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We developed the quantative structure-property relationships (QSPRs) models to correlate the molecular structures of surfactant,
cosurfactant, oil, and drug with the solubility of poorly water-soluble 2-aryl propionic acid nonsteroidal anti-inflammatory
drugs (2-APA-NSAIDs) in self-emulsifying drug delivery systems (SEDDSs). The compositions were encoded with electronic,
geometrical, topological, and quantum chemical descriptors. To obtain reliable predictions, we used multiple linear regression
(MLR) and artificial neural network (ANN) methods for model development. The obtained equations were validated using a test
set of 42 formulations and showed a great predictive power, and linear models were found to be better than nonlinear ones. The
obtained QSPR models would greatly facilitate fast screening for the optimal formulations of SEDDS at the early stage of drug

development and minimize experimental effort.

1. Introduction

Low water solubility of many drug candidates has been a big
challenge to pharmaceutical industry since the oral delivery
of these drugs may lead to low bioavailability high intra- and
intersubject variability [1]. Several formulation approaches
to improve solubility of these drugs have been investigated
including cyclodextrins [2], micelles [3], nanoparticles [4],
solid dispersions [5], and self-emulsifying drug delivery sys-
tems (SEDDSs). SEDDS are isotropic mixtures of an oil, sur-
factant, co-surfactant and drug that form O/W emulsion or
microemulsion when introduced into aqueous phases under
gentle agitation [6-8]. They can enhance the oral bioavail-
ability of hydrophobic drugs, which are attractive carriers
for poorly water-soluble drugs [8—11]. Dissolution in SEDDS
and no precipitation in the gastrointestinal tract are some
of the prerequisites for the efficient intestinal absorption of
drugs [12]. The drug solubility in SEDDS is a key parameter
to select optimal formulations [13].

Pharmaceutical preparation is a complicated procedure
including preformulation studies, formulation screening,
technology optimization, and stability studies. Among them,
screening for the optimum formulation is a crucial step. Usu-
ally, the first stage is to select suitable excipients and prepa-
ration technology through preliminary experiments, and
then to screen for the optimized formulation using single-
factor design, orthogonal design, or uniform design. These
experimental processes are expensive and time consuming.
Therefore, estimating properties using theoretical modeling
is an efficient way for formulation screening. Quantitative
structure-property relationships (QSPRs) are the process by
which chemical structure is quantitatively correlated with its
physical, chemical, or biological property. It has been widely
used in pharmaceutical research [14-16] including pre-
dicting the biological activity [17], absorption [18, 19],
distribution [20, 21], metabolism, excretion [22], and chem-
ical reactivity-related toxicity [23] (ADMET) properties of
drugs. However, QSPR is rarely applied in the pharmaceutics
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FIGURE 1: Molecular structures of model drugs.
TasBLE 1: The selected SEDDS.
Formulation Oil Surfactant Cosurfactant
1 Oleic acid Tween20 Ethanol
2 IPM Tween40 Ethylene glycol monoethyl ether
3 Ethyl oleate Tween80 1, 2-propanol
4 Methyl laurate Tween20 n-Butanol
5 Butyl oleate Tween40 Isopropyl alcohol
6 Methyl oleate Tween80 Diethylene glycol monoethyl ether
7 Butyl oleate Tween20 Isopropyl alcohol
8 Ethyl oleate Tween40 Ethanol

[24-26] since numerous factors might affect the preparation
process. Therefore, it is a good attempt to introduce QSPR
into pharmaceutics, establishing the relationship between
the property of formulation and the chemical structure of
compositions by mathematical methods, which will decrease
the experimental time.

The aim of this study was to develop available QSPR
models for predicting the drug solubility in SEDDS. We
investigated a set of poorly water-soluble 2-aryl propi-
onic acid nonsteroidal anti-inflammatory drugs (2-APA-
NSAIDs). We then applied the model such obtained to
understand the solubility mechanism of drug in SEDDS as
well as to fast screen for the optimized formulations.

2. Materials and Methods

2.1. Materials. Ketoprofen was provided by Southwest Phar-
maceuticals Co., Ltd. (Chongqing, China). Flurbiprofen and
loxoprofen were purchased from Wuhan Yuancheng Tech-
nology Development Co., Ltd. (Wuhan, China). Ibuprofen
was a gift from Hubei Biocause Pharmaceutical Co., Ltd.
(Hubei, China). Naproxen was obtained from Chengdu Jin-
hua Pharmaceutical Co., Ltd. (Chengdu, China). Carprofen
was purchased from Shandong Fangxing Technology Devel-
opment Co., Ltd. (Shandong, China). All other agents were
of analytical grade.

2.2. Data Collection

2.2.1. Preparation Self-Emulsifying Mixtures. SEDDSs con-
sisted of surfactant, cosurfactant oil, and drug. Surfactants
employed were Tween20, Tween40, and Tween80. Oil and
cosurfactant selected in the present study had definite, simple
structures and commonly used in pharmaceutics. Table 1
shows the composition of the formulations. The weight
ratio of surfactant to cosurfactant (Km) varied as 1:2,1:1,
2:1,3:1,and 4: 1. The self-emulsifying mixtures containing
oil, surfactant and cosurfactant, were prepared at a specific
ratio of oil to surfactant/cosurfactant mixture (Smix), 5:95,
10:90, and 15:85 (w/w). Each component was accurately
weighed in the same screw-cap tubes and mixed by gentle
stirring and vortex-mixing. Model drugs were hydropho-
bic 2-aryl propionic acid NSAIDs including ketoprofen,
ibuprofen, flurbiprofen, naproxen, loxoprofen, and car-
profen. The structures of these drugs are shown in Figure 1.

2.2.2. Solubility Studies. In the study, 0.1 g self-emulsifying
mixture was diluted with distilled water to 5ml in a sealed
tube and gently mixed by a Vortex mixture (Ika, Germany).
An excess amount of drugs was added to the formed mi-
croemulsions or emulsions. The blend was mixed and left
to equilibrate at 37°C for 48h in a water bath and then
centrifuged at 6,000 rpm for 10 min. The supernatant was



Journal of Nanomaterials

TaBLE 2: Values of important descriptors.

Component Dipole MaxQ~ MaxQ' ABSQ Erumo Euomo LogD  Volume Wiener index
Ketoprofen 4.6178 —0.1264 0.7765 9.4418 0.07479 —0.33786 1.906 167.38 724
Ibuprofen 1.9316 —-0.0067 0.7825 8.4045 0.13177 —0.32242 2.150 152.63 404
Flurbiprofen 3.2118 —-0.0234 0.7838 8.3569  0.09569 —0.28772 1.394 155.37 530
Naproxen 0.3521 —-0.7313 0.7820 8.2233  0.09868 —0.31306 3.748 155.72 626
Loxoprofen 1.7058 —0.3306 0.3272 3.6074  0.27676  —0.27805 3.003 168.75 672
Carprofen 4.7591 —1.0815 0.7836 9.0201 0.08655 —0.29753 2.233 178.7 689
Tween HS 7.0424 —-0.5202 0.6213 38.9571 0.17706 —0.40723 —4.492  749.79 44308
Tween20Ls 0.0547 —0.2885 0.1508 7.0901 0.22476  —0.41273 5.389 137.54 220
Tween40Ls 0.0546  —0.2885 0.1507 9.4410  0.22384 —0.40605 7.214 183.5 560
Tween80Ls 0.2610 —-0.1646 0.1666 10.3074 0.18531 —0.33536 7.682 209.91 816
Oleic acid 2.0597 -0.1638 0.7540 12.8007 0.16604 —0.33764  5.412 231.18 1313
Ethyl oleate 2.2099 —-0.1640 0.7924 13.7649 0.17516 —0.33703 7.435 257.24 1720
IPM 2.2730 —0.2715 0.8086 12.7784 0.17604 —0.40761 6.432 227.4 1072
Methyl laurate 2.3148 —0.1217 0.7871 9.8417  0.17346 —0.4139 4.793 173.9 538
Methyl oleate 2.0349 -0.1218 0.7872 13.0583 0.17314 —0.33705 7.086 243.18 1506
Butyl oleate 2.2902 —-0.1522  0.7658 14.935 0.17492 —-0.33731 8.415 279.88 2215
Ethanol 2.1046  —0.4459 0.4001 2.4001 0.22361 —0.43772 —0.010 38.75 4
1, 2-propanol 3.1810 —0.4491 0.4246 3.9863 0.2109 —0.42825 —0.520 54.87 18
Ethylene glycol monoethyl ether ~ 0.4875 —0.4526  0.4074  3.9245 0.21824 —-0.4152 —-0.141 6791 35
n-Butanol 2.0417 -0.2890  0.3996 3.6342  0.22567 —0.43685 0.970 60.36 20
Isopropyl alcohol 2.0903 —-0.4291 0.3965 3.2827  0.21465 —0.43207  0.368 49.39 9
Diethylene glycol monoethyl ether 2.0613  —0.4526  0.4079 5.4420  0.21531 —-0.41581 —0.272 98.09 120

filtered through a filter membrane (0.22 ym), diluted with
methanol to a suitable concentration range, and quantified
by HPLC (see Section 2.2.3).

2.2.3. HPLC Analysis of the Model Drugs. The HPLC analysis
was performed with a Waters pump 515 and a UV-VIS
detector 2487. The column was a Diamosil C18 100 mm X
4.6 mm column (Dikama, China). The mobile phase con-
sisted of a mixture of methanol, water, and phosphoric acid
(20:80:0.1, v/v/v). The UV detector wavelengths were set
at 254nm (ketoprofen), 222 nm (ibuprofen), 247 nm (flur-
biprofen), 273 nm (naproxen), 222 nm (loxoprofen), 300 nm
(carprofen), respectively. The elution was carried out at a
flow rate of 1.0 mL/min, and the temperature of column oven
(PH-730A, Phenomen, China) was set to 30°C. Each mea-
surement was repeated for three times.

2.3. Descriptor Generation and Variable Selection. Molecular
descriptors are commonly used to represent the structural
and physicochemical features of compositions, so that they
can be used in a QSPR model. Thus, to establish a QSPR
model, Ab initio quantum mechanical calculations were first
performed for relevant molecular descriptors using Gaussian
03 software package (Gaussian 03, Gaussian, Inc., Pittsburgh,
2003.). Geometric optimization and quantum chemical,
electrostatic parameters were calculated at RHF/6-31G*
level. Quantum chemical parameters including the dipole
moment (Dipole), the energy of the highest occupied molec-
ular orbital (Epomo), and the lowest unoccupied molecular

orbital (Erymo) as well as electrostatic parameters includ-
ing MaxQ~, MaxQ*, ABSQ, and ABSQon were obtained.
In addition, Discovery Studio 1.7 package (Accelrys Inc.,
USA) was used to calculate parameters such as molecular
volume, polar surface area, wiener index, logD, and logP.
Constitutional parameters including surfactant ratio (SR),
cosurfactant ratio (CoSR), and oil ratio (OR) were also
calculated. Table 2 shows the values of important descriptors.

Nonionic surfactants, Tween20, Tween40, and Tween80
belong to the polyoxyethylene sorbitan family. They have
similar head structures, and the difference observed in
behavior is mainly due to different hydrophobic portions
[27]. So each surfactant structure was cleaved into two parts:
the same hydrophilic segment (HS) and a different lipophilic
segment (LS); and their descriptors were calculated sepa-
rately. The cleavage method was performed as in Taha et al.
[26].

The role of cosurfactant in the formation of SEDDS is
to increase the interfacial flexibility by extending into the
surfactant interfacial monolayer and consequently creating
void space among the surfactant molecules [13]. Both surfac-
tant and cosurfactant in SEDDS are used to reduce the inter-
facial tension. So for simplification purpose, we combined
the descriptors of surfactant and cosurfactant together. The
overall descriptor was calculated as follows:

Descriptor of Smix = Rs X Ds+ Rcos X Dcos, (1)
where Rs is the ratio (w/w) of surfactant; Ds is the molecular

descriptor of lipophilic segment of surfactant. Rcos is the
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TaBLE 3: Equations of statistical parameters.

Parameter Equation

MSE MSE = (1/1) Sy (Ypred — Yexp)”

RMSEP RMSEP = [(1/m) 3, (pea = Jexp)']

05

RSEP  RSEP (%) = 100 % [Z; (Vpred = Yerp)*/ Zizy (Yerp)']
MAE MAE (%) = (100/1) X 371 | ¥pred — Yexp|

Ypred and yexp are predicted and experimental solubility values, respectively;
n is the number of samples in the data set.

ratio (w/w) of cosurfactant; Dcos is the molecular descriptor
of cosurfactant.

The descriptors were selected to make a stable and inter-
pretable model. A three-stage manual descriptor selection
process was performed: (1) descriptors with too many zero
values or the same values (descriptors of Tween HS) were
eliminated; (2) descriptors with very small standard devia-
tion values (<0.5%) were removed; (3) a particular descrip-
tor was chosen to represent a group of highly correlated
variables (correlation coefficients >0.80), thereby minimiz-
ing the redundancy and overlapping of the descriptors. Since
the ranges of descriptor values influence the quality of the
models generated, we normalized the rest descriptor values
to arange of 0 to 1 [28].

2.4. QSPR Modeling. To begin the model development
process, the solubility data of drugs in formula 1-6 were split
into a training set (80% of the total number of formulations)
and an internal validation set (20% of the total number
of formulations) randomly. The solubility data of drugs in
formula 7-8 were used as a predicting set. The selected
descriptors in Section 2.3 were regressed against the solubil-
ity of the training set by means of multiple linear regres-
sion (MLR). The best equations were determined based
on the highest squared multiple correlation coefficient (R?),
Fisher ration (F), and lowest standard error (s).

Artificial neural network (ANN) is a proper method for
modeling nonlinear relationship [29]. It was also attempted
to develop the better predictive models. All networks used
in this study were three-layered back-propagation (BP) type.
The input data included the descriptors selected in linear
models, and the output neuron referred to the solubility
values of drugs in SEDDS. Sigmoid transfer functions were
used in all layers. The number of neurons in the hidden layer
was adjusted to optimize the network, and the best model
gave the highest correlation coefficient (r) and the lowest
MSE. The internal validation set (18 formulations) was used
to prevent the overfitting.

2.5. Statistical Analysis. To evaluate the predictive ability of
QSPR models, the statistical parameters of mean square error
(MSE), root mean square error of prediction (RMSEP), the
RMSE, the relative standard error of prediction (RSEP), and
mean absolute error (MAE) [30] were used. Table 3 shows
these equations.

Journal of Nanomaterials

3. Results and Discussion

3.1. QSPR Models. Table 4 shows the solubility of 2-APA-
NSAIDs in various formulations.

3.1.1. MLR. The best MLR models were given as follows:

Sketoprofen = 1.073(0.068) + 1.176(+=0.073)SR
+0.316(%0.031)OR — 0.165(+0.046)
X O-ABSQ — 0.511(=+.048)O-Erumo
+0.125(=+0.085)S-Volume
+0.176(+0.072)S-Dipole,
1.346(+0.112) + 1.578(%0.120)SR
+0.935(+0.051)OR — 0.170(+0.076)
x O-ABSQ — 0.056(+0.078)O-Erumo

Sibuprofen =

+0.242(=+0.140)S-Volume
+0.329(+0.118)S-Dipole,
Stlurbiprofen = 0.685(+£0.057) +0.641(£0.061)SR
+0.28(%0.026)OR + 0.277(%0.039)
X O-ABSQ — 0.063(+0.040)O-Erymo
+0.364(%0.071)S-Volume
—0.153(£0.060)S-Dipole,
Snaproxen = 0.239(£0.017) +0.222(+0.016)SR (2)
+0.030(+0.009)OR + 0.024(+0.010)
x O-Dipole + 0.178(+0.018)O-ABSQ
—0.039(+0.016)O-MaxQ™ + 0.077
X (+0.032)S-Volume + 0.097
X (£0.032)S-MaxQ™,
Stoxoprofen = 1.452(+0.103) +0.996(+0.110)SR
+0.285(+0.047)OR + 0.070(+0.070)
X O-ABSQ — 0.222(+0.071)O-Erymo
+0.059(+0.128)S-Volume
+0.237(+0.108)S-Dipole,
Scarprofen = 0.212(%0.058) + 0.999(0.065)SR
+0.182(%0.032)OR + 0.268(+0.048)
x O-ABSQ + 1.157(%0.069)S-Volume

+0.550(+0.072)S-Dipole.

In all the equations, variable inflation factor (VIF) was
less than 10, suggesting the absence of multicollinearity. As
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FIGURE 2: Experimental versus predicted solubility for MLR and ANN; (a) ketoprofen, (b) ibuprofen, (c) flurbiprofen, (d) naproxen, (e)
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TABLE 4: Solubility of drugs in SEDDS.

NO. Formula Km Oil: Smix Skeo (mg-mL™") Spy (mg-mL™!) Sp, (mg-mL™!) Sygp (mg-mL™") Spoe (mg-mL™') S (mg-mL™)

17 1 1:2 0.5:95 0.961 1.756 0.848 0.332 1.909 0.989
22 1 1:2 1:9 1.207 2.075 0.948 0.350 2.002 1.014
32 1 1:2 1.5:85 1.439 2.634 1.014 0.366 2.422 1.086
47 1 1:1 0.5:95 1.519 2.293 1.054 0.423 2.072 1.139
5b 1 1:1 1:9 1.464 2.552 1.199 0.426 2.144 1.146
67 1 1:1 1.5:8.5 1.864 2.958 1.315 0.420 2.431 1.321
7 1 2:1 0.5:95 1.825 2.436 1.442 0.553 2.131 1.502
8* 1 2:1 1:9 1.943 2.995 1.541 0.554 2.209 1.594
9b 1 2:1 1.5:85 1.674 3.221 1.564 0.552 2.457 1.689
10? 1 3:1 0.5:95 2.033 2.678 1.535 0.592 2.177 1.633
11¢ 1 3:1 1:9 2.354 3.06 1.598 0.594 2.387 1.605
12¢ 1 3:1 1.5:85 2.485 3.355 1.705 0.569 2.499 1.757
13® 1 4:1 0.5:95 2.155 2.762 1.541 0.596 2.355 1.842
14° 1 4:1 1:9 2.438 3.112 1.647 0.618 2.497 1.871
15¢ 1 4:1 1.5:85 2.220 3.520 1.714 0.582 2.510 1.799
16° 2 1:2 0.5:95 0.798 1.538 0.933 0.397 1.522 0.957
17¢ 2 1:2 1:9 0.845 1.899 0.958 0.403 1.563 0.964
18° 2 1:2 1.5:85 0.856 2.164 1.042 0.390 1.475 0.956
19° 2 1:1 0.5:95 1.057 2.074 1.045 0.450 1.904 1.475
20° 2 1:1 1:9 1.295 2.444 1.228 0.466 1.928 1.498
21% 2 1:1 1.5:85 1.196 2.577 1.535 0.514 1.877 1.491
228 2 2:1 0.5:95 1.438 2.608 1.465 0.609 2.165 1.777
23% 2 2:1 1:9 1.353 2.824 1.569 0.620 2.091 1.836
247 2 2:1 1.5:85 1.430 3.099 1.666 0.631 2.186 1.88
257 2 3:1 0.5:95 1.577 2.706 1.716 0.647 2.215 1.923
267 2 3:1 1:9 1.665 3.066 1.740 0.646 2.082 2.103
27° 2 3:1 1.5:85 1.600 3.418 1.830 0.696 2.229 2.009
28¢ 2 4:1 0.5:95 1.637 2.770 1.749 0.703 2.310 2.165
29¢ 2 4:1 1:9 1.705 3.176 1.791 0.694 2.268 2.171
30? 2 4:1 1.5:85 1.640 3.816 1.959 0.715 2.358 2.113
31° 3 1:2 0.5:95 0.840 1.495 0.839 0.414 1.483 1.378
320 3 1:2 1:9 1.018 2.356 1.015 0.437 1.653 1.405
33¢ 3 1:2 1.5:85 1.027 2.432 1.030 0.399 1.771 1.407
347 3 1:1 0.5:95 1.217 2.243 1.202 0.587 1.930 1.903
35¢ 3 1:1 1:9 1.183 2.407 1.244 0.530 1.937 1.894
36° 3 1:1 1.5:85 1.330 2918 1.300 0.497 2.100 1.939
37* 3 2:1 0.5:95 1.537 2.573 1.393 0.637 2.331 2.307
38 3 2:1 1:9 1.739 3.148 1.638 0.627 2.396 2.404
39° 3 2:1 1.5:85 1.631 3.352 1.670 0.624 2.339 2.366
40? 3 3:1 0.5:95 1.746 3.059 1.644 0.651 2.552 2.637
412 3 3:1 1:9 1.803 3.494 1.752 0.680 2.458 2.659
427 3 3:1 1.5:85 1.755 3.674 1.826 0.705 2.344 2.46
43? 3 4:1 0.5:95 1.935 3.216 1.815 0.765 2.606 2.714
447 3 4:1 1:9 1.874 3.554 1.831 0.739 2.608 2.757
45° 3 4:1 1.5:85 2.033 3.687 2.012 0.749 2.439 2.676
46> 4 1:2 0.5:95 0.944 1.545 0.794 0.342 1.585 0.818
47¢ 4 1:2 1:9 0.961 1.969 0.950 0.359 1.426 0.729
48° 4 1:2 1.5:85 0.980 2.448 0.985 0.345 1.489 0.853
49° 4 1:1 0.5:95 1.302 2.219 1.047 0.438 1.844 1.102
50? 4 1:1 1:9 1.316 2.754 1.134 0.476 1.722 1.262
51* 4 1:1 1.5:85 1.451 3.137 1.310 0.441 2.136 1.103
520 4 2:1 0.5:95 1.671 2.23 1.071 0.444 2.081 1.553
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TaBLE 4: Continued.

NO. Formula Km Oil: Smix Skeo (mg-mL™!) Sy, (mg-mL™!) S, (mg-mL™') Syyp (mg-mL™") Spo (mg-mL™!) S, (mg-mL™!)

532 4 2:1 1:9 1.711 2.782
542 4 2:1 15:85 1.863 3.328
55> 4 3:1 0.5:9.5 1.962 2.483
56 4 3:1 1:9 2.006 3.172
572 4 3:1 1.5:85 2.130 3.946
582 4 4:1 0.5:95 2.092 2.545
590 4 4:1 1:9 2.124 3.380
60° 4 4:1 15:85 1.999 4.062
61° 5 1:2 05:95 0.816 1.609
62b 5 1:2 1:9 0.854 2.017
63 5 1:2 15:85 0.876 2.101
64 5 1:1 05:95 0.985 1.945
65 5 1:1 1:9 1.227 2.211
66 5 1:1 1.5:85 1.246 2.713
67 5 2:1 0.5:95 1.398 2.662
68> 5 2:1 1:9 1.610 2.853
69 5 2:1 1.5:85 1.617 3.307
70 5 3:1 0.5:9.5 1.558 2.932
712 5 3:1 1:9 1.747 3.260
72b 5 3:1 1.5:85 1.791 3.617
730 5 4:1 0.5:95 1.617 2.985
74 5 4:1 1:9 1.921 3.393
75 5 4:1 1.5:85 1.812 3.685
76 6 1:2 05:95 0.839 1.769
77" 6 1:2  1:9 0.906 2.163
78 6 1:2 15:85 1.066 2.414
79 6 1:1 05:95 1.237 2.203
80° 6 1:1 1:9 1.537 2.349
81° 6 1:1 1.5:85 1.513 2.938
822 6 2:1 0.5:95 1.581 2.455
83P 6 2:1 1:9 1.711 2.686
842 6 2:1 1.5:85 1.721 3.068
85P 6 3:1 0.5:95 1.768 2.710
86 6 3:1 1:9 1.980 3.265
87° 6 3:1 1.5:85 1.949 3.709
882 6 4:1 05:95 1.959 3.256
89° 6 4:1 1:9 1.984 3.646
902 6 4:1 15:85 2.155 3.742

1.351 0.484 2.053 1.642
1.316 0.442 2.422 1.496
1.095 0.455 2.133 1.725
1.356 0.489 2.447 1.663
1.344 0.461 2.470 1.801
1.168 0.458 2.427 1.94
1.385 0.503 2.519 1.892
1.431 0.491 2.639 1.945
0.921 0.442 1.606 0.807
0.980 0.440 1.649 1.208
1.002 0.423 1.701 1.273
1.344 0.525 1.945 1.577
1.343 0.561 2.001 1.646
1.424 0.548 2.064 1.699
1.544 0.689 2.134 2.134
1.678 0.678 2.286 2.010
1.819 0.655 2.419 2.199
1.774 0.735 2.268 2.256
1.698 0.693 2.355 2.416
1.841 0.694 2.495 2.300
1.820 0.766 2.337 2.454
1.953 0.760 2.374 2.505
2.055 0.752 2.503 2.429
0.849 0.381 1.544 1.439
0.951 0.371 1.665 1.32
1.135 0.402 1.712 1.392
1.242 0.485 1.794 1.759
1.299 0.510 1.869 1.811
1.527 0.540 1.962 1.88
1.437 0.636 1.912 2.331
1.559 0.631 2.069 2.258
1.728 0.656 2.143 2.406
1.647 0.668 2.295 2.500
1.775 0.659 2.652 2.657
1.924 0.686 2.595 2.421
1.781 0.685 2.572 2.728
1.860 0.694 2.729 2.806
2.069 0.725 2.798 2.793

“Training set.
bInternal validation set.

shown in Table 5, the correlation matrix for these descriptors
shows no high correlation between variables and could be
used to develop QSPR models. The statistical results indicate
that these equations represent good models for calculating
the solubility (Table 6).

Models in (2) shows the significance of the combination
of SR, OR, O-MaxQ~, O-ABSQ, O-Erymo, S-Volume, and
S-Dipole in the solubility of drugs in SEDDS. According to
t-test criterion, the most important descriptor is SR. The
positive coefficient suggests that high-concentration surfac-
tant will increase the solubility. Surfactant plays an impor-

tant role in O/W microemulsion/emulsion formation: it
forms a layer around emulsion droplets, which reduces the
interfacial energy and provides a mechanical barrier to co-
alescence [31]. And the result suggests that drugs are mainly
dissolved in the phase of surfactant.

The specific effect of O-MaxQ~, O-ABSQ, and S-Dipole
to the solubility depends on the drug type.

2.4. QSPR Modeling. ANN models were constructed with
the same descriptors as in MLR models using Leavenberg-
Marquardt (LM) algorithm as activity function. The proper
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TasBLE 5: Correlation matrix for selected descriptors.
SR OR O-dipole O-MaxQ~ 0O-ABSQ O-LUMO S-volume S-dipole S-MaxQ~
SR 1.000 -0.170 0.003 —0.003 0.065 0.045 0.671 -0.615 0.617
OR 1.000 0.011 0.053 —0.143 —0.025 —0.049 —0.041 0.027
O-dipole 1.000 —-0.295 -0.153 0.652 —0.141 -0.214 -0.111
O-MaxQ~ 1.000 —0.158 -0.295 —-0.020 0.521 0.439
0O-ABSQ 1.000 0.159 0.345 0.111 -0.163
O-LUMO 1.000 0.472 -0.130 0.195
S-volume 1.000 —-0.333 0.704
S-dipole 1.000 —0.057
S-MaxQ~ 1.000
TABLE 6: Statistical qualities of different models.
Model n R? MSE  RMSEP RSEP (%) MAE (%) Model n RrR? MSE RMSEP RSEP (%) MAE (%)
IMIR 72 0948 0.0094  0.097 5.999 79375 7NN 72 0989 0.0080 0.089 5507 5.993
MR 720932 0.0254  0.159 5.539 13402 8™ 72 0994 0.0089 0.094  3.269 5.112
MR 720943 0.0065  0.081 5.417 6204 9™ 72 0994 0.0037 0.061  4.098 4.190
AMIR 720949 0.0008 0028  4.942 2292 10N 72 0993 0.0003 0016 2778 1.209
SMIR 72 0822 00213 01459 6683 12053 11NN 72 0.989 0.0046 0.0677  3.100 5.243
IR 72 0967 0.0104 0.1019 5326 8316 12" 72 0.990 0.0089 0.0943 4928 6.272
TABLE 7: Experimental and predicted values of predicting set.
(a)
NO Sketo Exp. MLR ANN Stbu Exp. MLR ANN Skl Exp. MLR ANN
1? 1.464 1.649 1.376 2.552 2.457 2.488 1.199 1.195 1.241
A 1.674 2.090 2.104 3.221 3.299 3.285 1.564 1.572 1.518
32 2.155 2.230 2.378 2.762 2.973 2.663 1.541 1.608 1.615
47 1.057 1.026 1.169 2.074 1.983 2.233 1.045 1.209 1.233
57 1.600 1.756 1.631 3.418 3.487 3.420 1.830 1.801 1.885
6? 1.018 0.901 0.841 2.356 2.099 2.014 1.015 0.964 0.871
72 1.330 1.363 1.106 2.918 2.970 2.973 1.300 1.395 1.191
8? 1.631 1.693 1.422 3.352 3.407 3.655 1.670 1.699 1.615
9? 0.944 0.913 0.461 1.545 1.663 2.033 0.794 0.645 0.967
10? 1.671 1.644 1.504 2.230 2.631 2.274 1.071 1.189 1.046
112 1.962 1.832 1.767 2.483 2.881 2.543 1.095 1.328 1.090
12?2 2.124 2.011 2.093 3.380 3.373 3.396 1.385 1.501 1.425
132 0.854 0.794 1.050 2.017 1.909 1.828 0.980 1.049 0.958
142 1.610 1.519 1.542 2.853 2.880 2.794 1.678 1.640 1.593
15° 1.791 1.773 1.775 3.617 3.476 3.584 1.841 1.881 1.971
16° 0.906 0.994 1.183 2.163 2.075 1.830 0.951 1.084 1.043
172 1.711 1.718 1.775 2.686 3.044 2.975 1.559 1.646 1.624
18° 1.768 1.827 1.788 2.710 2.934 2.976 1.647 1.694 1.691
19° 1.452 1.047 1.223 1.801 1.978 1.947 1.065 1.173 1.062
200 1.657 1.132 1.443 2.314 2.346 2.265 1.217 1.273 1.193
21b 1.614 1.241 1.476 2.261 2.748 2.749 1.369 1.386 1.315
220 1.778 1.402 1.530 2.255 2.447 2.732 1.322 1.444 1.375
23b 1.901 1.486 1.708 2.516 2.816 2.842 1.645 1.544 1.345
24> 2.000 1.571 1.837 2.757 3.185 3.413 1.630 1.644 1.552
25P 1.887 1.591 1.680 2.304 2.699 2.751 1.342 1.587 1.596
26° 2.009 1.675 1.911 2.938 3.068 3.152 1.765 1.687 1.490
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(a) Continued.
NO. Sketo Exp. MLR ANN Stbu Exp. MLR ANN SHu Exp. MLR ANN
270 2.165 1.735 1.988 3.140 3.404 3.810 1.786 1.773 1.625
28 2.056 1.710 1.774 2.377 2.856 2.754 1.477 1.675 1.661
29b 2.062 1.770 1.991 2.944 3.192 3.273 1.687 1.761 1.582
30P 2.206 1.830 2.071 3.603 3.528 3.916 1.632 1.848 1.654
31b 1.534 1.092 1.080 1.933 2.053 2.149 1.171 1.162 1.062
320 1.653 1.177 1.144 2.142 2.422 2.205 1.339 1.262 1.194
33b 1.622 1.286 1.068 2.195 2.824 2.822 1.435 1.376 1.233
34b 1.812 1.457 1.344 2.327 2.542 2.753 1.574 1.464 1.381
35b 1.802 1.541 1.521 2.347 2911 3.096 1.770 1.564 1.415
360 1.721 1.626 1.471 2.833 3.280 3.551 1.787 1.664 1.483
37> 1.852 1.651 1.494 2.247 2.803 3.085 1.685 1.621 1.657
38 1.796 1.736 1.698 2.165 3.172 3.504 1.690 1.721 1.586
39b 1.820 1.796 1.733 2.865 3.508 3.771 1.877 1.808 1.662
40> 1.916 1.773 1.604 2.129 2.967 3.157 1.767 1.718 1.796
41°b 2.133 1.833 1.779 2.529 3.303 3.627 1.855 1.805 1.691
420 1.884 1.893 1.885 3.116 3.639 3.948 1.884 1.891 1.778
(b)
NO. Shep Exp. MLR ANN Stoo Exp. MLR ANN S Car Exp MLR ANN
12 0.426 0.438 0.441 2.144 2.104 2.175 1.146 1.227 1.193
A 0.552 0.534 0.531 2.457 2.465 2.462 1.689 1.641 1.680
32 0.596 0.612 0.606 2.355 2.549 2.201 1.842 1.913 1.698
42 0.450 0.505 0.479 1.904 1.728 1.884 1.475 1.357 1.378
5 0.696 0.651 0.672 2.229 2.347 2.260 2.009 2.132 2.082
6* 0.437 0.435 0.403 1.653 1.742 1.505 1.405 1.449 1.505
74 0.497 0.553 0.518 2.100 2.112 2.127 1.939 1.939 1.884
8 0.624 0.661 0.631 2.339 2.360 2.300 2.366 2.359 2.326
92 0.342 0.312 0.315 1.585 1.520 1.620 0.818 0.769 1.006
102 0.444 0.473 0.491 2.081 2.100 2.099 1.553 1.495 1.606
112 0.455 0.514 0.485 2.133 2.250 2.313 1.725 1.681 1.808
122 0.503 0.536 0.488 2.419 2.404 2.455 1.892 1.805 1.879
132 0.440 0.456 0.435 1.649 1.666 1.574 1.208 1.175 1.346
142 0.678 0.650 0.661 2.286 2.233 2.339 2.010 2.065 2.313
152 0.694 0.697 0.708 2.435 2.445 2.379 2.300 2.305 2.361
16* 0.371 0.402 0.389 1.665 1.706 1.514 1.320 1.501 1.505
172 0.631 0.618 0.621 2.069 2.279 2.258 2.258 2.338 2.381
182 0.668 0.673 0.651 2.295 2.352 2.336 2.500 2.529 2.624
19° 0.403 0.536 0.528 1.774 1.858 1.825 1.318 1.362 1.239
20° 0.480 0.537 0.528 1.660 1.938 1.904 1.409 1.390 1.489
21 0.501 0.543 0.512 1.601 2.039 2.220 1.358 1.440 1.709
22b 0.544 0.628 0.650 2.054 2.138 2.046 1.632 1.730 1.677
23b 0.514 0.629 0.633 2.333 2.218 2.346 1.776 1.759 1.957
24b 0.537 0.631 0.611 2.223 2.298 2.463 1.753 1.787 2.133
25bP 0.593 0.677 0.692 2.250 2.288 2.163 1.788 1.925 1.804
26° 0.734 0.678 0.673 2.405 2.368 2.516 2.008 1.954 2.063
270 0.602 0.674 0.659 2.309 2.428 2.544 2.050 1.961 2.160
28 0.630 0.707 0.716 2.418 2.382 2.242 2.060 2.046 1.890
29b 0.724 0.703 0.693 2.493 2.442 2.585 2.163 2.054 2.116
30P 0.682 0.700 0.686 2.417 2.501 2.588 2.230 2.061 2.167
31b 0.686 0.499 0.546 1.944 1.846 1.681 1.627 1.478 1.430
32b 0.852 0.500 0.525 1.933 1.926 1.862 1.731 1.507 1.544
33b 0.742 0.506 0.482 2.037 2.027 2.195 1.725 1.556 1.746
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NO. SNep Exp, MLR ANN SLomo Exp. MLR ANN Scar Exp MLR ANN
34> 0.489 0.599 0.675 2.274 2.131 2.076 1.966 1.940 1.945
35> 0.529 0.600 0.641 2.313 2.211 2.357 2.077 1.969 2.028
36" 0.499 0.601 0.619 2.363 2.291 2.426 2.012 1.998 2.097
37° 0.595 0.651 0.729 2.449 2.283 2.263 2.271 2.182 2.172
38> 0.586 0.652 0.705 2.493 2.363 2.490 2.003 2.211 2.219
39b 0.579 0.648 0.689 2.437 2.423 2.527 2.268 2.218 2.244
40P 0.761 0.683 0.778 2.265 2.379 2.363 2.474 2.331 2.325
41° 0.732 0.680 0.751 2.446 2.438 2.539 2.356 2.339 2.375
42b 0.791 0.676 0.732 2.500 2.498 2.603 2.544 2.347 2.383

*Internal validation set.

bExternal prediction set.

TaBLE 8: Statistical comparison between MLR and ANN.

Model N  MSE  RMSEP  RSEP (%) MAE (%) Model n  MSE  RMSEP  RSEP (%)  MAE (%)
IMLR 42 0.072 0.268 15.405 21.436 7ANN 42 0.065 0.255 14.677 21.168
2MIR 42 0.147 0.384 14.605 29.965 §ANN 42 0.258 0.508 19.351 38.576
3MIR 42 0.011 0.106 7.074 8.506 9ANN 42 0.021 0.146 9.701 11.573
4MIR 42 0.010 0.100 15.649 6.965 10ANN 42 0.007 0.086 13.565 5.735
5MLR 42 0.014 0.119 5.445 8.487 11ANN 42 0.024 0.156 7.119 11.207
6MIR 42 0.010 0.100 5.270 8.039 12ANN 42 0.020 0.141 7.411 11.066

number of neurons in the hidden layer was set as 10 to
ensure the lowest mean square error (MSE). Table 6 shows
the statistical qualities of the ANN models, compared with
MLR models. R*> of QSPR models indicate that they can
explain more than 90% of the variation in the formulations,
which correspond to a significant explanatory capacity.

3.2. QSPR Models for Solubility Prediction. Table 7 shows the
solubility prediction for the internal and external validation
sets obtained from these models. As shown in Figures 2(a)—
2(f), the plots of experimental values versus predicted values
obtained by the MLR and ANN modeling indicate good
correlations between the experimental and predicted values
and confirm the satisfied predictive ability of QSPR models.

A statistical evaluation of both MLR and ANN models
is shown in Table 8. According to the comparison between
the two models in this study, except for the model drugs
of ketoprofen and naproxen, MLR was found to be more
reliable for the solubility prediction than ANN.

Based on the models, the optimal formulations
in internal validation set were as follows: oleic acid/
Tween20/ethanol (Km = 4:1, 0.5:9.5) for ketoprofen;
butyl oleate/Tween40/isopropyl alcohol (Km = 3:1,
1.5:8.5) for ibuprofen, flurbiprofen, and naproxen; oleic
acid/Tween20/Ethanol (Km = 2:1, 1.5:8.5) for loxoprofen;
methyl oleate/Tween80/diethylene glycol monoethyl ether
for carprofen. The best formulations for the predicting set
were as follows: butyl oleate/Tween20/isopropyl alcohol
(Km = 4:1, 1.5:8.5) for ketoprofen and ibuprofen; ethyl
oleate/Tween40/ethanol (Km = 4:1, 1.5:8.5) for flur-
biprofen, loxoprofen, and carprofen; butyl oleate/Tween20/
isopropyl alcohol (Km = 4:1, 0.5:9.5) for naproxen. All

the predicted optimum formulations were consistent with
the experimental ones except for naproxen, indicating the
significance of the models in formulation screening.

3.3. The Drug Effect on the Solubility. To examine the
influence of drugs on the solubility, the descriptors of drugs
(X) were correlated with the drug solubility in different
formulations (Y). The multiple linear regression analyses
gave the following equations:

Skormula 1 = 3.710(%0.138) + 0.793(+0.058)SR
+0.368(+0.047)OR + 2.453(+0.162)D-Dipole
—2.457(%0.074)D-MaxQ"
—1.245(+0.071)D-Enomo
—2.670(+0.121)D-Wiener
+0.978(+0.162)D-LogD,

n =90, R? = 0.953, s = 0.178,
F = 237.739, MSE = 0.029,

Skormula 2 = 2.241(%0.137) + 1.002(*0.058)SR
+0.293(+0.046)OR
+2.994(+0.160)D-Dipole
—1.801(%0.074)D-MaxQ"
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— 0.454(%0.070)D-Epomo
—3.122(+0.120)D-Wiener
+1.770(+0.160)D-LogD,
n= 90, R> =0.948, s = 0.177,
F = 214.550, MSE = 0.028,
Skormula 3 = 1.693(%0.147) + 1.119(=0.062)SR
+0.301(%0.050)OR + 4.343(+0.172)D-Dipole
~1.972(%0.079)D-MaxQ"
—0.379(+0.075)D-Enomo
— 3.864(+0.129)D-Wiener
+2.931(=0.172)D-LogD,
n =90, R> =0.952, s = 0.190,
F = 234.809, MSE = 0.033,
Skormula 4 = 3.215(£0.200) + 0.942(+0.085)SR
+0.409(%0.068)OR
+2.985(+0.234)D-Dipole
—2.428(+0.108)D-MaxQ"
—1.226(+0.102)D-Exomo
—3.167(+0.176)D-Wiener
+1.616(+0.234)D-LogD,
n =90, R> = 0.914, s = 0.258,
F =123.981, MSE = 0.061,
Skormula 5 = 1.925(%0.147) + 1.113(+0.062)SR
+0.355(=0.050)OR
+3.447(%0.172)D-Dipole
—1.827(+0.079)D-MaxQ"
—0.334(%0.075)D-Enomo
— 3.335(+0.129)D-Wiener
+2.166(+0.172)D-LogD,
n =90, R* = 0.946, s = 0.190,
F = 204.247, MSE = 0.033,
Skormula 6 = 1.708(£0.151) + 1.135(+0.064)SR
+0.385(+0.051)OR + 4.076(+0.177)D-Dipole
~1.907(+0.081)D-MaxQ"

—0.415(+0.077)D-Exomo

11
— 3.579(+0.133)D-Wiener
+2.598(+0.177)D-LogD,
n= 90, R* = 0.948, s = 0.195,
F = 212.012, MSE = 0.035.
(3)

Equation (3) reveals a significant effect of the shape-
related descriptor (Wiener index), charge-related descriptor
(MaxQ*, Dipole moment), quantum chemical parameter
(Eromo), and logD on the solubility of 2-APA-NSAIDs in
SEDDS. According to t-test criterion, the most important
factors are Dipole, MaxQ™, wiener index, and logD. The
negative coefficient of wiener index showed that a drug with
small size tended to have a good solubility in SEDDS. The
positive coefficient of logD indicated that the increase of
lipophilicity favors the solubility.

4. Conclusions

In the present study, we used QSPR to predict the solubility
of 2-APA-NSAIDs in self-emulsifying drug delivery system
by means of linear and nonlinear methods. We examined the
effects of component ratio, stereoscopic effect, hydrophobic
interactions, and electric effect on the solubility by MLR
and ANN. In all the models, the ratio of compositions (SR,
OR), charge-related descriptor, and the quantum chemical
parameter (Epomo) appeared to be the most important
factors. The obtained models in (3) indicate the significance
of wiener index, charge-related descriptor, and logD of drugs
on the solubility. The results of MLR and ANN methods
were satisfactory, and nonlinear models were not found to
be superior to linear models. Since the predicted optimum
formulations were consistent with the experimental ones, the
QSPR models obtained would be useful to predict the solu-
bility of 2-APA-NSAIDs in SEDDS, screen for the optimal
formulation, and reduce experimental time.
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