
Scientific Programming 19 (2011) 47–62 47
DOI 10.3233/SPR-2010-0303
IOS Press

Programming heterogeneous clusters with
accelerators using object-based programming

David M. Kunzman ∗ and Laxmikant V. Kalé
Department of Computer Science, University of Illinois, Urbana, IL, USA

Abstract. Heterogeneous clusters that include accelerators have become more common in the realm of high performance com-
puting because of the high GFlop/s rates such clusters are capable of achieving. However, heterogeneous clusters are typically
considered hard to program as they usually require programmers to interleave architecture-specific code within application code.
We have extended the Charm++ programming model and runtime system to support heterogeneous clusters (with host cores that
differ in their architecture) that include accelerators. We are currently focusing on clusters that include commodity processors,
Cell processors, and Larrabee devices. When our extensions are used to develop code, the resulting code is portable between
various homogeneous and heterogeneous clusters that may or may not include accelerators. Using a simple example molecular
dynamics (MD) code, we demonstrate our programming model extensions and runtime system modifications on a heterogeneous
cluster comprised of Xeon and Cell processors. Even though there is no architecture-specific code in the example MD program,
it is able to successfully make use of three core types, each with a different ISA (Xeon, PPE, SPE), three SIMD instruction
extensions (SSE, AltiVec/VMX and the SPE’s SIMD instructions), and two memory models (cache hierarchies and scratchpad
memories) in a single execution. Our programming model extensions abstract away hardware complexities while our runtime
system modifications automatically adjust application data to account for architectural differences between the various cores.

1. Introduction

The growing popularity of heterogeneous comput-
ing has made the subject increasingly important in the
realm of high performance computing (HPC). This im-
portance is reflected in the presence of several large
heterogeneous clusters including the Roadrunner clus-
ter at Los Alamos National Lab (LANL) [4], the
Lincoln cluster [25] at the National Center for Su-
percomputing Applications (NCSA), and the MariCel
cluster [3] at the Barcelona Supercomputing Center
(BSC). Graphical processing units (GPUs) and the Cell
processors [20] are increasingly being used for general
purpose computation. This trend will continue with ad-
vances such as the upcoming introduction of Intel’s
Larrabee [30] device.

As if parallel programming were not considered dif-
ficult enough, introducing heterogeneity into systems
further complicates matters. Writing applications to
execute on heterogeneous clusters can be quite diffi-
cult. Often requiring architecture-specific code to be
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interleaved throughout the application code, heteroge-
neous systems place a great burden on programmers as
they develop and maintain application code. Having to
include architecture-specific code reduces portability
and distracts programmers by requiring them to focus
on various aspects of the hardware’s architecture in-
stead of focusing on the application specific code itself.
Heterogeneous clusters further complicate code devel-
opment since some portions of the code may have to
be duplicated (reimplemented) for each node type (and
even core type within a node). This is particularly true
between nodes that have accelerators and nodes that do
not, even if the host cores in the various nodes share
the same architecture.

We believe that several aspects of the Charm++
programming model make it well suited for program-
ming heterogeneous systems. As we will discuss in
Section 2.1, Charm++ encapsulates application data
in chare objects and program execution in entry meth-
ods. There are also clear communication boundaries
where the structure of the application data crossing that
boundary is well defined, as described in Section 4.
Towards this end, we are extending the Charm++
programming model and adapting the Charm++ run-
time system to allow programs to execute on heteroge-
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neous systems, while at the same time, trying to min-
imize programmer effort. We have extended the pro-
gramming model to include accelerated entry meth-
ods, accelerated blocks and a SIMD instruction ab-
straction. These extensions were also described in an
earlier paper [22], which is subsumed by the work pre-
sented here. In this work, we demonstrate heteroge-
neous execution using a simple molecular dynamics
(MD) code running on a heterogeneous cluster com-
prised of Xeon-based (x86) and Cell-based nodes. To
achieve performance on such a cluster, we introduce a
static load balancer to the MD code and demonstrate
that the program is able to achieve greater scaling per-
formance using a combination of both Xeon and Cell
processors, compared to only using Cell-based nodes
which we were limited to in our previous work. Our
work enables a programmer to use the Charm++ pro-
gramming model to write application code for all of the
processing cores in a heterogeneous system, including
accelerator cores. Using a single programming model,
the programmer is able to write their application code
once. The application code remains portable between
various homogeneous systems and heterogeneous sys-
tems that may include accelerators. An underlying run-
time system maps the execution of the program across
the available processing cores, making use of the archi-
tecture specific features of the individual cores, such
as SIMD instruction extensions, scratchpad memories,
direct memory transfers and so on. When executed us-
ing all the core types in our cluster, the MD program
makes use of three core types (Xeon cores, PPEs and
SPEs, all using different ISAs), three SIMD instruc-
tion extensions (SSE on the Xeon cores, AltiVec/VMX
on the PPEs and the SPE’s own SIMD instructions),
and using two memory structures (cache hierarchies in
the Xeon and PPE cores, and scratchpad memories in
the SPEs). Regardless of these architecture differences,
by making use of our programming model extensions
and our build process and runtime system modifica-
tions, there is no architecture-specific code in the MD
program. Furthermore, the MD program, without mod-
ification, retains portability to other systems, includ-
ing typical homogeneous clusters (e.g., a cluster com-
prised of commodity x86 processors).

The programming model extensions and runtime
system modifications that we discuss in this work cur-
rently support the Cell processor, and we are working
on support for Larrabee devices. However, Larrabee
hardware is not publicly accessible, thus we are cur-
rently unable to discuss our work on Larrabee in de-
tail. Therefore, our discussion here will focus on our

work as it relates to the Cell processor in particular.
The reader should keep in mind that our programming
model and runtime system modifications to Charm++
are applicable to Larrabee devices as well.

2. Background

This section briefly reviews background information
on Charm++ and the supported accelerator technolo-
gies as they relate to the discussion of our work.

2.1. Charm++

The Charm++ programming model is typically
used to write high performance computing (HPC)
and scientific computing applications. Target hardware
platforms range from desktop workstations to some of
the largest supercomputer clusters currently available.
Charm++ has been used to develop several scientific
applications, including NAMD [6], OpenAtom [7] and
ChaNGa [18].

Charm++ is an object-based message-passing par-
allel programming model that makes use of an adap-
tive and intelligent runtime system. Charm++ is based
on the C++ programming model. The Charm++ run-
time system is implemented as a set of libraries that are
linked to the application at build time. Charm++ ap-
plications are decomposed into a collection of objects
called chares. Chare objects are C++ objects with spe-
cial member functions called entry methods. The main
differences between entry methods and standard mem-
ber functions are that entry methods can be remotely
invoked and do not return a value. That is, an entry
method of one chare object can invoke an entry method
on another chare object regardless of whether or not the
two chare objects are physically located on the same
processing core. The parameters passed to an entry
method are packed into a message and delivered to the
target chare object (the chare object the entry method
is being invoked on). If the chare objects are on differ-
ent physical processors, the runtime system locates the
physical processor that contains the target chare object
and then routes the message over the network to the ap-
propriate physical core. Once the message has arrived
on the target processor, it is queued for execution in
a message queue. The runtime system dequeues mes-
sages from the message queue and schedules the as-
sociated entry methods for execution on the associated
chare objects, based on various factors such as message
priorities. There is at most one entry method execut-
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ing on any chare object at any given moment. As a re-
sult, there is no need to synchronize access to member
variables that are accessed by multiple entry methods
executing on the same chare object. There are many
chare objects on each physical processor (referred to
as over-decomposition of the Charm++ program, or
virtualization). Typically at least one chare object has
a message waiting for it in the message queue while
one or more other chare objects are waiting for mes-
sages to arrive. This leads to a natural overlap of com-
munication and computation as messages are moving
through the network while the physical cores are exe-
cuting messages that have already arrived and waiting
in the message queue to be executed.

Unlike other parallel programming models that use
threads, such as MPI [14], the main programming con-
structs in Charm++ are chare objects. The application
data is distributed amongst the member variables of
the chare objects. Entry methods, when invoked on the
chare objects, perform their specified operations on the
chare object’s local data and invoke other entry meth-
ods on other chare objects. The chare objects them-
selves are well encapsulated (chare objects do not ac-
cess member variables of other chare objects), lead-
ing to well defined working sets for entry methods.
Furthermore, chare objects can migrate between phys-
ical cores under the control of the runtime system for
the purposes of dynamic load balancing. More infor-
mation about the Charm++ programming model, the
Charm++ runtime system, or any of the features avail-
able to Charm++ programs, such as dynamic load bal-
ancing, fault tolerance, and automatic checkpointing,
is located on the Charm++ website [9].

2.2. The Cell processor

The Cell processor [20] is a multicore chip com-
posed of two types of processing cores. The first type
of processing core is called the Power Processing El-
ement (PPE). The PPE is similar to a standard com-
modity core in that it has access to both the network
and system memory. The second type of processing
element is the Synergistic Processing Element (SPE).
SPEs are specialized cores designed to perform large
amounts of computation. On a single Cell chip, typi-
cally there is a single PPE with four to eight SPEs serv-
ing as slaves to the PPE.

Unlike commodity multicore processors, where all
of the cores are peers, the SPE cores in the Cell proces-
sor are slaves to the PPE core. Further, the SPE can
only access data contained within their local stores.

Local stores are 256 KB scratchpad memories that
contain all of the data available to the SPEs, includ-
ing code, heap memory, and stack memory. The local
stores are completely under the control of the program-
mer and require the programmer to use direct mem-
ory accesses (DMAs) to transfer data between the lo-
cal store and system memory. The specialized nature
of the SPEs, which contain the great majority of the
processing power, make programming the Cell difficult
and time consuming. Because the SPEs are so special-
ized and because they are slaves to the PPE core on the
same chip, we refer to the SPEs as being accelerator
cores available to the PPE.

2.3. Larrabee

Larrabee [30] was originally designed to perform
graphics calculations. However, the architecture is
quite flexible and is likely to accelerate many HPC
computations. A host core may have one or more
Larrabee devices available to it which perform vari-
ous calculations on the host core’s behalf. That is, the
Larrabee device itself does not function as the sys-
tem’s host core, unlike the Cell where the PPE can
serve as a host core. Our programming model exten-
sions and runtime system modifications described in
this paper are also being adapted to support Larrabee
hardware. The goal is that the same code, when writ-
ten using our programming model extensions, will be
portable between standard homogeneous systems, het-
erogeneous systems, and systems that include Cell
processors and/or Larrabee devices.

3. Extensions to Charm++

We have extended both the Charm++ program-
ming model and the Charm++ runtime system to sup-
port heterogeneous systems with and without acceler-
ator cores. In this section, we discuss our modifica-
tions, starting with our extensions to the programming
model.

3.1. Programming Model Extensions

We have introduced three extensions to the
Charm++ programming model: accelerated entry
methods, accelerated blocks and a SIMD instruction
abstraction. By using these extensions, Charm++ pro-
grams can take advantage of supported accelerator
hardware while remaining portable between various
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hardware platforms that make use of supported accel-
erators. While these abstractions are capable of ab-
stracting away hardware differences, we have also pro-
vided macros that the programmer can use to iden-
tify which core type the code is being compiled for.
Thus, we do not inhibit programmers from including
architecture-specific code if they so desire (e.g., for
performance reasons). However, there is no require-
ment that the programmer include any architecture-
specific code (e.g., the molecular dynamics code we
present in Section 5 does not include any architecture-
specific code).

3.1.1. SIMD instruction abstraction
The SIMD instruction abstraction is a fairly straight-

forward abstraction of the commonly used SIMD in-
structions supported in modern hardware. Examples
of SIMD instruction extensions that currently exist in
modern processors include AltiVec/VMX, SSE, etc.
SIMD instructions perform operations on special reg-
isters, called vector or SIMD registers which contain
multiple data values. A typical size for a vector reg-
ister is 128 bits (i.e., 4 32-bit floating point values,
2 64-bit floating point values, 4 32-bit integers and so
on), though the size of a vector register is architec-
ture dependent. Unlike scalar instructions which per-
form only a single operation per clock cycle, vector in-
structions perform the same operation on each of the
values packed within the vector register in parallel.
The result is that the peak performance of the proces-

sor (operations completed per cycle) is increased by
a factor of the architecture’s vector size (e.g., if X
32-bit floating point values fit within the architecture’s
vector registers, then the peak throughput rate possi-
ble for 32-bit floating point operations is increased by
a factor of X , when using vector instructions com-
pared to scalar instructions). However, SIMD instruc-
tion support varies across architectures, making vector-
ized code non-portable.

The point of the SIMD instruction abstraction is to
make pieces of code portable between architectures
while still allowing the program to take advantage of
the underlying SIMD instructions supported by the
hardware. Naturally, the SIMD instruction abstraction
resembles the hardware vector instructions that it ab-
stracts. Therefore, the modifications that programmers
make to their code to use the SIMD abstraction resem-
ble the code changes they would have to make when
directly using any one of SEE, AltiVec/VMX, etc. The
various operations provided by the SIMD instruction
abstraction are mapped to the hardware’s underlying
SIMD instruction extensions. A generic C/C++ im-
plementation is used on unsupported architectures and
architectures without SIMD support in hardware.

Figure 1(b) illustrates how the SIMD instruction ab-
straction could be used to ‘vectorize’ or ‘SIMDize’
the code given in Fig. 1(a). This example is not
highly optimized (i.e., it does not use loop unrolling,
software pipelining, etc.), however, it demonstrates

1: float *A = <pointer to data>, *B = <pointer to data>;
2: int N = <length of both float arrays, A and B>;
3: float C = 0.0f;
4: for (int i = 0; i < N; i++)
5: C = A[i] * B[i]+ C;

(a)

1: float *A = <pointer to data>, *B = <pointer to data>;
2: int N = <length of both float arrays, A and B>;

2–1: vecf *Avec = (vecf*)A, *Bvec = (vecf*)B;
2–2: int Nvec = N/vecf_numElems;
2–3: vecf Cvec = vsetf(0.0f);
2–4: for (int ivec = 0; ivec < Nvec; ivec++)
2–5: Cvec = vmaddf(Avec[ivec], Bvec[ivec], Cvec);

3: float C = vreduceaddf(Cvec);
4: for (int i = Nvec * vecf_numElems; i < N; i++)
5: C = A[i] * B[i]+ C;

(b)

Fig. 1. SIMD instruction abstraction example. (a) Standard C++ code. (b) Using SIMD instruction abstraction.
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how the SIMD instruction abstraction is used. The
code in Fig. 1(a) uses scalar instructions to calcu-
late the dot product between two arrays of float-
ing point numbers of the same length, A and B.
A single loop (lines 4 and 5) iterates over arrays A
and B, multiplying the corresponding elements and
summing all the products across all iterations into
a scalar, C. Figure 1(b) performs the same calcula-
tion using two loops. Note that the added lines are
numbered 2-X and basically duplicate the original
code, but with modifications to use vector instruc-
tions. The first loop (lines 2–4 and 2–5) has been
vectorized. By using SIMD instructions, the vector-
ized loop performs vecf_numElems fused-multiply-add
operations each iteration. A fused-multiply-add oper-
ation multiplies Avec[ivec] and Bvec[ivec] and then
adds that result to Cvec. One iteration of the vector-
ized loop in Fig. 1(b) performs the same amount of
work as vecf_numElems iterations of the original loop
in Fig. 1(a). In other words, the code is able to more
efficiently make use of the processor’s functional units
and reach a higher percentage of the processor’s peak
performance by performing more flops per cycle (and
more flops per instruction). Once the vectorized loop
in Fig. 1(b) has completed, the Cvec variable contains
vecf_ numElems partial sums that are added together,
using vreduceaddf(). If the length of the A and B ar-
rays is not an integer multiple of the hardware’s vec-
tor size (i.e., if the condition ‘N % vecf_numElems !=
0’ evaluates to true), then there will be a few remain-
ing elements that the vectorized loop did not compute
(less than vecf_numElems). These remaining elements
will be processed by the second non-vectorized loop
(lines 4 and 5) with the final result being placed in the
scalar C.

While the SIMD instruction abstraction makes
pieces of vectorized code portable between cores with
differing SIMD instruction extensions, this is not
enough to abstract the differences between a host core
(e.g., the PPE core on a Cell processor or an x86-based
host core) and any available accelerator cores (e.g.,
an SPE on Cell or a Larrabee core). To further assist
the programmer, we have introduced accelerated entry
methods and accelerated blocks.

3.1.2. Accelerated entry methods and blocks
By design, accelerated entry methods are similar to

standard entry methods. However, unlike standard en-
try methods which never execute on an accelerator, ac-
celerated entry methods may or may not execute on a
supported accelerator, if one is available. By marking
an entry method as accelerated, the programmer is in-

dicating to the runtime system that the code is suitable
for executing on an accelerator core.

While accelerated entry methods are similar to stan-
dard entry methods, they have some notable differ-
ences. First, the entry method is marked with an accel
keyword. Second, in addition to the passed parameters
of standard entry methods, accelerated entry methods
have local parameters. Local parameters list the mem-
ber variables of the chare class that the accelerated en-
try method will require access to, along with the type
of access (read-only, read-write or write-only). Third,
the function body of the entry method is declared in
the interface file instead of the source code file. Inter-
face files are specific to Charm++ and are used by the
programmer to declare chare classes and entry meth-
ods (similar to header files in C++ being used to de-
clare classes and member functions). Function bodies
of accelerated entry methods are declared in the inter-
face files to give the Charm++ build tools, which are
currently not capable of manipulating the C++ source
code files directly, the ability to manipulate the accel-
erated entry method’s function body. Fourth, there is a
callback function associated with the accelerated entry
method. The callback function is executed on the host
core after the accelerated entry method has completed
executing on the accelerator core and any updates to
the chare object’s state (member variables) is reflected
in system memory. The callback function is one of the
member functions or entry methods on the same chare
object. Fifth, the function body of accelerated entry
methods are somewhat restricted in their functionality.
For example, other entry methods cannot be invoked
directly from the function body of an accelerated entry
method. Instead, any entry method invocations must be
moved to the associated callback function which will
be executed on the host core.

Figure 2(a) presents a simple entry method that per-
forms a dot product calculation on two incoming ar-
rays, A and B, both N elements in length. C and tar-
getChare are both member variables of the MyChare-
Class chare class. C will contain the calculated result
of the dot product and targetChare indicates which
chare object will receive the results. In this example,
only one chare object will be sent the result, but any
number of chare objects could be passed the data.

Figure 2(b) presents an accelerated version of the
standard entry method presented in Fig. 2(a). The key-
word accel has been used to indicate that the entry
method is accelerated. In addition to the passed para-
meters, the local parameter C is listed. In this case,
C is designated writeonly. The value of C will not be
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///// Interface File (Charm++ Specific) /////
entry dotProduct(int N, float A[N], float B[N]);

///// Source Code File /////
void MyChareClass::dotProduct(int N, float *A, float *B) {
C = 0.0f;
for (int i = 0; i < N; i++)
C = A[i] * B[i]+ C;

targetChare.sendResult(C);
}

(a)

///// Interface File (Charm++ Specific) /////
entry [accel] dotProduct(int N, float A[N], float B[N])

[writeonly : float C <impl_obj->C>] {
C = 0.0f;
for (int i = 0; i < N; i++)
C = A[i] * B[i]+ C;

} dotProduct_callback;

///// Source Code File /////
void MyChareClass::dotProduct_callback() {
targetChare.sendResult(C);

}

(b)

Fig. 2. Accelerated entry method example. (a) Standard entry method. (b) Accelerated entry method.

initially read from system memory before the acceler-
ated entry method starts. By default, local parameters
are read-write and the programmer may mark them as
read-only or write-only to minimize the amount of data
being moved between the host and accelerator cores.
The function body of the accelerated entry method will
be executed on an available accelerator, if an accelera-
tor is present. If no accelerator is present, the function
body will be executed on the host core. Once the func-
tion body of the accelerated entry method has com-
pleted, the callback function, dotProduct_callback(),
will be executed on the host core. In this example, the
invocation of the sendResult entry method (on chare
object targetChare and with passed parameter C) must
be moved to the body of the callback function since
accelerated entry methods cannot directly invoke other
entry methods within their own function bodies. The
result of the code in Fig. 2(b) is the same as in Fig. 2(a),
except that the dot product calculation in Fig. 2(b)
may be scheduled by the Charm++ runtime system on
any supported accelerator that is present. While it is
likely that accelerated entry methods will be executed
on available accelerator cores, the runtime system may
choose to execute some accelerated entry method invo-

cations on the host core(s) for the purposes of load bal-
ancing work between host and accelerator cores. While
it is already the case that accelerated entry methods are
portable between host and accelerator cores, the devel-
opment of an automatic and dynamic load balancing
scheme to decide what percentage of accelerated entry
method invocations should be executed on accelerator
cores versus host cores is still future work. Currently,
all accelerated entry methods are executed on acceler-
ator cores by default when an accelerator is present.

In addition to accelerated entry methods, we have
also introduced accelerated blocks. Accelerated blocks
are simply blocks of code that exist at the ‘global
scope’ on both the host and accelerator, providing ar-
eas where #defines and global functions can be de-
clared. For example, consider a case where two accel-
erated entry methods overlap in functionality. It would
be advantageous if the programmer could code the
shared functionality into a global function that can then
be called, perhaps with varying parameters, by multi-
ple accelerated entry methods. Figure 3 gives a sim-
ple example case, building on the previous dot product
example from Fig. 2. In this case, there are two ac-
celerated entry methods, doProduct_two and dotProd-
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///// Interface File (Charm++ Specific) /////
accelblock {
float do_dot_product(int N, float *A, float *B) {
float C = 0.0f;
for (int i = 0; i < N; i++)
C = A[i] * B[i]+ C;

return C;
}

}

entry [accel] dotProduct_two(int N, float A[N], float B[N])
[writeonly : float C <impl_obj->C>] {

C = do_dot_product(N, A, B);
} dotProduct_callback;

entry [accel] dotProduct_one(int N, float A[N])
[writeonly : float C <impl_obj->C>] {

C = do_dot_product(N, A, A);
} dotProduct_callback;

Fig. 3. An example of using a function declared in an accelerated block to avoid duplicating code in multiple accelerated entry methods.

uct_one that both make use of the ‘global function’
do_dot_product. Incidentally, both accelerated entry
methods use dotProduct_callback as their callback
functions, however, there is nothing requiring multiple
accelerated entry methods in the same chare class to
use the same callback function. Just as multiple mem-
ber functions of one or more classes may call a global
function in C++, our extensions also support multi-
ple accelerated entry methods calling a global function.
However, because the build tools need to understand
which global functions need to be present on the ac-
celerator device, those global functions need to be de-
clared in accelerated blocks (i.e., accelerated blocks in-
dicate the global pieces of code that should be included
on both the host and accelerator cores, just as marking
an entry method as accelerated indicates that it needs to
be available both on the host and the accelerator cores).

4. Heterogeneous execution

In addition to the programming model extensions
that we have introduced into Charm++, we have also
made modifications to the Charm++ runtime system
and build tools to support heterogeneous execution. In
a way, Charm++ programs can already execute on
heterogeneous clusters, as long as the host cores have
the same architecture (i.e., x86 cores with different
clock speeds, cache sizes and/or different generations
of the architecture). With the extensions discussed in

Section 3, this is also true of Cell processors (i.e.,
a mixture of PS3s and Cell blades). However, porting
the code between the various host cores in heteroge-
neous clusters of this sort is fairly trivial (not even re-
quiring a recompilation of the application code is most
cases). We would like to allow Charm++ programs to
support heterogeneous clusters in which the host cores
have different architectures (e.g., a mixture of x86 and
Cell processors) without requiring the programmer to
modify their application code.

Writing code for heterogeneous clusters in which
the host cores have differing architectures forces pro-
grammers to spend time handling mundane details,
such as endianness and pointer size differences. How-
ever, in the context of Charm++, the runtime system
can take advantage of the clearly defined communica-
tion boundaries between chare objects to automatically
handle several of these mundane details. Chare objects
act on data that they store locally and only pass data be-
tween one another through entry method invocations.
The structure of data that being passed between chare
objects during entry method invocations is clearly de-
fined in the parameter list to the entry method (includ-
ing data types and array lengths as specified in their
interface file declarations). Therefore, the structure of
the programming model (chare objects with remotely
invoked entry methods) already causes the program-
mer to provide the build tools and runtime system with
the information required to automatically modify ap-
plication data to account for architectural differences
between host cores.
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We have modified the Charm++ build tools and
runtime system to take advantage of the information
being provided by the application code. As entry meth-
ods are invoked, Pack-UnPack (PUP) routines [19] are
invoked for each of the passed parameters being passed
to the entry method. As the sending processor packs
the passed parameters into a message, the runtime sys-
tem adds information to the message that indicates how
the data is encoded. After the message is sent to the tar-
get processor, the runtime system uses this additional
information to modify the passed parameters (appli-
cation data) to match the target processor’s architec-
ture as the parameters are being unpacked from the
message. The net result is that the programmer is not
concerned if the invoking and invoked entry methods
happen to be executing on processors with differing ar-
chitectures. In writing their application code, program-
mers automatically provide data type and length infor-
mation to the runtime system as they define the passed
parameters for any entry method. With our runtime
system and build process modifications in place, no
modification to the application code is required to port
between homogeneous and heterogeneous clusters, al-
lowing the programmers to focus on their application
code.

5. Performance

In this section, we use a simple molecular dynam-
ics (MD) program to demonstrate the performance of
our programming model extensions and runtime sys-
tem modifications on a heterogeneous cluster, com-
posed of Xeon 5130 cores, IBM QS20 Cell blades, and
Sony Playstation 3s. We start by describing the MD
program (Section 5.1) and the heterogeneous cluster
(Section 5.2). Finally, we present results in Section 5.3.

5.1. Example MD program description

To demonstrate the performance of our program-
ming extensions and runtime system modifications, we
have written a simple molecular dynamics (MD) code.
The code is included in the Charm++ distribution.
The structure of the MD code is modeled after the
nonbonded electrostatic calculations in a production
molecular dynamics code called NAMD [6], in that it
is composed of Patch, PairCompute and SelfCompute
chare objects. The compute objects perform the force
calculations, one SelfCompute per Patch and one Pair-
Compute per pair of Patches. Once the compute objects

calculate the forces, the force values are passed back to
the Patch objects, which will then integrate (updating
particle positions and velocities) and initiate the next
simulation iteration by triggering the compute objects
yet again. Compared to NAMD, the MD code is greatly
simplified and has been implemented using accelerated
entry methods. Our MD code calculates forces by ap-
plying Coulomb’s Law using a non-cutoff algorithm,
which runs in O(N2) time. Even though our MD code
uses an O(N2) algorithm, we have chosen a problem
size (92,160 particles across 144 Patches) that creates
less than a factor of two more compute objects than
NAMD does for the ApoA1 benchmark system. The
number of compute objects in both NAMD and our
MD code is directly related to the amount of paral-
lelism in the simulations.

We have also extended the example MD code to in-
clude a static weight-based load balancer. The load bal-
ancer gives each chare object type a weight for each
type of host core (with QS20 PPEs being different
that PS3 PPEs). When the MD code is executed, on
a per-object-type-basis, the weights for the given ob-
ject type for each available core are summed. Then,
for each host core, the weight for that individual core
(for the given object type) is divided by the total sum
of weights of all the cores (for the given object type)
to calculate the fraction of chare objects of the given
type that host core should receive. For example, if there
are two host cores, a Xeon and a PS3 PPE, with equal
weights for a given object type, then all the objects of
that type will be equally divided between the Xeon and
the PS3 PPE. However, if the PS3’s weight were twice
that of the Xeon’s weight, then two thirds of the ob-
jects of that type will be placed on the PS3 PPE and
only one third will be assigned to the Xeon. Using this
weight-based static load balancer, we can control how
the chare objects, on a per-object-type-basis, are dis-
tributed across the various host cores.

5.2. Experimental setup

The performance data presented in Section 5.3 was
collected using a heterogeneous cluster comprised
of four IBM QS20 Cell Blades (QS20s), four Sony
Playstation 3s (PS3s), and one node with a dual-core
Intel Xeon 5130 (Xeon cores) connected via a Gigabit
Ethernet network. Each QS20 blade has 2 Cell proces-
sors running at a clock speed of 3.2 GHz, where each
Cell has 8 SPEs with a combined peak flop rate of
204.8 GFlop/s and one PPE with a peak flop rate of
25.6 GFlop/s. The PS3s have a single Cell proces-
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sor running at a clock speed of 3.2 GHz. The PS3
Cells have 6 SPEs with a combined peak flop rate of
153.6 GFlop/s and one PPE with a peak flop rate of
25.6 GFlop/s. Each Xeon core runs at a clock speed
of 2.0 GHz and has a peak flop rate of 16.0 GFlop/s.
The execution times of ten separate executions were
averaged to create each data point, unless stated oth-
erwise. We only use one Cell processor per QS20 (the
reason for this is related to the network performance
of the QS20 Cells in our cluster, as will be discuss in
Section 5.3).

5.3. Results

We have divided the results section into three sub-
sections. First, we establish a baseline measurement of
the MD program’s performance in Section 5.3.1 us-
ing only Cell processors (these results update previ-
ous results [22]). Then, in Section 5.3.2, we further
improve performance of the MD program by apply-
ing a static load balancer. While the load balancer im-
proves the program’s overall performance, it is less
effective as the program scales to a larger number
of Cell processors. However, somewhat surprisingly,
when Xeon cores are introduced into the hardware con-
figuration, the program scales better compared to a
Cell-only hardware configuration. Finally, to better un-
derstand why the MD code scales better with a mix-

ture of Xeon and Cell processors compared to using
Cell processors alone, we explore the effects of com-
munication on the MD program’s performance in Sec-
tion 5.3.3.

5.3.1. Results: Baseline (without load balancing)
To clearly understand how the load balancer effects

the performance, we first measure the performance
of the MD program without using the load balancer.
The first three plots in Fig. 4 demonstrate the perfor-
mance of the MD code executing on PS3s, QS20 Cell
blades, and a combination of PS3s and Cell blades
(Cell pairs), respectively. A Cell pair is one PS3 Cell
and one blade Cell combined (e.g., 4 Cell pairs repre-
sents four blade Cells and four PS3 Cells). Ideally, the
performance of the “QS20/PS3 Cell Pairs (no LDB)”
plot would be equal to the performance of the “PS3
Cells” and “QS20 Cells” plots summed together (the
“QS20 Cells + PS3 Cells” reference plot). However,
because the workload is not being load balanced and
the PS3s have a lower peak GFlop/s rate, the measured
performance more closely follows the performance of
the “PS3 Cell” plot multiplied by two (since the QS20
Cells are being underutilized).

To help give the reader some context by which to
judge the performance achieved in Fig. 4, we point
out that our previous work [22] showed that the max-
imum performance achievable by the PairCompute’s
force kernel running on a single SPE with an infinite

Fig. 4. Performance of the simple MD code executing on QS20 Cells, PS3 Cells and a combination of QS20 and PS3 Cells.
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local store is 27.7% of the SPE’s peak GFlop/s rate.
This upper bound is calculated by analyzing the perfor-
mance of the inner-most loop of the force calculation,
which performs the great majority of the work in the
MD program and has been optimized to have a high ra-
tio of flops per cycle. On an SPE, the inner-most loop
performs 124 flops in 56 cycles using 54 instructions
(average of 2.21 flops/cycle or 27.7% of the peak flop
rate). This upper-bound, however, is unachievable as
it assumes an infinite local store, ignores data move-
ment between the local store and system memory, and
any other overheads actually encountered by the code.
For the moment, we will only consider the SPEs be-
cause only the SPEs are doing physics calculations.
The physics calculations are the only type of calcula-
tions that are being included when calculating the to-
tal flops performed by the program. Other flops, such
as the summing of individual forces for a given par-
ticle (contributed by multiple compute objects execut-
ing on different SPEs) into a single force, are not be-
ing counted towards the total flops performed by the
MD program since these flops would not be required
in a serial version of the code. In the case of a sin-
gle QS20 Cell, the code reaches a measured rate of
50.1 GFlop/s. This is 88.4% of the 56.7 GFlop/s that
would be seen if the code were to reach the unachiev-
able upper bounds performance (204.8 GFlop/s peak
rate across all 8 SPEs multiplied by 27.7%). In the

case of 4 Cell pairs without load balancing, the code
is achieving 299.7 GFlop/s (20.9%) of the SPEs’ com-
bined peak performance or 75.5% of the unachievable
upper bounds performance (1433.6 GFlop/s across all
56 SPEs multiplied by 27.7% is 397.1 GFlop/s). If
we include the PPEs, which are not doing any of the
physics calculations, the single QS20 Cell case reaches
21.7% of the QS20 Cell’s peak GFlop/s. The 4 Cell
pair case reaches 18.3% of the total peak GFlop/s
summed across all 64 cores (8 PPEs and 56 SPEs).
Note that 18.4% of the total peak means that the MD
program is performing an average of 1.46 flops per
core per cycle.

5.3.2. Results: With load balancing
The performance of the MD program is further im-

proved by applying the static load balancer discussed
in Section 5.1. Figure 5 presents the performance
achieved by the MD code after static load balancing
has been applied. Reference plots and the non-load
balanced “QS20/PS3 Cell Pairs (no LDB)” plot from
Fig. 4 have been included in Fig. 5 for the sake of
comparison. In the “QS20/PS3 Cell Pairs (Max LDB)”
plot, we use the weight-based static load balancer to
distribute the workload across the QS20 Cells and the
PS3 Cells based on various factors. The weights were
chosen by hand. Because the PairCompute objects rep-
resent the great majority of the workload, we initially
chose to load balance only the PairCompute objects

Fig. 5. Performance of the simple MD code executing on combinations of QS20 Cells, PS3 Cells and Xeon 5130 cores.
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based on peak flop rates (LDB Method 1). While this
helped at lower processor counts, it was less effec-
tive as the processor count increased. Then, we ad-
ditionally load balanced the Patch and SelfCompute
objects, thinking that second order effects were caus-
ing the decrease in the load balancer’s effectiveness as
the processor count increased (LDB Method 2). How-
ever, this method also showed a decreased effective-
ness at four QS20/PS3 Cell pairs. We further modified
the weights related to all three object types so that each
object type was weighed differently between QS20s
and PS3s, trying many individual weight combinations
(e.g., most Patch objects are placed on PS3 Cells while
most PairCompute objects are placed on QS20 Cells)
(LDB Method 3). At each point in the “QS20/PS3
Cell Pairs (Max LDB)” plot, we use the load balanc-
ing method that resulted in the best performance for
the given number of QS20/PS3 pairs (i.e., we var-
ied the load balancing method, weights used, and so
on). Using 4 Cell pairs, the MD program achieved
303.9 GFlop/s (only 4.2 GFlop/s greater than the non-
load balanced performance). 303.9 GFlop/s represents
18.55% of the total peak performance (including all
SPEs and PPEs).

Before discussing why the load balancer does not
perform as well as the number of QS20/PS3 pairs in-
creases, regardless of the load balancing method or
choice of weights, we first describe the “QS20/PS3
Cell Pairs + 2 Xeons (LDB)” plot in Fig. 5 which does
not suffer from the same scaling issue. In this plot, we
add two Xeon cores to the hardware configuration at
each point (i.e., X Cell pairs means X blade Cells, X
PS3 Cells and 2 Xeon cores). LDB Method 3 is used
for this configuration to place the majority of the Patch
objects on the Xeons and the majority of the com-
pute objects on the Cells. This plot closely follows the
“QS20 Cells + PS3 Cells + 2 Xeons” reference plot
(which adds the measured performance values of the
“QS20 Cells” and “PS3 Cells” plots in Fig. 4 with
the measured performance of 10.09 GFlop/s on two
Xeon cores). Using 4 Cell pairs and 2 Xeon cores, the
MD code achieves 331.1 GFlop/s (19.82% of the to-
tal peak performance including all SPE, PPE and Xeon
cores). Even though the great majority of the peak per-
formance of this hardware configuration is being pro-
vided by the Cell processors (1638.4 GFlop/s from
Cell processors, compared to the 32.0 GFlop/s pro-
vided by the Xeon cores), the presence of the Xeon
cores has a significant effect on the MD code’s scal-
ing performance. Adding the two Xeon cores increases
the performance of the MD program by 27.2 GFlop/s

(85% of the Xeon cores’ combined peak flop rate) over
the load balanced 4 Cell pair case, even though the two
additional Xeon cores are not actually performing all
of this additional work (as discussed below).

5.3.3. Results: Effects of communication
We want to understand why the simple MD program

does not scale as well when the Xeon cores are not
present, despite our attempts to load balance the work-
load in Section 5.3.2. Towards this end, we used the
Projections [21] performance visualization tool, to an-
alyze the performance details of the 4 Cell pair case
from the “QS20/PS3 Cell Pairs + 2 Xeon (LDB)” plot
in Fig. 5 (4 QS20 Cells, 4 PS3 Cells, 2 Xeon cores).
What we noticed was that the message send times for
the QS20 Cell Blades in our cluster were significantly
greater than message send times for either the PS3
Cells or the Xeons cores. The message send times are
presented in Table 1. There are two things to note about
the numbers in Table 1. First, the time values include
all overhead costs associated with invoking an entry
method, including processor lookup times, parameter
serialization, network message send time, and so on.
Second, the exact same binary was used for both the
PS3 and QS20 Cells.

With this communication difference in mind, we
simplify the experiment to better understand how this
communication difference is affecting the performance
of the MD program. To simplify our experiment, we
remove the PS3s from our configuration and limit our-
selves to one additional Xeon core. Figure 6(a) shows
how the MD program scales from one to four QS20
Cells with (“+1 Xeon”) and without (“+0 Xeons”) an
additional Xeon core. Since we are only using QS20

Table 1

Average send times (entry method invocations) when passing a force
data message (approximately 7.7 KB) over the network

PE PE type Total time (ms) No. samples Avg. time (µs)

0 x86 279 1664 168

1 x86 336 1696 198

2 blade 1488 4256 350

3 PS3 967 4480 216

4 blade 2931 4256 689

5 PS3 1078 4480 241

6 blade 2479 4352 570

7 PS3 991 4480 221

8 blade 2705 4320 626

9 PS3 995 4480 222

Note: These times include all associated overheads, such as target
processor lookup and serialization of data into the message payload
(1 run per sample set).
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(a) (b)

Fig. 6. Scaling of the MD code on QS20 Cells, with and without an additional Xeon core.

Cells in the “+0 Xeons” plot, the weight values used
by the load balancer are inconsequential since all chare
objects, regardless of type, will be evenly distributed
across the nodes. When the single Xeon is included,
the weights simply control how many objects of each
type are placed on the Xeon and the remaining objects
are evenly distributed across the QS20 Cells. In partic-
ular, because the QS20 Cells have long message send
times as shown in Table 1, we have set the load bal-
ancer weights so that the great majority of the Patch
objects (more communication intensive) are placed on
the Xeons while most of the compute objects (more
computation intensive) are placed on the QS20 Cells.
As the figure shows, the configuration that includes the
Xeon core not only exhibits an increase in performance
for any number of QS20 Cells, but also scales better.
In other words, the simplified hardware configuration
(only QS20s) exhibits the same improvement in scal-
ing when a Xeon core is included, as was seen in the
more complicated hardware configurations of Fig. 5
that used both QS20 and PS3 Cells. To illustrate the
difference more clearly, the “Observed for +1 Xeon”
plot in Fig. 6(b) shows the difference between the two
lines in Fig. 6(a). Because we know how many ob-
jects of each type are being placed on the Xeon and
because the work done by each object type is constant
per timestep (due to the regular nature of the all-to-all
algorithm), we can precisely calculate the number of
GFlops that the Xeon is performing (the “Expected for
+1 Xeon” plot in Fig. 6(b)). It is not surprising that
the expected increase in GFlop/s presented in Fig. 6(b)
is less than the observed GFlop/s rate of the MD pro-
gram executing on a single Xeon core (5.07 GFlop/s)
because we are increasing the ratio of communication

intensive Patch objects to computation intensive com-
pute objects. That is, the ratio of PairCompute objects
to Patch objects on the Xeon core varies depending
on the hardware configuration (72.5:1 when using only
a single Xeon, slightly less than 3:1 when using one
QS20 Cell and one Xeon, and approximately 1:1 when
using four QS20 Cells and one Xeon). The Xeon core
is clearly not providing all of the additional GFlop/s
observed. Instead, most of the additional GFlop/s are
coming from the QS20 Cells themselves.

We use Projections to sum the communication time
spent across all of the host cores. We are forced to use
a single run with a smaller number of total timesteps
because of the large amount of timing output we are
having Projections create so we can isolate communi-
cation time. In the four Cell case, adding a single Xeon
core decreases the amount of time the QS20 Cells
spend performing communication by 4.5 processor-
seconds (4.6% of the total processor-seconds of the
QS20 Cells). When the Xeon core is present, the 4
QS20 Cells are spending a higher fraction of their time
performing force calculations and providing the ma-
jority of the 13.99 GFlop/s performance increase seen
in Fig. 6(a). In fact, we can calculate that the Xeon
core is averaging 1.55 GFlop/s of actual work, and
therefore, the QS20 Cells are providing an additional
12.44 GFlop/s (combined). This simplified experiment
strongly indicates that the presence of the Xeon cores
is causing the improved scaling performance of the
“QS20/PS3 Cell Pairs + 2 Xeons (LDB)” plot com-
pared to the “QS20/PS3 Cell Pairs (Max LDB)” plot
in Fig. 5, even though the conditions are not identical
(i.e., the PS3 Cells differ from the QS20 Cells).

Finally, we would like to explicitly point out that we
demonstrated the MD program executing on 66 cores
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of three different types (2 Xeons, 8 PPEs and 56 SPEs
used in the 4 Cell pair case of the “QS20/PS3 Cell
Pairs+2 Xeon (LDB)” plot in Fig. 5). Moreover, there
are three different ISAs in use, three different SIMD
instruction extensions in use (SSE, AltiVec/VMX and
the SPE’s SIMD extensions), and two different mem-
ory structures in use (PPEs and Xeons use cache hierar-
chies, while the SPEs use scratchpad memories). How-
ever, by using our programming model extensions and
runtime system modifications, there is no architecture-
specific code in the program, nor is there any applica-
tion code that corrects for architecture differences be-
tween the cores.

5.3.4. Results: Summary
To summarize our results, we first showed some

baseline results of the MD code scaling from 1 to 4 Cell
pairs in Section 5.3.1 without using load balancing. In
Section 5.3.2, we added a load balancer to the MD
code, increasing the MD code’s performance. How-
ever, as the number of Cell pairs increased, the effec-
tiveness of the load balancer was diminished. By the
time the program was scaled to 4 Cell pairs (64 to-
tal cores), the added performance from load balancing
was minimal. We further added two Xeon cores to the
hardware configurations. When the Xeons were used
in conjunction with the load balancer, the scaling per-
formance improved. For example, in the case of 4 Cell
pairs, the addition of the Xeon cores only represent an
increase of 1.95% in the peak performance (increased
from 1638.4 GFlop/s to 1670.4 GFlop/s), while the
measured performance of the MD code increases by
8.95% (from 303.9 GFlop/s to 331.1 GFlop/s). To un-
derstand why the mixture of Xeon and Cell processors
scales better than Cell processors alone, we simplify
our experiments in Section 5.3.3. The simplified exper-
iments demonstrate that the Xeon cores exhibit better
communication performance, and thus, the workload
can be balanced across the cores in a way that most ef-
fectively maps the type of work being performed to the
type of processor best suited for that type of work (i.e.,
communication heavy Patch objects on Xeon cores and
computation heavy compute objects on Cell proces-
sors). Finally, we demonstrated heterogeneous execu-
tion of the MD code on a total of 66 cores (2 Xeon
cores, 8 PPE cores and 56 SPE cores), using 3 dif-
ferent node types (Xeon-based node, Playstation 3s,
and QS20 Cell Blades), 3 different ISAs, 3 different
SIMD instruction extensions, and 2 different types of
memory hierarchies (cache hierarchies and scratchpad
memories). Despite the heterogeneous nature of the
hardware configuration, the MD code does not include

any architecture-specific code and remains portable
to other clusters by making use of our programming
model extensions and runtime system modifications.

6. Related work

Many programming models focus on assisting the
programmer in writing code for a single node. That
is, a single host processor with one or more cores
and one or more accelerators that are directly at-
tached. Some models that fall into this category in-
clude OpenCL [17], Ct [15], CUDA [26], CellSs [5],
Mercury’s Multicore Framework [8], RapidMind [24]
and Sequoia [13]. While several of these models tar-
get single nodes that are heterogeneous, our work dif-
fers in that it specifically targets heterogeneous clus-
ters, where the individual nodes are not only internally
heterogeneous, but are architecturally different from
one another (i.e., an x86-based node and a Cell-based
node). Further, in our work, the same programming
model and parallel constructs are used to make use of
all of the cores, host or accelerator. These program-
ming models require a separate programming model,
such as MPI [14] or OS TCP/UDP sockets, to commu-
nicate data and express parallelism between multiple
nodes (i.e., network communication on a distributed
memory cluster).

Some existing parallel programming models have
been extended to support accelerators and heteroge-
neous computing. Two approaches, Open MPI [16] and
HeteroMPI [23], extend the MPI programming model
to support heterogeneity between host cores. Unlike
our work, they do not directly address the presence of
accelerators or architectural differences such as differ-
ent SIMD instruction extensions supported by hard-
ware. However, we do not support network hetero-
geneity, which is supported by Open MPI. Another ap-
proach, MPI microtasks [27], uses microtasks to sup-
port accelerators, however, it does not directly address
heterogeneity between host cores, as we do in our
work. The OpenMP [10] programming model is used
by the XLC single source compiler [12] to compile par-
allel programs for Cell. Once again, this approach does
not directly support heterogeneous clusters.

Yet other task-based parallel programming models
have been created to address heterogeneous systems
that may have accelerators present. In HMPP [11],
the programmer creates codelets (tasks) which are ex-
ecuted in parallel on the available processing cores,
host or accelerator. However, HMPP does not directly
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support communication between multiple nodes in a
cluster, requiring the programmer to use another pro-
gramming model, such as MPI, for host-to-host com-
munication. StarPU [1] also makes use of codelets.
However, the programmer is required to write a ver-
sion of the codelet for each core type, forcing the pro-
grammer to duplicate functionality. In our approach,
an accelerated entry method is written once and exe-
cuted on any supported core type, host or accelerator.
Like our approach, where we mark some entry meth-
ods (member functions) as accelerated, in StarSs [2,
28] some functions are marked as tasks which may
be executed on an available accelerator. However, the
tasks in StarSs are arranged into a task hierarchy, re-
quiring that all the child tasks complete before a par-
ent task can complete. In our approach, the chare ob-
jects, and their related entry methods, are peers to one
another. However, HMPP, StarPU and StarSs all sup-
port CUDA-based GPUs. We currently do not support
CUDA-based GPUs using accelerated entry methods.
Instead, a different approach [31] is currently being
used to make use of CUDA-based GPUs in Charm++.
Unlike HMPP, StarPU and StarSs, we do provide a
SIMD instruction abstraction, allowing SIMDized por-
tions of code to be portable between multiple core
types, including both host cores and accelerator cores.

Saletore et al. demonstrated execution of CHARM
(a predecessor to Charm++) programs executing on a
heterogeneous cluster composed of a mixture of Sun
Sparc, HP-PA and IBM RS/6000 workstations [29].
Their work focuses mainly on using dynamic load bal-
ancing techniques and introduces an ‘IOChare’ con-
struct to allow parallel programs to effectively utilize
a cluster of workstations. Our work differs from their
work in multiple ways. For example, we demonstrate
execution of a Charm++ program on a mixture of
processor architectures that include both big and little
endian data encodings. Our runtime system modifica-
tions allow the runtime system to automatically modify
application data at runtime to account for differences
in those architectures (endianness, data type sizes and
so on) as the data passes between the various process-
ing cores. We additionally address the presence of ac-
celerators (i.e., not all processing cores are peers to one
another). For example, our programming model exten-
sions use the SPEs on a Cell processor without requir-
ing the programmer to explicitly issue direct memory
accesses, manage each SPE’s local store and so on.
Our work also specifically addresses the presence of
hardware support for SIMD instructions. Our SIMD
instruction abstraction allows a programmer to write

portable code that makes use of the various SIMD in-
structions available across all of the processing core
types.

7. Conclusion

Our work has enabled Charm++ to be used as the
programming model for all of the processing cores in
a heterogeneous cluster and/or systems that include
accelerators. The programmer writes their application
code once, using a single programming model and
making use of our programming model extensions pre-
sented in Section 3. The underlying runtime system
maps the execution of the program across the available
host and accelerator cores, making use of core specific
features such as hardware support for SIMD instruc-
tions, scratchpad memories, DMA transfers and so on.
This eases programmer burden by allowing them to use
a single programming model to write their application
code and abstracts away many of the hardware details
normally associated with programming heterogeneous
clusters. Our extensions allow the application code to
remain portable between homogeneous systems, sys-
tems that include accelerators, and heterogeneous sys-
tems that may include accelerators. We have demon-
strated our extensions and modifications by executing
an example molecular dynamics (MD) code written us-
ing our programming model extensions on a hetero-
geneous cluster comprised of IBM QS20 Cell Blades,
Sony Playstation 3s and Xeon 5130 cores. The MD
program was able to achieve 331.1 GFlop/s, which is
19.82% of the peak flop rate.

Currently, our programming model extensions sup-
port Cell processors (treating SPEs as accelerators
to PPEs). We are currently implementing support for
Larrabee devices in Charm++ using the same pro-
gramming model extensions presented here. However,
because the implementation is not complete, we leave
Larrabee support as future work. We leave the imple-
mentation of a dynamic load balancer as future work.
However, our experience with the static load balancer
used in this work has given us insight into the types
of measurements that the Charm++ runtime system
should make and pass along to a future dynamic load
balancer.
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