Output signals are transmitted by leads
cemented to the pinion/gear faces and inside the hollow
shafts to two slip rings which transfer this data from the
rotary to the stationary system.

From a modelling point of view, the profiles of all the
teeth have been discretized to account for profile modifica-
tions and also pitch errors. Each shaft is decomposed into
5 finite elements (Figure 3) whose dimensions are specified
in Tables 1, 2, and 3. A unique modal damping factor of
4% has been used to simulate the dissipation within the
shaft-gear mesh subsystem whereas the damping provided by
the journal bearings directly stems from the reaction forces
determined from Reynolds’ equation. In order to consider
steady-state solutions, the simulations were launched over
128 mesh periods with 64 time steps per mesh period, and
results were considered over the last 64 mesh periods only.

4. Comparisons between Experimental and
Numerical Results

Using a classic beam approach for calculating root stresses
and a thin-slice model for the teeth, the following approxi-
mate expression for slice i is introduced (Figure 3):

oni = Wi Ly
Ni IG 2:

(3)

where My; = Wi(h; cosa; — y;sina;) is the bending moment
due to the tooth load when isolating a slice i, I is the
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TaBLE 1: Gear data.

Pinion Gear
Tooth number 26 157
Face width (mm) 50 40
Helix angle (°) 0and 12.5
Module (mm) 4
Pressure angle (°) 20
Addendum coefficient 1. 1.
Dedendum coefficient 1.4 1.4

—0.16 (spur) and
—0.14 (helical)
366 (spur) and 375 (helical)

Profile shift coefficient 0.16

Center distance (mm)

TABLE 2: Shaft data.

Pinion shaft Gear shaft

Outer diameter (mm) 70 90
Inner diameter (mm) 30 30
Shaft length (mm) 1280 1415
Bearing distance to pinion/gear: E, (mm) 640 max—320 min
Young’s modulus (MPa) 210000
Poisson’s ratio 0.3

Density (kg/m?) 7800

Thrust bearing stiffness (N/m) 4x107  6x10’N
Elastic coupling stiffness (N/m) 1 x 107

TaBLE 3: Bearing (and lubricant) data.

Pinion shaft  Gear shaft
Length (mm) 50 65
Radial clearance (ym) 75 55
Lubricant (mm) ISO VG 100
Kinematic viscosity (mm?/s) V40 = 100; vy = 11.384
Lubricant injection temperature (K) 318
Axial groove opposed to

Oil injection oo
load direction

moment of inertia of the tooth section, and L; is the
root tooth thickness at the location where the stress is
calculated/measured.

Note that for spur gears, index i can be omitted since it is
supposed that there is no axial variation for perfectly aligned
gears.

Denoting by oggr the reference fillet stress calculated for
the total static normal load C,,/Ry, cos 8, and o = a; passing
by the pitch circle at the tooth centre line, a dimensionless
tooth root stress is defined as

ONi

Ri= (4)

OREF

Considering the spur gear example, Figures 4(a) and 4(b)
display a number of comparisons between the measured
dimensionless root stresses [16] and the simulation results
derived from the dynamic model and (3)-(4) for two
bearing centre distances. A very good agreement is reported

particularly when the distance between the bearings is
maximal (640 mm). Contrary to the results in [16] where a
simplified bearing model based on dynamic coefficients was
used, the three major response peaks are correctly simulated
(Figure 4(a)) suggesting that the bearings are influential on
dynamic tooth root stresses or loads. Both the experimental
and numerical results reveal that moving the bearings to
the minimal centre distance of 320 mm significantly alters
the dynamic load pattern on the teeth. The highest critical
speed is shifted from 550rad/s to more than 600 rad/s for
the minimum bearing spacing which logically renders the
system stiffer. In this configuration, the two secondary peaks
do not clearly emerge any longer in the response curve but
the speed range 300-350 rad/s exhibits significantly higher
stress levels than the other speeds. This effect is correctly
reproduced by the simulations even if the amplitudes are
slightly larger than the experimental ones. It has to be noticed
that the simulation curves are generally smoother, probably
because of the limited number of shaft elements used in
this model which, especially for the minimum bearing centre
distance, cannot properly integrate the influence of the
highest modes. The comparisons have been extended to
two different nominal load levels, that is, a gear torque of
C, = 1540 and 770 N-m. It can be observed in Figure 5
that the experimental and numerical dynamic responses are
only slightly affected, and, in particular, the tooth critical
speeds are unchanged. Here again, the measurements and the
simulation results compare very well.

The corresponding results for the helical gear pair
(B = 12.5°) are shown in Figure 6 where the dimensionless
maximum root stresses for two different gauges on the
same tooth (PA2 and PA4 in Figure 3) are plotted against
the pinion speed. As opposed to the spur gear example,
the dynamic stress distribution appears as nonuniform
across the tooth face width. The agreement between the
experimental evidence and the simulations is still acceptable,
and the variations with the gauge axial position are actually
captured by the model. Generally speaking, the dynamic
amplifications of the tooth fillet stress are less marked than
for spur gears (a maximum of 1.3 versus 1.6 for the spur
gear), and the main critical speed, around 540 rad/s, is only
visible on the signals delivered by gauge 2.

Focusing on the bearing behaviour, Figure 7 shows the
evolutions of the shaft centre positions with speed within
the bearing clearance (black circle in the figure) for the
spur gear case. Although only relative measurements have
been performed, the experimental and numerical curves
are similar both in terms of orientation and magnitude. In
particular, a slight difference is reported between bearings 1
and 2 on the pinion shaft caused by the shaft asymmetry. The
following conclusions can be drawn.

(i) The lubricant viscosity at each bearing is different
depending on speed (Figure 8) since the actual
temperature is modified by the running conditions
(higher temperatures in bearings 1 and 2 where the
rotational speed is higher than that at bearings 3 and
4).



(ii) The bearing reaction forces vary with speed in
relation to the bearing position with respect to
the couplings. However, their amplitudes remain
close to half the mesh force, and their orientations
correspond approximately to that of the base plane.

Similar results for the helical gear are presented in
Figure 9 which prove that, in this case too, the experimental
and numerical trajectories are in good agreement. It can
be clearly observed that the shaft positions vary from one
bearing to the next, even on the same shaft, and differ from
what is found for the spur gear arrangement. The bearing
reaction forces are found to have different orientations,
probably caused by the rocking moments brought by the
helical teeth (it can be noticed that the differences are more
significant on bearings 3 and 4 on the gear shaft because the
gear radius, hence the moment of rocking, is larger).

5. Conclusion

In this paper, a model has been presented which couples
the global behaviour of the system (shaft vibrations) and
the contacts between the gear teeth and those in the
journal bearings. Tooth microgeometry including shape
modifications and errors is taken into consideration, and the
influence of temperature on the properties of the bearing
lubricant is also considered. The resulting state equations are
solved by a multi-iterative numerical process which simulta-
neously converges on the DOFs, instant load distributions,
and geometries along with the bearing temperatures. The
experimental evidence from a sophisticated single-stage test
rig with spur and helical gears has been used to assess the
validity and the precision of the model. Despite the limited
number of DOFs, the experimental and numerical root
stresses compare very well for both spur and helical gears and
for various bearing centre distances. The tooth critical speeds
are correctly positioned, and the associated amplitudes are
satisfactory thus validating the proposed model. The average
running positions of the shafts within the bearings seem to
be correctly simulated, and some differences between the
spur and helical gear cases are pointed out probably because
of the rocking moments induced by the helix angle. From
a general viewpoint, it is confirmed that gears, shafts, and
journal bearings are dynamically coupled and that accurate
bearing models are required in order to predict tooth critical
speeds.
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