
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2008, Article ID 186372, 12 pages
doi:10.1155/2008/186372

Research Article
A Mathematical Tool for Inference in Logistic
Regression with Small-Sized Data Sets: A Practical
Application on ISW-Ridge Relationships

Tsung-Hao Chen,1 Chen-Yuan Chen,2

Hsien-Chueh Peter Yang,3 and Cheng-Wu Chen4

1 Department of Business Administration, Shu-Te University, Yen Chau, Kaohsiung, Taiwan 82445, Taiwan
2 Department of Management Information System, Yung-Ta Institute of Technology and Commerce,
Pingtung, Taiwan 90941, Taiwan

3 Department of Risk Management and Insurance, Kaohsiung First University of Science and Technology,
Kaohsiung, Taiwan 811, Taiwan

4 Department of Logistics Management, Shu-Te University, Yen Chau, Kaohsiung, Taiwan 82445, Taiwan

Correspondence should be addressed to Chen-Yuan Chen, chency@mail.ytit.edu.tw

Received 6 October 2007; Revised 3 March 2008; Accepted 26 August 2008

Recommended by Irina Trendafilova

The general approach to modeling binary data for the purpose of estimating the propagation of
an internal solitary wave (ISW) is based on the maximum likelihood estimate (MLE) method.
In cases where the number of observations in the data is small, any inferences made based on
the asymptotic distribution of changes in the deviance may be unreliable for binary data (the
model’s lack of fit is described in terms of a quantity known as the deviance). The deviance for
the binary data is given by D. Collett (2003). may be unreliable for binary data. Logistic regression
shows that the P -values for the likelihood ratio test and the score test are both <0.05. However, the
null hypothesis is not rejected in the Wald test. The seeming discrepancies in P -values obtained
between the Wald test and the other two tests are a sign that the large-sample approximation
is not stable. We find that the parameters and the odds ratio estimates obtained via conditional
exact logistic regression are different from those obtained via unconditional asymptotic logistic
regression. Using exact results is a good idea when the sample size is small and the approximate
P -values are <0.10. Thus in this study exact analysis is more appropriate.

Copyright q 2008 Tsung-Hao Chen et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

Internal waves refer to the motion at the interface between layers of water of different
densities in a stratified water body, such as the ocean. The simplest oceanic density structure,
where differences in water density are mostly caused by differences in water temperature or
salinity, can be approximated by a two-layer model. Oceanic internal waves typically have
wavelengths ranging from hundreds of meters to tens of kilometers, with periods from tens
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of minutes to tens of hours. In the Andaman and Sulu Sea they can have amplitudes (peak
to trough distance) exceeding 50m and in the South China Sea the amplitude can exceed
110 m [1–9]. The mixing and dissipation generated by internal waves have important effects
on the cross slope exchange processes, enhancement of bottom stress, and generation of the
nepheloid layers. It has recently been proposed that internal waves may make a significant
contribution to internal oceanic mixing and hence have an important influence on climatic
change. This is why it is necessary to scrutinize the interaction of nonlinear internal solitary
waves (ISWs) with the seabed topography [10–17].

Several studies, including both simulations and laboratory experiments, aiming at
exploring the mechanisms for the generation, propagation, and evolution of ISWs, have
already been carried out. However, since energy dissipation plays such an important and
varied role on water and sedimentary movement in coastal seas [18], we need a better
fitting and more appropriate model for predicting ISW propagation. A preliminary approach
has recently been made in which the effects of weighted parameters on the amplitude and
reflection of energy-based ISWs from uniform slopes in a two layered fluid system were
investigated [19]. The results are quite consistent with other experimental results, and are
applicable to the naturally occurring reflection of ISWs from sloping bottoms. More recently,
Chen et al. [20] concluded the goodness-of-fit and predictive ability of the cumulative logistic
regression models to be better than that of the binary logistic regression models. However, in
cases where the data are so small that there are some observations with proportions close to
zero or one, inferences based on the asymptotic distribution of the change in deviance may
be unreliable. In point of fact, reports on statistical manipulations related to this theme are
rather rare.

The rest of the paper is organized as follows. In Section 2 we describe the experimental
set-up and theoretical background needed to understand the hydrodynamic interaction. We
also discuss the analysis of the logistic regression model, and introduce the exact conditional
logistic model and the hypothesis on which the parameters are based. Section 3 is devoted
to a comparison of the conditional exact logistic regression model and the unconditional
asymptotic logistic regression model. Finally, some conclusions are made. It is noted that
small sample size means that there are some observations with proportions close to zero or
one and P-values of less than 0.10, which is an indication that an exact analysis would be
more appropriate.

2. Research framework

Experiments were carried out in the laboratory using a two-layer fluid system of fresh and
briny water in a 12 m long wave flume (rectangular in cross-section). The upper layer of
water in the wave flume consisted of fresh water with a density ρ1 and a depth H1, while
the lower layer was comprised of brine with a density ρ2 and a depth H2. The leading ISW
was generated by the lifting of a pneumatic sluice gate at one end of the flume. The wave
propagated into the main section of the flume to the left-hand side (LHS) of the gate. The
amplitude a and characteristic length Lw of the ISW were predetermined by arranging the
step length L and step depth η0 (see Figure 1). Six ultrasonic probes connected to an amplifier
unit and A/D converter, then to a personal computer, gathered and processed digital signals
as the ISW propagated along the flume. As the ISW propagated from the RHS (right-hand
side) to the LHS of the flume, the first ultrasonic probe (P1) recorded the properties of
the incident ISW, the wave amplitude and characteristic length, while the second probe
(P2) collected reflected signals showing the wave-obstacle interaction. The methodology for
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Figure 1: A schematic view showing the set up for ISW propagation in a two-layer fluid system over a
single obstacle.

measuring the physical properties related to the propagation and dissipation of the ISW has
been reported in detail by Chen et al. [21]. The amplitude-based transmission rate during the
wave-ridge interaction was dependent on two factors, ridge height and potential energy.

2.1. Exact conditional logistic regression model

The theoretical basis for the exact conditional logistic regression model was originally laid
down by Cox [22], but recent algorithmic advances in computing the exact distributions
have made the methodology more practical. Since then Hirji et al. [23] have developed an
efficient algorithm for generating the required conditional distributions. Cox and Snell [24]
noted that it has been known since the 1970’s how to extend the theory of Fisher’s exact
test to logistic regression models. The interested reader may refer to Mehta and Patel [25]
for a useful summary of exact logistic regression. A complete discussion of the exact logistic
regression methodology and more detailed applications can be found in a variety of sources
[26–30].

Here, let πi(X) represent the probability of “success” for a binary response (Y ) for
the explanatory variables (X) = (x1, x2, x3, . . . , xk). The notation can be simplified by using
πi(X) = E(Yi | x) to represent the conditional mean of Y given x when a logistic distribution
is utilized:

πi = E(Yi) = P =
1

1 + e−(α+β1Xi1+β2Xi2+···+βkXik)
=

1
1 + e−Zi

,

1 − πi = 1 − E(Yi) = 1 − P = 1 − 1
1 + e−(α+β1Xi1+β2Xi2+···+βkXik)

= 1 − 1
1 + e−Zi

=
e−Zi

1 + e−Zi
,

(2.1)

such that
(

πi
1 − πi

)
= eZi = e(α+β1Xi1+β2Xi2+···+βkXik). (2.2)

The transformation of π(xi), which is central to this study of logistic regression, is the logit
transformation. This transformation is defined as

logit(π(xi)) = ln
(

π(xi)
1 − π(xi)

)
= x′iβ, (2.3)

where β = (β1, . . . , βk)
′ is an unknown parameter vector.
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The sufficient statistics for the βj in the unconditional likelihood function are

Tj =
n∑
i=1

yixij, j=1,...,t+s, (2.4)

where yi is the realization of Yi.
If T0 and T1 indicate sufficient statistics corresponding to β0 and β1, the conditional

probability density function of T1 conditional on T0 can be formulated as

fβ1(t1 | t0) =
C(t)exp(t′1β1)∑

uC(u, t0) exp(u′β1)
, (2.5)

where C(u, t0) indicates the number of vectors y, such that y′X1 = u and y′X0 = t0.
Conditional exact inference involves the generation of the conditional permutational

distribution fβ1(t1 | t0) for the sufficient statistics for the parameters. The distribution fβ1(t1 |
t0) is called the permutation conditional distribution or exact conditional distribution.

2.2. Testing the hypotheses

According to exact logistic regression (for both the exact score conditional test and the
probability test) the parameters for the specified hypothesis are equal to zero. If an effect
consists of two or more parameters, then it is hypothesized that all the parameters are
simultaneously equal to zero [26, 27].

2.2.1. Exact score conditional test

The null hypothesis is

H0 : β1 = 0,

H1 : β1 /= 0.
(2.6)

The conditional mean μ1 and variance matrix R1 of T1 (conditional on T0 = t0) are calculated
via the exact conditional scores test. The score statistic is

s = (t1 − μ1)
′R−1

1 (t1 − μ1). (2.7)

Now compare this to the score for each member of the distribution

S = (T1 − μ1)
′R−1

1 (T1 − μ1). (2.8)

In the null hypothesis, an exact P-value, which is the probability of obtaining a more extreme
statistic than the observed one, is assumed.

The result of the P-value is

p(t1 | t0) = Pr(S ≥ s) =
∑
u∈Ω

f0(u | t0), (2.9)
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where

Ωs =
{
u : there exists y withy′X1 = u, y′X0 = t0, S(u) ≥ s

}
. (2.10)

A mid P-value, adjusted for the discreteness of the distribution, is assumed for the null
hypothesis.

The mid-p statistic is defined as

p(t1 | t0) −
1
2
f0(u | t0). (2.11)

2.2.2. Probability testing

For small samples, the parameter inference process is carried out using conditional
distribution probabilities, such as exact P-values, rather than a crude approximation [29].
For testing the null hypothesis we use

H0 : β1 = 0

H1 : β1 /= 0.
(2.12)

Under the null hypothesis, the exact probability test statistic is just fβ1=0(t1 | t0); the
corresponding P-value gives the probability of getting a less likely statistic

p(t1 | t0) =
∑
u∈Ωp

f0(u | t0), (2.13)

where

Ωp =
{
u : there exists y with y′X1 = u, y′X0 = t0, f0(u | t0) ≤ f0(t1 | t0)

}
. (2.14)

3. Analytical results

The effects of the ridge height, the depth of the lower water layer, and the potential energy on
the propagation of the ISW are all considered. The results from the laboratory experiments
are shown in the data sets. The amplitudes of the incident and reflected waves are also
included. The dependent variables for the binary logistic regression model are classified into
two groups, weak and strong, based on the amplitude incident rate. When the hypothetical
incident rate is >0.5 it is considered strong and when it is <0.5 it is considered weak. The
frequencies for the strong and weak levels are 35 and 28, respectively.

3.1. Asymptotic logistic regression model

The methodologies utilized in the asymptotic logistic regression model and the diagnostics
of the goodness-of-fit statistics are discussed below.
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Table 1: Deviance and Pearson goodness-of-fit statistics.

Deviance and Pearson goodness-of-fit statistics
Criterion DF Value Value/DF Pr > Chi-sq
Deviance 50 36.3380 0.7268 0.9260
Pearson 50 60.7842 1.2157 0.1412
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Figure 2: Plot of Pearson residual (Reschi) versus case number index.

3.1.1. Goodness-of-fit statistics

The Pearson Chi-squares test and deviance Chi-squares test are used. The results of the
Pearson Chi-square test give a distribution with the degrees of freedom = {(r − 1)(s − 1) − t},
where t is the number of explanatory variables, r is the number of response levels, and s is
the number of subpopulations.

The goodness-of-fit statistics are shown in Table 1. The dispersion parameter
(value/DF), which indicates estimated deviance, is given in the value/DF column. The
dispersion parameter is 0.7268 and the Pearson Chi-squares dispersion parameter is 1.2157.
Ideally, this value should be very close to 1.00. The values of the Pearson Chi-square and
deviance Chi-square statistics are 60.7842 and 36.338, respectively, with 50 degrees of freedom
((2 − 1)(54 − 1) − 3 = 50). The Pearson Chi-squares value is slightly larger than the degrees
of freedom; the P-values for the deviance and Pearson Chi-squares are all larger than 0.05
(0.9260, 0.1412). From this we see that although there is a little over dispersion, this model
seems to have an acceptable fit with the data. The overdispersion means that the model still
needs to be modified.

3.1.2. Regression diagnostics

There are a number of different ways to plot the regression diagnostics, each directed at a
particular aspect of the fit. For examples see Hosmer and Lemeshow [28], and Landwehr et al.
[31] who discussed graphical techniques for logistic regression diagnostics. Generally such
techniques offer a visual rather than numerical representation that may be more intuitively
appealing to some researchers. Index plots are useful for the identification of extreme values
[32]. An examination of the index plots of the Pearson residuals (Figure 2) and the deviance
residuals (Figure 3) for our data indicates that case 11 and case 27 are poorly accounted for
by the model. It can be seen in the index plot of the diagonal elements of the hat matrix
(Figure 4) that case 49 is at the extreme point in the design space.

3.1.3. Outliers and influential observations

The values of outliers can be quite substantial and influential. A look at Table 5 shows the
advantage of removing such observations from the data (here, case 11, case 27, and case 49),
then refitting the newly revised model to the remaining observations.
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Figure 3: Plot of deviance residual (Resdev) versus case number index.
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Figure 4: Plot of hat diagonal (Resdev) versus case number index.

The goodness-of-fit statistics are presented in Table 2. The estimates of deviance are
shown in the column marked value/DF. The dispersion parameter (value/DF) is 0.3376
and the Pearson Chi-square dispersion parameter is 0.4752. The values of the deviance and
Pearson Chi-square are less than the degrees of freedom, while the P-values of the deviance
and Pearson Chi-square are all >0.05 (i.e., 1.0000, 0.9993, resp.). These indicate that this model
seems to have an acceptable fit with the data.

3.1.4. Testing the global null hypothesis: β = 0

When testing the null hypothesis for large samples, the explanatory variables have
coefficients of zero. According to the Chi-squares analysis, the associated P-values are all
approximately zero, suggesting that the explanatory coefficients are all zero.

The results obtained after rerunning the unconditional asymptotic logistic regression
after the removal of some of the observations from the data (i.e., case 11, case 27, and case 49)
(see Table 3) still contain some unconditional asymptotic results. These results are obtained
by deriving the Chi-square statistics while testing for the global null hypothesis (β = 0)
(likelihood ratio, score, and Wald tests). For the likelihood ratio and score tests, the null
hypothesis that β is zero is rejected, but not for the Wald test. The seeming discrepancies
in P-values obtained between the Wald test and the other two tests are a sign that the large-
sample approximation is not stable.

3.2. Exact logistic regression model

Exact logistic regression for binary outcomes can be utilized to provide an exact score test and
an exact probability test for hypotheses where the parameters are equal to zero; these tests
produce an exact P-value and a mid P-value.

To test whether individual parameter estimates are zero, we also require point
estimates of the parameters, an odds ratio that contains two-sided confidence limits, and
the P-value.
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Table 2: Deviance and Pearson goodness-of-fit statistics.

Criterion DF Value Value/DF Pr > Chi-sq
Deviance 49 16.5436 0.3376 1.0000
Pearson 49 23.2826 0.4752 0.9993

Table 3: Testing of the global null hypothesis: β = 0.

Test Chi-square DF Pr > Chi-sq
Likelihood ratio 65.5642 3 <.0001
Score 37.4643 3 <.0001
Wald 7.8052 3 0.0502

3.2.1. Conditional exact tests: β = 0

The results of exact conditional analysis obtained using the exact logistic regression model are
shown in Table 4. The results for the exact score conditional test and the probability test are
also reported in this table. For the joint test it is required that all the parameters for the exact
statement be simultaneously equal to zero, that is, the null hypothesis is H0 : β1 = β2 = β3 = 0.

In the joint test results an exact P-value of <.0001 is produced; the probability test
produces an exact P-value of 0.0023. These test results lead to a rejection that the null
hypothesis of β1 = β2 = β3 is zero. This shows that the ridge height (X1), lower layer water
depth (X2), and potential energy (X3) are significant for the joint exact test.

Given the effects of the ridge height (X1), lower layer water depth (X2), and potential
energy (X3), the exact P-value and mid P-value are both <.0001. These results lead to a
rejection of the null hypothesis that βi is zero.To put it another way, ridge height (X1), lower
layer water depth (X2), and potential energy (X3) are significant factors associated with the
amplitude-based incident rate.

3.2.2. Parameter estimation and odds ratio estimation

Stokes et al. [27] have suggested that large sample theory may not be appropriate for small-
sized data. This thus means that tests based on the asymptotic normality of the MLEs may be
unreliable. They recommend that when sample sizes are small, with approximate P-values
of less than 0.10, it is a good idea to look at the exact results. If the approximate P-values are
larger than 0.15, then the approximate methods are probably satisfactory, in the sense that the
exact results are likely to agree with them.

Parameter estimates for unconditional asymptotic logistic regression

The analytical results for the estimated maximum likelihood and odds ratios are shown in
Tables 5 and 6. The ridge height (X1), lower layer water depth (X2), and potential energy
(X3) are all significant factors affecting the amplitude-based incident rate (P = .0106, P =
.0053, and P = .0067, resp.).

The fitted unconditional asymptotic logistic regression lines can be stated as

logit(p̂) = ln
[

p̂

1 − p̂

]
= α + β1x1 + β2x2 + β3x3

= −10.9958 − 0.7916x1 + 1.1171x2 − 0.7211x3.

(3.1)
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Table 4: Conditional exact test results.

P-value
Effect Test Statistic Exact Mid
Joint Score 37.8649 <.0001 <.0001

Probability 5.2E-18 0.0023 0.0023
Intercept Score 7.5473 0.0082 0.0051

Probability 0.00618 0.0082 0.0051
X1 Score 22.5898 <.0001 <.0001

Probability 7.315E-8 <.0001 <.0001
X2 Score 30.4083 <.0001 <.0001

Probability 2.96E-11 <.0001 <.0001
X3 Score 22.0683 <.0001 <.0001

Probability 2.488E-8 <.0001 <.0001

Table 5: Analysis of MLEs.

Standard Wald
Parameter DF Estimate Error Chi-square Pr > Chi-sq
Intercept 1 −10.9958 4.7733 5.3067 0.0212
X1 1 −0.7916 0.3099 6.5232 0.0106
X2 1 1.1171 0.4008 7.7694 0.0053
X3 1 −0.7211 0.2659 7.3561 0.0067

Parameter estimation for conditional exact logistic regression

The analytical results of the exact parameter estimates and exact odds ratio estimates are
presented in Tables 7 and 8, respectively. The ridge height (X1), lower layer water depth
(X2), and potential energy (X3) are all significant factors affecting the amplitude-based
incident rate (P < .0001). We create a median unbiased estimate instead of the conditional
MLE, because the value of the observed sufficient statistic lies at the extreme end of the
derived distribution. The implication is that the conditional MLE does not exist. Even though
the asymptotic results are unreliable, the exact analysis allows us to conclude that these
factors have a significant effect. The fitted conditional exact logistic regression lines can be
formulated as

logit(p̂) = ln
[

p̂

1 − p̂

]
= α + β1x1 + β2x2 + β3x3

= −4.6013 − 0.6384x1 + 0.8277x2 − 0.6120x3.

(3.2)

We can see from Tables 5 and 7 that the parameters obtained from conditional exact logistic
regression are smaller than those obtained from unconditional asymptotic logistic regression,
but the P-values of the unconditional asymptotic estimates are larger than those of the exact
estimates. A comparison of the odds ratio estimates (in Tables 6 and 8) shows that the
parameters obtained from the conditional exact logistic regression are different than those
obtained from the unconditional asymptotic logistic regression.

Stokes et al. [27] recommended that when sample sizes are small and the approximate
P-values are less than 0.10, it is better to look at the exact results. Thus in this study, the small
sample size and P-values make exact analysis more appropriate.
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Table 6: Odds ratio estimates.

Point 95% Wald
Effect Estimate Confidence limits
X1 0.453 0.247 ∼ 0.832
X2 3.056 1.393 ∼ 6.703
X3 0.486 0.289 ∼ 0.819

Table 7: Exact parameter estimates.

95% Confidence
Parameter Estimate Limits P-value
Intercept −4.6013∗ −Infinity −1.1169 0.0124
X1 −0.6384∗ −Infinity −0.2851 <.0001
X2 0.8277∗ 0.4196 Infinity <.0001
X3 −0.6120∗ −Infinity −0.2790 <.0001
NOTE: ∗indicates a median unbiased estimate.

4. Conclusions

A laboratory experiment is designed to investigate the propagation of an internal solitary
wave over a submerged ridge. Analytical methods and a logistic regression model are
employed to examine the amplitude-based incident rate. Large sample theory may not be
suitable for data with small cell counts. This tends to make tests based on the asymptotic
normality of the MLEs unreliable.

The ridge height, lower layer water depth, and potential energy are considered in the
regression model. Once a model has been fitted to the observed values of a binary response
variable, it is essential to check the validity of the fit. We discuss some methods for exploring
the adequacy of the model and some diagnostic methods. The techniques used to examine the
adequacy of a fitted unconditional asymptotic logistic regression model and conditional exact
logistic regressions are known as diagnostics methods for testing the global null hypothesis.
Based on the analytical results we can draw the following conclusions.

(1) The unconditional asymptotic logistic model results lead us to the conclusion
that the three explanatory variables (ridge height, lower layer water depth, and potential
energy) are significant factors affecting the amplitude-based incident rate. Both deviance and
Pearson Chi-square tests are used to examine the goodness-of-fit of the model. The dispersion
parameter for the estimate of deviance (value/DF) is 0.7268, and the Pearson Chi-square
dispersion parameter is 1.2157. Preferably, this value should be very close to 1.00. The Pearson
parameter is slightly larger than the degrees of freedom. We note that there is still a little
overdispersion with this model which means that it needs to be modified.

(2) A look at the index plots for the Pearson residuals (Figure 2) and the deviance
residuals (Figure 3) shows that case 11 and case 27 are poorly accounted for by the model. In
the index plot of the diagonal elements of the hat matrix (Figure 4), case 49 is an extreme point
in the design space. After these observations (case 11, case 27, and case 49) are removed from
the data, the new revised model is refitted based on the remaining observations. The values
of the deviance and Pearson Chi-squares are now less than the degrees of freedom, and the
P-values for deviance and Pearson Chi-square are all >0.05 (1.0000, 0.9993, resp.). In other
words, this revised model seems to fit the data acceptably well.
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Table 8: Exact odds ratios.

95% Confidence
Parameter Estimate Limits P-value
X1 0.528∗ 0 0.752 <.0001
X2 2.288∗ 1.521 Infinity <.0001
X3 0.542∗ 0 0.757 <.0001
NOTE: ∗indicates a median unbiased estimate.

(3) When testing the global null hypothesis β = 0, only three Chi-square statistics
(likelihood ratio, score, and Wald tests) are generated. The P-values obtained by logistic
regression for the likelihood ratio test and score test are both <0.05. However, the null
hypothesis is not rejected for the Wald test. The seeming discrepancies in P-values obtained
between the Wald test and the other two tests are a sign that the large-sample approximation
is not stable.

(4) The results of exact conditional analysis from the exact logistic regression model are
shown in Table 4. The ridge height (X1), lower layer water depth (X2), and potential energy
(X3) are all significant in the joint results. The ridge height (X1), lower layer water depth
(X2), and potential energy (X3) effects are all significant factors affecting the amplitude-based
incident rate.

(5) A comparison of the parameters shown in Tables 6 and 8 and the odds ratio
estimates in Tables 6 and 8 shows that the parameters and the odds ratio estimates
obtained from conditional exact logistic regression are different from those obtained from
unconditional asymptotic logistic regression. As recommended by Stokes et al. [27], in cases
of small sample sizes where the approximate P-values are less than 0.10, it is a good idea to
look at the exact results. For this study, the small sample size and P-values indicate that an
exact analysis would be more appropriate.
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