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We developed a higher resolution method for the estimation of the three travel-time parameters that are used in the 2D zero-
offset, Common-Reflection-Surface stack method. The underlying principle in this method is to replace the coherency measure
performed using semblance with that of MUSIC (multiple signal classification) pseudospectrum that utilizes the eigenstructure
of the data covariance matrix. The performance of the two parameter estimation techniques (i.e., semblance and MUSIC)
was investigated using both synthetic seismic diffraction and reflection data corrupted with white Gaussian noise, as well as a
multioffset ground penetrating radar (GPR) field data set. The estimated parameters employing MUSIC were shown to be superior
of those from semblance.

1. Introduction

Many important tasks in seismic processing and imaging
require the estimation of travel-time parameters. Such
parameters include, among others, velocities (e.g., for stack-
ing and time-migration purposes), travel-time slopes and
curvatures (e.g., for slant, common-reflection-surface (CRS),
multifocus (MF) stacks) and event picking for tomographical
methods. As shared with many other areas of activity, a
basic feature of seismic signals (referred to as events) is that
they exhibit some sort of coherent or aligned energy. More
specifically, seismic events (e.g., reflections or diffractions)
align themselves along curves or surfaces (referred to as
moveouts) within the data. The basic strategy for signal
detection and information extraction is to express these
moveouts as a function of a few, meaningful parameters and
to estimate such parameters so as the moveout optimally
approximates the events. In general, the search for param-
eters, sometimes referred to as wavefront shaping parameters,
carry key information about the geological structure under
investigation.

To assess how well a moveout, defined by some trial
parameters, approximates a target signal, a number of quan-
tifiers (or coherence measures) has been proposed. General
discussions on coherency measures applied to seismic data
can be found in the pioneering papers of [1–3] with a
clear emphasis on the second-order coherence measure
semblance. Semblance quantifies the likelihood between the
trial moveout and the target event by stacking the data along
that moveout and measuring the energy of the output.

Adopting the notation as in [4], for a given sample, k, at
a given (reference) trace, the so-called semblance coefficient,
or simply semblance, Sc, can be mathematically written in the
form

Sc =
∑ j=k+N/2

j=k−N/2
∣
∣
∣
∑M

i=1 x
(
j, i
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Here, the semblance coefficient is computed for N samples
taken from M traces in a window centered about the
trajectory defined by the moveout equation generated by the
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trial travel-time parameters (cf. Figure 1). In the following,
the given sample, k, and reference trace, as well as the
number of samples, N , and number of traces, M, will be
fixed throughout. As a consequence, we do not need to
incorporate them into the semblance notation, which will be
simply written as Sc. To construct the window in Figure 1,
proper interpolation is performed to select the appropriate
samples. In the language of electrical engineers, the above-
described windowing process steers the stacking along the
trial moveout.

Semblance can be described in terms of the covariance
matrix of the data. Following, for example, [5], within
the selected time window along the chosen trial moveout,
semblance can be written in the form

Sc = uTRu
M tr(R)

, (2)

where u is a column vector of ones, which can be referred to
as the unitary steering vector, and R is the covariance of the
data. Assuming that the different sources can be described by
a zero-mean stochastic process, the data covariance matrix is
given as

R = E
{

DDH
}

, (3)

where D = (di j) is the data matrix, in which di j is the
recorded data at the ith trace and jth sample. As in usual
notation, E{} and tr() represent the expected value and
matrix trace, respectively. Moreover, superscripts T and H
represent transpose and conjugate transpose, respectively. As
pointed out by [2], Equation (2) provides the interpretation
that semblance can be regarded, within the selected time
window, as a normalized output/input energy ratio. The
denominator, tr(R), is the normalization used by semblance
in order to generate a maximum peak of unity at the
“correct” moveout parameters (namely, the ones for which
we have the optimal stack).

Even though semblance is a good measure of coherency,
it can in many times provide insufficient resolution for the
parameter estimation. That is the case, in particular, for
interfering events. There is, thus, a motivation to look for
alternatives to overcome these difficulties. Attempts have
been made to further improve semblance by using only those
parts of the data with higher resolving power [6] and also by
introducing weights in the standard semblance formulation
[7]. Statistical approaches have also been introduced to
increase the resolution of the velocity analysis [8]. In this
paper, an alternative to semblance-like techniques will be
investigated.

As recognized in sonar and radar applications, methods
exploiting the properties of the eigenstructure (namely,
eigenvalues and eigenvectors) of the data covariance matrix
can lead to far better resolution results than semblance
[4, 9, 10]. The basic idea of the eigenstructure approach is to
decompose the data covariance matrix into two orthogonal
subspaces. The first is the signal subspace, which is generated
by the eigenvectors associated to high eigenvalues. The
second is the noise subspace, generated by the small or
zero eigenvalues. In this paper, we use the eigenstructure

method called multiple signal classification (MUSIC), intro-
duced by [9]. MUSIC exploits the fact that the “correct”
moveout, represented as a steering vector, must lie in the
signal subspace and, therefore, is orthogonal to the noise
subspace eigenvectors. As a consequence, the projection of
the steering vector onto the noise subspace provides a nearly
vanishing value. The inverse of such a projection (namely,
the sum of the dot products of the steering vector with the
noise eigenvectors) should peak when the steering vector
represents a correct moveout.

This work can be seen as a followup of [10], in which
the application of MUSIC to single-parameter velocity
analysis and slant stacks is described. Here, we extend
the application of MUSIC to common-reflection-surface
(CRS) multi-parameter estimation. Besides the theoretical
exposition of the technique, applications to first synthetic
examples, consisting of dipping planar reflectors and point
diffractors, are provided. Comparisons of the obtained
results and conventional semblance confirm, at least for these
initial examples, the expected far better resolution of MUSIC.
To further support this conclusion a real multioffset GPR
data set was also analysed. It was demonstrated that MUSIC,
unlike semblance, was able to better resolve interfering
events.

2. Classical Music: Narrowband and
Uncorrelated Signals

In its original or classical form [9], MUSIC considers an
array of Nr receivers recording W incoming reflected or
diffracted signals, in an arbitrary background medium. In
time domain, the data recorded by the ith receiver can be
modeled as

di(t) =
W∑

w=1

sw
(
t − τθi,w

)
+ ni(t), (i = 1, 2, . . . , Nr), (4)

where sw(t) is the source pulse associated with event w, and
ni(t) is the additive random noise at the ith receiver. Finally,
τθi,w is the travel-time (or time delay) of the wth incoming
signal (or event) arriving at the ith receiver. The superscript,
θ, indicates that the moveouts depend on a set of one or
more parameters, here denoted, by a so-called parameter
vector, θ. The most popular trial-moveout example is the
normal-moveout (NMO), applied for velocity analysis in
the common-midpoint (CMP) configuration. In the 2D
situation, the single parameter to be estimated is the NMO-
velocity. An example of multiparameter moveout is the
general hyperbolic moveout used by the common-reflection-
surface (CRS) stacking method. As previously indicated,
application of MUSIC to velocity analysis has been described
by [10]. Here, we extend the analysis to CRS parameter
estimation in 2D data. In this situation, three parameters are
to be estimated. In order not to disturb the main flow, the
description of the generalized hyperbolic or, more simply, the
CRS travel-times, τi,w, is postponed to the appendix.

2.1. Narrowband Signals. For narrowband signals sw(t), the
travel-times can be expressed as exponential phase shifts



International Journal of Geophysics 3

1.94

1.96

1.98

2

2.02

2.04

2.06

2.08

2.1

2.12

2.14
100 200 300 400 500 600

T
im

e 
(s

)

Half offset (m)

Figure 1: Time window used to compute semblance. The two red
lines show the travel-time trajectories bounding the window used
to select the data.
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Figure 2: Concept of spatial smoothing.

around the center angular frequency ω. For notation simplic-
ity, that fixed frequency will be omitted. As a consequence,
the data model in (4) can be recast as

di(t) =
W∑

w=1

sw(t) exp
(
−iωτθi,w

)
+ ni(t). (5)

After time discretization, the above equation can be recast in
matrix form as

D = A(θ)S + N, (6)

where D = (di j) = (di(t j)) and N = (ni j) = (ni(t j)) are,
respectively, the Nr×Nt data and additive noise matrices, and
S = (sw j) = (sw(t j)) is the W ×Nt source matrix. Finally,

A(θ) = (a1(θ), . . . , aw(θ), . . . , aW (θ)) (7)

is the Nr ×Warray response matrix containing all the steering
vectors

aw(θ) =

⎡
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. (8)
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Figure 3: Synthetic CMP data used for comparison of MUSIC with
semblance. A point diffractor and a dipping reflector (β = 200) with
the same τ0 = 2 sec is used to generate the data. Note that the two
events are very close to each other and it is difficult to distinguish
them.
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Figure 4: Synthetic ZO section used for comparison of MUSIC with
semblance. A point diffractor and a dipping reflector (β = 200) is
used to generate the data. The red dot (x0 = 540 m and τ0 = 2 sec)
shows the location where we performed the parameter search.

MUSIC utilizes the eigenstructure of the data covariance
matrix defined by (3). Substituting (6) into (3) and assuming
uncorrelated noise with variance of σ2

n , the covariance matrix
can be recast as

R = A(θ)
[
E
{

SSH
}]

A(θ)H + E
{

NNH
}

= A(θ)RsA(θ)H + σ2
nI,

(9)

where Rs and I are, respectively, the source covariance and
identity matrices. The MUSIC algorithm performs an eigen-
decomposition of this covariance matrix

RU = ΛU, (10)

where Λ = diag(λ1, λ2, . . . , λNr ) contains the eigenvalues
satisfying λ1 ≥ λ2 ≥ · · · ≥ λNr , and U = [u1, u2, . . . , uNr ]
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Figure 5: Spectrum of parameter C using both MUSIC and
semblance (point diffractor and a dipping reflector β = 200). The
black dotted lines show the correct location of the parameters Cdiff

and Cdip. We see that only MUSIC was able to resolve the two
parameters.

−3 −2 −1 0 1 2 3

×10−4

−4

−3

−2

−1

0

1

2

3

4

×10−6
Parameter B

Pa
ra

m
et

er
A

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 6: Uncorrelated sources: Determination of parameters A
and B based on MUSIC for a diffractor and a dipping reflector
β = 200. The black stars show the correct parameter locations.

is the matrix that consists of the corresponding (column)
orthonormal eigenvectors of R. The unitary matrix of eigen-
vectors U can be decomposed further as U = [Us Un], where
the columns of Us comprise the eigenvectors corresponding
to the largest eigenvalues of R (the signal subspace), and with
Un containing the remaining (noise) eigenvectors.

2.2. Uncorrelated Signals. For MUSIC to be applicable in
our parameter search problem, the different source pulses,
sw(t), should be uncorrelated resulting in a covariance matrix
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Figure 7: Uncorrelated sources: Determination of parameters A
and B based on semblance for a diffractor and a dipping reflector
β = 200. The black stars show the correct parameter locations.
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Figure 8: Parameter C determined using both MUSIC and
semblance (point diffractor and a dipping reflector β = 200). The
black dotted lines show the correct parameter locations.

Rs having full rank equal to the number of events W
recorded at the receivers. If the M source vectors are linearly
independent, then the matrix Rs is positive definite which
results in A(θ)RsA(θ)H to be a positive semidefinite matrix
with its rank spanning the steering vectors corresponding to
the appropriate parameters we are searching. With the above
condition satisfied and since the noise subspace is orthogonal
to the signal subspace, the MUSIC pseudospectrum, PMU(θ),
is given by

PMU(θ) = a(θ)a(θ)H

a(θ)Pna(θ)H
, (11)
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Figure 9: Correlated sources: Determination of parameters A and
B based on MUSIC for a diffractor and a dipping reflector β = 200.
The black stars show the correct parameter locations.
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Figure 10: Correlated sources: Determination of parameters A and
B based on semblance for a diffractor and a dipping reflector β =
200. The black stars show the correct parameter locations.

where a(θ) is the test steering vector and Pn is the noise
subspace projection matrix given by Pn= UnUH

n . Since the
steering vectors a(θ) are orthogonal to the eigenvectors
spanning the noise subspace un, it follows that the parameter
estimates will occur at those parameter values for which we
have

a(θ)Pna(θ)H ≈ 0. (12)

This corresponds to large peaks in the MUSIC pseudospec-
trum as given by (11).

2.3. Wideband Uncorrelated Signals. As indicated above, the
MUSIC algorithm was originally developed for narrowband
and uncorrelated signal applications. If the condition of
uncorrelated signals is maintained, an alternative to this
situation is to decompose a wideband data into narrowband
data components and then treat each narrowband separately
[10]. The MUSIC pseudospectrum at the center angular
frequency ωi of the ith narrowband now takes the form

PMU(θ;ωi) = a(θ;ωi)a(θ;ωi)
H

a(θ;ωi)Pn(ωi)a(θ;ωi)
H , (13)

where a(θ;ωi) and Pn(ωi) are respectively the test steering
vector and the noise subspace projection matrix at the ith
center angular frequency ωi. The strategy followed in this
work is to Fourier transform the test data and select a
narrowband close to the center frequency of the source pulse
as input to MUSIC.

3. Seismic Music: Wideband and Correlated
Signals

Seismic signals are highly correlated and require a special
modification to be used by the original MUSIC algorithm.
The consequence of having correlated sources is that there
will be a rank deficiency in the source covariance matrix Rs

that will result in a mix of signal and noise subspaces. As a
result, the MUSIC algorithm will loose its power to peak at
the “right” parameters.

In order to handle correlated sources, spatial smoothing
over the covariance matrix, can be employed [10]. The idea
is to subdivide the array of Nr sensors into K identical
overlapping subarrays of Nr − K + 1 receivers (cf. Figure 2)
and then compute the covariance for all the subarrays and
average the result. If the covariance matrix for subarray k is
Rk, the spatially smoothed covariance is given by

RK = 1
K

K∑

k=1

Rk. (14)

To be able to implement spatial smoothing within
seismics, one has to taper the data within a window following
the event(s) (cf. Figure 1). The purpose of this tapering is to
make the delay times of the event linear (which is the basic
requirement behind spatial smoothing) [10].

The other advantage of performing the analysis in a
given window is to make the steering vectors, required for
generating the MUSIC pseudospectrum, to be frequency
independent. This allows us to handle wideband seismic
data. This process of windowing the event can also be
interpreted as steering of the correlation matrix before
eigendecomposition and using unity steering vectors for
generating the MUSIC pseudospectrum [4].

Ideally, when the window is “perfectly” matching the
event, which will be the case of an optimal choice of the
moveout parameters, the signal would be flattened and all
traces will nearly have the same moveout. As a consequence,
the steering vectors used in (11) will be simply replaced by
a vector of ones making them frequency independent. In
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Figure 11: Velocity spectra obtained employing, respectively, semblance (a) and SB-MUSIC (b). The white arrows indicate the apparent
single event associated with semblance and the corresponding two events computed from SB-MUSIC.
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Figure 12: CMP gather superimposed the hyperbolic moveouts (red curves) for the interfering events based on semblance (a) and SB-
MUSIC (b).

this situation, the MUSIC pseudospectrum generates a peak
resulting in the identification of the optimal estimates of the
parameters.

In practice, the windows are constructed by moveouts,
defined by trial parameters. Peaking of the corresponding

MUSIC pseudospectra identifies, thus, the “correct” parame-
ters. Following this approach, [4] has shown that MUSIC can
be applied for the single-parameter case of velocity analysis.
The objective was, thus, to obtain a high-resolution velocity
spectrum. In this work, we extend that strategy to the CRS
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multi-parameter estimating problem. In other words, our
objective is to obtain high-resolution estimates of the CRS
parameters, which are three in the present 2D situation.

4. Numerical Examples

In this section, we compare MUSIC and semblance for
travel-time parameter estimation in the situations of clas-
sical MUSIC (narrowband uncorrelated signals) and seis-
mic MUSIC (wideband correlated signals). For a simple
model of a point diffractor and a dipping reflector with
a homogeneous overburden, we analyzed the cases: (a)
CMP configuration, which requires the determination of
a single parameter, C of CRS travel-time (cf. (A.1)) and
(b) ZO configuration, which requires the determination
of two parameters, namely, parameters A and B of the
CRS travel-time (cf. (A.1)). The two events (diffraction and
reflection) were chosen to be almost undistinguishable. All
the test parameter points with RMS velocities within [1000 :
4000] m/s (step size 7.5 m/s) were tested for parameter C and
points within [−4× 10−4 : 4× 10−4] (step size 1× 10−5) for
parameter A and points within [−3 × 10−6 : 3 × 10−6] (step
size 1×10−7) for parameter B. As seen below, in all situations,
MUSIC performed much better then semblance.

4.1. Classical Music. To illustrate the application of MUSIC
for narrowband uncorrelated signals, we considered a point
diffractor and a dipping reflector illuminated under a CMP
configuration. For a given CMP gather, the data consists of
(compare with (5))

di(t) = sdiff(t) exp(−iωτdiff)+sdip(t) exp
(
−iωτdip

)
+ ni(t),

(15)

where sdiff and sdip are the sources and τdiff and τdip are the
travel-times for the diffractor and dipping reflector events,

respectively. Moreover, ni(t) is the additive noise. The travel-
times for these two events are described by the ordinary
NMO equations

τ2
diff(h) = τ2

0 + Cdiffh
2, τ2

dip(h) = τ2
0 + Cdiph

2, (16)

where the velocity coefficients for the diffractor, Cdiff, and
dipping reflector, Cdip, are given by

Cdiff = 4
v2

RMS
, Cdip = 4cos2β

v2
RMS

. (17)

Here, vRMS and β represent the root mean square (RMS)
velocity and the dip angle, respectively.

The sources, sdiff(t) and sdip(t) are produced by a single
narrowband source, s(t), modified by two realizations of
a random phase perturbation, φdiff(ω) and φdip(ω), so as
to produce uncorrelated sources. In frequency domain, this
process is generally described as

sdiff(ω) = s(ω) exp
[
iφdiff(ω)

]
,

sdip(ω) = s(ω) exp
[
iφdip(ω)

]
.

(18)

A synthetic CMP gather was generated employing (15), (16),
and (18) together with a Ricker zero-phase wavelet with a
center frequency of 20 Hz (cf. Figure 3). The fold was 40
representing a half-offset range from 40 m to 820 m. The
data was sampled with 2 ms and white Gaussian noise with a
variance of 10% of the maximum trace amplitude was added.
The parameter estimation process was benchmarked using
the classical semblance analysis of [2].

The output from MUSIC (cf. (13)) is shown in Figure 5
together with the result obtained using semblance. For both
cases we used, a window size of 11 samples and in addition
for MUSIC we considered two signal subspaces and the rest
as noise subspaces. As a result, MUSIC is seen to outperform
semblance and resolve the two parameters well. It is well
known that the values output from MUSIC are arbitrary.
To avoid this phenomenon, we have introduced a semblance
balancing. This technique is discussed in detail in connection
with the real-data example presented below.

To perform a two-parameter test, we have now simulated
a zero-offset (ZO) section for the same previous point
diffractor and dipping reflector (cf. Figure 4). The corre-
sponding two ZO travel-times for diffraction and reflection
are now given by

[τdiff(xm)]2 = τ2
0 + Bdiff(xm − x0)2,

[
τdip(xm)

]2 = τ0 + Adip[(xm − x0)]2,
(19)

with Bdiff = Cdiff and Adip = 1.71 × 10−4 (corresponding
to a dip of 200 and a homogeneous medium with constant
velocity 2000 m/s). As seen from the Appendix, the above
equations represent the generalized hyperbolic (CRS) travel-
time of equation (A.1), in which the conditions

Bdiff = Cdiff, Bdip = 0, (20)
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have been implemented. As indicated in the Appendix, the
far-left equation above represents the diffraction condition.
The far-right equation is due to the fact that in this
considered experiment, the N-wave is planar.

Based on (19), using the previous uncorrelated sources
(18), synthetic ZO data were computed for midpoints
between 40 m and 1040 m. The results from the two-
parameter search (A and B) are shown for, respectively,
MUSIC (cf. Figure 6) and semblance (cf. Figure 7). MUSIC
gives well-resolved results, as opposed to the semblance,
where the estimated parameters are more inaccurate.

4.2. Seismic Music. To examine the performance of MUSIC
compared to semblance in case of wideband correlated
signals, we generated synthetic data based on the travel-
time (16) for a CMP gather and (19) for a ZO section.
The parameter search was performed within a time window
of 25 time samples with the ZO travel-time being the
middle sample and following a hyperbolic delay trajectory
defined by the travel-times. For the computation of the
MUSIC pseudospectrum, the samples within the hyperbolic
window were used to form the data covariance matrix and
the associated eigendecomposition. In order to reduce the
correlated source effect we performed spatial smoothing of
the covariance matrix using 31 subarrays each consisting
of 10 receivers for the CMP data and 37 subarrays each
consisting of 15 receivers for the ZO data.

The results of the parameter search is shown in Figure 8
for the CMP data (i.e., determination of parameter C) and
Figures 9 and 10 for the ZO section (i.e., determination of
parameters A and B). It is apparent that both semblance and
MUSIC can resolve parameters A and B, but MUSIC shows a
higher resolution in general. Moreover, for parameter C only
MUSIC is able to resolve the two events.

4.3. Real Data Example Using GPR Data. The first step of the
CRS analysis determining the C parameter can be regarded
as a CMP-based velocity analysis. As indicated by our
previous synthetic data example, MUSIC was seen to have
a better potential than semblance for resolving interfering
events (cf. Figures 5 and 8). We will now investigate
whether that feature is confirmed in real data. Prior to our
analysis, however, the following normalization issue has to
be considered. As opposed to semblance, which produces
normalized values between 0 and 1, MUSIC, despite its high-
resolution capability, yields arbitrary amplitude values. Such
behavior makes the simple replacement of semblance with
MUSIC as a coherency measure, for example, in standard
velocity analysis, not adequate.

In order to condition MUSIC to be a normalized
quantity, we introduce a scaled version of it, denoted by
semblance-balanced MUSIC or, more simply, SB-MUSIC. In
the framework of velocity analysis, SB-MUSIC is defined as
follows: for a given CMP location, as well as a selection of
N zero-offset time samples, ti and M trial stacking velocities,
Vj , we let mij and si j represent the coherency values obtained
from MUSIC and semblance, respectively. In other words,
(mij) and (si j) represent N × M velocity spectra associated

with MUSIC and semblance coherency measures. Denoted
by m̂i j , SB-MUSIC is given by

m̂i j = As,i

Am,i
mi j , (21)

where

As,i =
√
√
√
√
√

M∑

k=1

s2
ik, Am,i =

√
√
√
√
√

M∑

k=1

m2
ik. (22)

Application of the above conditioning makes sure that
those amplitude anomalies inherent to the original MUSIC
velocity spectrum are balanced according to the energy level
of semblance.

A real multioffset GPR data set was used to test out the
feasibility of this approach. For an in depth description and
discussion of these data, the readers are referred to [11].
Figure 11 shows an example of a typical velocity spectrum
obtained from the GPR data using both semblance and SB-
MUSIC. In these computations, we used a window size of
eleven samples for both semblance and MUSIC. In addition,
we performed spatial smoothing of subarray size 15 from
a fold of 28 to ensure that MUSIC handles the correlated
GPR signals properly. Figure 11 clearly demonstrates that
interfering events are much better resolved in the SB-
MUSIC spectrum (Figure 11(b)) than in its corresponding
semblance spectrum (Figure 11(a)). In particular, as indi-
cated by white arrows, it can be seen how two interfering
events are unresolved by semblance (Figure 11(a)) and well
resolved by SB-MUSIC (Figure 11(b)). To further validate
the previous observation, the hyperbolic moveout curves
corresponding to those two events were superimposed to
the corresponding CMP-gather (cf. Figure 12(b)). These
curves seem to correlate well with two interfering events.
As a reference, the result obtained using semblance is also
included (cf. Figure 12(a)). It can be regarded as a fit based
on a mix between the two interfering events.

5. Conclusions

In this paper, we discussed the CRS travel-time parame-
ters estimation problem in seismic signal processing. The
conventional semblance algorithm was found to generate
lower-resolution estimates of the parameters. For the pur-
pose of obtaining higher-resolution parameter estimates, we
replaced semblance with MUSIC algorithm. Such procedure
allowed us to estimate the parameters within a resolution
limit that is significantly better. This work can be seen as
a followup of previous applications of MUSIC to single-
parameter velocity analysis and slant stacks. Now, MUSIC
has been extended to Common-Reflection-Surface (CRS)
multiparameter estimation. Applications of the technique to
first synthetic examples, consisting of dipping planar reflec-
tors and point diffractors, and comparison to semblance,
confirm, at least for these initial situations, the expected far
better resolution of MUSIC. To further support this analysis,
CMP velocity analysis has been applied to a real multioffset
GPR data set. In this situation, better results were obtained
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upon the introduction of a scaled version of MUSIC, denoted
semblance-balanced MUSIC. The new algorithm was seen to
outperform semblance in resolving interfering events.

Appendix

General Hyperbolic Moveout

The CRS method uses the so-called generalized hyperbolic
(normal) moveout, which is the natural generalization of
the NMO, valid for CMP gathers, to CRS supergathers, in
which source-receiver pairs are arbitrarily located around
the (reference) central point, usually taken as a CMP.
In 2D, the generalized hyperbolic moveout depends on
three parameters, as opposed to conventional NMO, which
depends on a single parameter (NMO velocity).

Mathematically, the generalized hyperbolic moveout,
τi,w, associated with the event, w, measured at receiver i,
is specified by the zero-offset (ZO) travel-time, τ0w , and
(reference) trace location, x0w , and given by (see Figure 13)

[
τθi,w
(
xmi ,hi

)]2 = [τ0w + Aw
(
xmi − x0w

)]2

+ Bw
(
xmi − x0w

)2 + Cwh2
i ,

(A.1)

where xmi is the midpoint coordinate and hi is the half-offset
coordinate for the ith receiver. Here,

θ = {Aw, Bw, Cw} (A.2)

is the CRS parameter vector, with three parameters, Aw,
Bw and Cw, to be estimated from the data. It is instructive
to recall that these parameters are related to the angle and
curvature quantities as follows [12]:

Aw = 2 sinβ0w

v0w
,

Bw =
2τ0wcos2β0w

v0w
KNw ,

Cw = 2τ0wcos2β0w

v0w
KNIPw ,

(A.3)

where KNw and KNIPw are the curvatures of respectively the
normal (N) and normal-incident-point (NIP) wavefronts,
β0w is the emergence angle and v0w is the medium velocity.
All these quantities are evaluated at the central point, x0w .
Still considering the CRS parameters, we make the following
observations

(a) In the CMP configuration of source-receiver pairs
symmetrically located with respect to the central
point, namely, xmi = x0w , we have

[
τθi,w(hi)

]2 = τ2
0w + Cwh

2
i , (A.4)

with the CMP, single parameter vector θ = {Cw}.
Moreover, we have the relation

Cw = 4
v2

NMO
, (A.5)

with Cw given by the lower-most (A.3).

(b) In case the recorded data stems from a diffraction,
the condition Bw = Cw holds. This is because as the
reflector shrinks to a point, the N-wave turns out to
be identical to the NIP-wave [13]. As a consequence,
the hyperbolic moveout of diffraction (or diffraction
travel-time), reduces to

[
τθi,w
(
xmi ,hi

)]2 = [τ0w + Aw
(
xmi − x0w

)]2

+ Bw

[(
xmi − x0w

)2 + h2
i

]
,

(A.6)

with the diffraction, two-parameter vector θ =
{Aw,Bw}.
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