

Designing and Specifying Mobility within the Multiagent
Systems Engineering Methodology

Athie L. Self
Air Force Personnel Center
Randolph Air Force Base

San Antonio, TX

ajself@juno.com

Scott A. DeLoach
Department of Computing and Information Sciences

Kansas State University
234 Nichols Hall, Manhattan, KS 66506

sdeloach@cis.ksu.edu

ABSTRACT
Recently, researchers have created many platforms and
applications for mobile agents; however, current Agent-Oriented
Software Engineering (AOSE) methodologies have yet not fully
integrated the unique properties of these mobile agents. This
paper attempts to bridge the gap between current AOSE
methodologies and mobile agent systems by incorporating
mobility into the established Multiagent Systems Engineering
(MaSE) methodology. We accomplished this by adding a move
command to the MaSE analysis models and then defined the
required transformations to incorporate the required functionality
into the design. Finally, we translated the design models into
Java-based agents that operate within a mobile agent environment.

1. Introduction
Dynamic agent systems have shown promise in solving certain
problems such as finding services and information on the Internet
and supporting mobile clients. These systems have shown an
advantage in robustness and functionality over other client-server
solutions, such as Remote Procedure Calls (RPC), messaging and
sockets [3]. We define dynamic agents as agents that possess one
of the following properties [7]:

• Cloning � the ability of an agent to create another instance of
itself at the same or a different location

• Instantiation � the ability of an agent to create instances of
another class of agent other than itself

• Mobility � the ability of an agent to move from machine to
machine in a network

These three properties, or traits, have been the focus of new
research in the distributed artificial intelligence arena with the
property of mobility receiving the most attention.

While software engineering aspects of using multiagent
systems are being addressed [16], [12] and many frameworks and
applications have been developed [11], [2], [8], popular
multiagent systems methodologies, such as GAIA [15],
MESSAGE [9], and MaSE [6], do not currently provide support
for mobile agents. The purpose of this paper is to describe how
we incorporated mobility into the MaSE methodology [6], which
is a general-purpose methodology for developing multiagent
systems. To incorporate mobility into MaSE, we gave the

designer the ability to use mobility to fulfill system goals.

The focus in this paper is strictly on the analysis and design
phases of mobile multiagent systems. We assume that the agent
determines when it is necessary to move. While other agents, or
the agent platform itself, may advise the agent to move, the
autonomous nature of agents allows the agent to determine
whether it will actually move. We do not address issues such as
system-generated moves that the agent cannot control due to
shutdown, load balancing, etc. We also assume that an
appropriate mobile agent platform handles the actual movement of
the agent using a protocol similar to FIPA�s Simple Migration
Protocol [7]. In this protocol, an agent sends a request to its
mobile agent platform, which terminates the agent and sends it to
the destination platform where it is restarted. While the platform
is responsible for movement, the agent is responsible for ensuring
it restarts in the appropriate state.

The questions of determining where to move, representation of
locations, determining which tasks and communications should be
retained and which should not, etc. are also not explicitly
discussed. The MaSE methodology provides models to allow the
designer to specify these and other mobility related questions as
he or she desires.

All examples in this paper were generated using the agentTool
system [4], which is an automated development environment that
supports the MaSE methodology. Each MASE model is specified
graphically and semi-automated transformations allow agentTool
to automatically generate designs based on role models and task
diagrams [14], [13].

The remainder of this paper is structured as follows. Section 2
provides a quick overview of the MaSE methodology with the
major focus being on the analysis and design phase models.
Section 3 covers mobility specifications in the analysis phase.
Section 4 presents how we capture mobility in the design phase.
Finally, Section 5 summarizes the paper and provides possible
areas for future research.

2. MaSE Methodology
Figure 1 presents a graphical overview of MaSE. MaSE consists
of two phases and seven steps. For the purposes of this paper, we
discuss only the output models of the analysis phase: role models
and concurrent tasks.

The result of the MaSE analysis phase is a set of roles that agents
will play, a set of tasks that define the behavior of specific roles,
and a set of coordination protocols between those roles. A role is
an abstract description of a function that an agent in the system
must perform to meet system level goals [6]. Roles must exhibit

This paper is authored by an employee(s) of the [U.S.] Government and is in the
public domain.

SAC 2003, Melbourne, Florida, USA

© 2003 ACM 1-58113-625-0/03/03...$5.00. 50

certain behaviors to accomplish the goals assigned to them. We
model these behaviors using a set of concurrent tasks. An
example Role Diagram is shown in Figure 2. There are three
roles (Search Manager, Search Bidder and Searcher), each with
one associated task (Fulfill Search Requests, Bid and Search).
The Contract Net protocol is defined between the Fulfill Search
Requests and Bid tasks, while the SearchRequest protocol is
defined between the Bid and Search tasks. The Search Manager
sends out bids for a search request. The winning Search Bidder
then passes the request to the Searcher who returns the results of
the search

Creating Agent
Classes

Require-
ments

Use Cases

Sequence
Diagrams

Deployment
Diagrams

Agent
Architecture

Capturing
Goals

Refining Roles

Assembling
Agent Classes

System Design

Applying Use
Cases

Goal
Hierarchy

RolesConcurrent
Tasks

Conver-
sations

Agent
Classes

Constructing
Conversations

Analysis
D

esign

Figure 1. MaSE Methodology

Concurrent tasks are specified graphically using Concurrent Task
Diagrams that are based on finite state automata [5]. Figure 3
describes the Search task from Figure 2. States within a
concurrent task diagram represent the internal processing while
transitions model the communication within the system and define
valid state transformations. Activities within states model the
internal processing that the roles perform. Thus, concurrent tasks
define the behavior of agents by tying together the internal
reasoning processes, interactions with other internal processes and
external interactions with other agents.

Search Manager

Fulfill Search
Requests

Search Bidder

Bid

Searcher

Search
ContractNet SearchRequest

Figure 2. Role Diagram for a Mobile Search System (MSS)

Concurrent tasks are categorized by their life span and
responsiveness. Task life spans are either persistent or transient.
Persistent tasks always have a null transition from the start state to
the first state. These tasks are started when the agent is created

and run until either the task or agent terminates. Transient tasks,
however, always have a trigger event on the transition from the
start state. These tasks are not started upon agent creation but
only when the agent receives its trigger event. Transient tasks
enable multiple concurrently executing tasks of the same type.

Figure 3 shows the concurrent task diagram for the Bid task in
Figure 2. The task starts in the Idle state and once an
announce(task) message is received from the Search Manager, the
costToPerform and acceptability activities in the Prepare Bid
State determine whether or not to bid on that task. A bid is sent
with a aBid(task,cost) message, and the task waits until it receives
an acknowledge message from the Manager. If the bid is rejected,
the task receives a sorry(task) message. If the bid is accepted, the
task sends a search(request) message to the Searcher and waits for
the results to send back to the Manager.

Idle State

Wait for Acknolwedge State

Wait for Bid Result State

Wait for Search Result State

Prepare Bid State

cost = costToPerform(task)
bid = acceptability(cost, task)

receive(sorry(reason), search) ^ send(sorry(reason, mgr)

receive(into(results), search) ^ send(info(results), mgr)

receive(announce(task, cost), mgr) ^ send(acknowledge, mgr);
send(search(request), search)

receive(acknowledge, mgr)[bid] ^ send(aBid(task,cost), mgr)

[NOT bid]receive(announce(task, cost), mgr)

receive(sorry(task),mgr)

Figure 3. Bid Task from MSS

Figure 4 shows the concurrent task diagram for the Search task.
This is a transient task and is started by the receipt of a
search(request) message from the Bidder role, which causes the
task state to transition to the Search state. This state contains the
find(request) internal activity, which is executed upon entering the
state. Depending on the value of the parameter results a message
is sent containing either the results or a sorry message.

Search State

results = find(request)

receive(search(request), bidder)

[results != null] ^ send(info(results), bidder)

[results == null] ^ send(sorry(reason), bidder)

Figure 4. Search Task from MSS

3. Analysis Phase
We model mobility in the analysis phase in a straightforward
manner � a simple move activity within a state in a concurrent task
diagram. This move activity returns two values: a Boolean value
and a reason value. The Boolean variable represents the results of
the move (either success or failure). The reason value provides an

51

explanation why the move failed, which provides the agent with
knowledge to successfully recover from moving failures. The
reason value is currently only useful if the selected agent platform
on which the agent execute supports it. In the future, this
functionality could be added to a standard such as MASIF [10].
Reasons for move failures might include the fact that the move
destination address is not operational, the agent�s current machine
is isolated from the network, or the host denies the move due to
security reasons, etc. The syntax for the move activity is shown
below.

<Boolean, Reason> = move(location)

Figure 5 shows how mobility might be added to the Search task of
Figure 4. In the Move Needed State, the three activities
searchDestination, getLocation and compare are used to
determine whether the requested information is at a different
location. If a move is needed, the task transitions to the Try Move
State. If the move is successful, the task begins searching. If the
move is unsuccessful, a sorry(reason) message is sent to the
Bidder.

Search State

results = find(request)

receive(search(request), bidder)

[results != null] ^ send(info(results), bidder)

[results = null] ^ send(sorry(reason), bidder)

Try Move State

<moved, reason> = move(dest)

Move Needed State

 dest = searchDestination(request)
 currLoc = getLocation()
 needMove = compare(dest, currLoc)

[NOT needMove]

[needMove]

[moved]

[NOT moved] ^ send(sorry(reason), bidder)

Figure 5. Search Task with Mobility

4. Design Phase
The MaSE design phase models consist of agent classes, the
communications defined between those classes and the
components that comprise those classes. Typically, tasks from the
analysis phase are transformed into components in the design
phase. These, possibly multiple, components define the internal
agent architecture for each agent defined by the designer. Besides
requesting moves, each component in a mobile agent must be able
to respond to a pending move by saving its internal state and
being able to restart at the new location. An Agent Component is
created for each agent that oversees the operation and the
interaction between components. In a mobile agent, the Agent
Component must be transformed to handle shutdown and re-
initialization of all of the agent�s components. A brief overview
of agent class and conversations is given in Sections 4.1 and 4.2
followed by a detailed discussion of the requirements for
components in Section 4.3.

4.1 Agent Classes
An Agent Class is a model for the types of agents that will exist in
the system and is similar to an object class from the object-
oriented paradigm except that an agent class is defined by the

roles it plays in the system and not by attributes and methods.
Every task that is associated with a role becomes a component of
the agent class playing that role in the system. Figure 6 shows the
Agent Class Diagram for the MSS system. The Search Manager
role was assigned to the Search Manager agent class while the
Search Bidder and Searcher roles were assigned to the Mobile
Searcher agent class.

Search Manager

Search Manager

Mobile Searcher

Search Bidder
Searcher

Figure 6. MSS Agent Classes

4.2 Conversations
States and transitions that describe external message passing
protocols are extracted from the component state diagrams and
used to create conversations. Conversations describe
communication between agents and are modeled as coordinating
finite state automaton (i.e., messages sent from one side of the
conversation are received by the other side). Once conversations
are extracted from component state diagrams, they are replaced by
an action that instantiates the conversation [14].

4.3 Components
Components are independent processing modules (possibly
implemented as objects) that comprise an agent. Components
provide a set of functions and may or may not have internal state.
Components are dynamic in nature, although certain components
may endure for the entire lifetime of its agent. Using MaSE and
its supporting tool agentTool [4], agent components are derived
directly from the tasks in the roles assigned to each agent class.
Therefore, each component can be classified as transient or
persistent, based on their parent task. To coordinate the execution
of these derived components, a standard Agent Component is also
synthesize for each agent via agentTool transforms. The Agent
Component controls the initiation of the other components,
handles conversation initiation messages from other agents, and
terminates the agent once its goals have been accomplished. Each
derived components is either mobile or non-mobile. A mobile
component contains at least one move activity while a non-mobile
component does not contain any move activities. Figure 7 shows
the default agent architecture generated by our semi-automated
transformation system, agentTool.

Agent
Component

Agent
Component

Component 1Component 1 Component 2Component 2

Conversation 1Conversation 1

Conversation 2Conversation 2
Conversation 1Conversation 1

Conversation 2Conversation 2

Conversation 3Conversation 3

Vertical Tasks

Inter-agent Communications

Task Control
� task instantiation
� message routing
� mobility

Figure 7. MaSE/agentTool Agent Architecture

52

4.3.1 Agent Component
There are three versions of the Agent Component � transient,
persistent and heterogeneous � that are determined by the types of
components that it must control. (A heterogeneous Agent
Component handles both transient and persistent tasks.) As
mentioned above, the Agent Component controls the initiation of
the other components and maintains the list of all active
components.

The Agent Component also handles the conversation initiation
messages sent from other agents in the system. This allows the
Agent Component to initiate transient components (they are not
started until needed) that are activated by messages from other
agents. For conversation initiation messages sent to existing
components, the Agent Component simply routs the message to
the appropriate component to handle the message.

If an agent class contains only persistent components (which may
terminate if they accomplish their goals), the Agent Component is
charged with terminating the agent once its goals have been
accomplished. In this case, the persistent components may
eventually fulfill all their goals and terminate, leaving only the
Agent Component running [14]. Thus, the Agent Component is
tasked with checking the status of the components regularly and
terminating the agent and when they are no active components.

Figure 8 shows the Mobile Searcher (Figure 5) Agent Component,
which contains both persistent and transient components. The
Agent Component is started at agent creation and transitions
automatically to the Start Persistent Comps State. If there is a
problem starting any of these components, the Agent Component
terminates the agent. If there are no problems then the Agent
Component transitions to an Idle State, waiting to receive
conversation initiation messages from other agents.

Determine Recipient State

c = getComponent(message)

Idle State

Start Comp State

c = createComp(message)

Update Component List State

addCompList(c)

[c !== null]

[c == null] / sorry(agent) [c == null]

[c !== null] / relay(message, c)

extReceive(message, agent)
extReceive(terminate, agent)

[NOT started]

[started]

Start Persistent Comps State

started = startComps()

Figure 8. Agent Component for Mobile Searcher Agent Class
Once the agent receives a message, the getComponent activity in
the Determine Recipient State checks to see if an active
component is the recipient of the message. If one of the active
components is the recipient, the relay activity delivers the
message to the component. If none of the active components is
the recipient, then the createComp activity in the Start Comp State
checks to see if the agent contains a transient component can be
initiated by the message. If the message does not initiate a
component then the agent has received a stray message and a
sorry conversation is started with the external agent. If the
message is the trigger for a transient component, that component

is started and the addCompList activity in the Update Component
List State adds the component to the active component list.

The Agent Component is also responsible for fulfilling much of
the agent mobility functions. It takes move requests from mobile
components and determines whether the agent should move. The
designer is responsible for adding the decision logic. If no logic is
added, move requests are automatically approved. The mobile
components send move request messages to the Agent Component
instead of directly to the agent platform to ensure that the work
being done by other components is not lost.

If a request for a move is accepted, the Agent Component informs
all components of the move by sending move required internal
messages according to the following rules:

1. If there is only one mobile component and that component is
a persistent component, then only the non-mobile
components need to receive a message

2. If there is only mobile component and that component is a
transient component, then all components need to receive a
message

3. If there are two or more mobile components in an agent
class, then all the components need to receive a message

The Agent Component also gathers the state information from all
components. Only after all the components have terminated will
the Agent Component request a move from the agent platform.
Thus, the Agent Component is the repository for all component
state information. After the agent has moved, the Agent
Component has the duty of restarting all components at the new
location that were active at the former location. Upon creation,
the components are sent their state information that was saved at
the agents� previous location.

Figure 9 shows the Agent Component from Figure 8 transformed
to handle the mobility requirements described above (existing
states and transitions from Figure 8 are shown in the shaded area).
If the component is being started for the first time, the Agent
Component transitions from the start state to the State Persistent
Comps State as before. If the agent has moved and is being
restarted at the new location then the Agent Component
transitions to the Reestablish State where the restore activity
restarts all the components that were active at the previous
location. When a reqMove message is received from a mobile
component, the Agent Component transitions to the Move
Decision State. The decision activity is the place where the
designer can insert logic as to how the agent decides to move. If
the move is denied then the moveDenied(reason) message is sent
to the mobile component and the Agent Component transitions
back to an Idle State. If the move is approved then the mobile
component that requested the move is sent a terminate message
and the Agent Component transitions to the Get Component List
State. If the agent class contains only one component then the
Agent Component transitions to the Try Move State. If not, a
moveReq message is broadcast to every active component. Once
all the replies have been received the Agent Component
transitions to the Try Move State. All the state information for the
agent and components is saved and the move(dest) activity
represents the call to the agent platform to request the move. If
the move is successful, the agent terminates and is restarted at the
new location. If the move fails, the agent is restarted on the

53

current machine and the components are all restarted by the
restore activity in the Reestablish State.

4.3.2 Mobile Components
A mobile component has to be transformed to include the
necessary mobility functions. First, the move activity from the
analysis phase is replaced with the ability to send internal move
request messages to the Agent Component. After generating a
move request, the mobile component also needs to save its current
state so it can be restarted in the proper state after the move is
completed. Finally, the mobile component must be able to
respond to a move required messages from the Agent Component.
Figure 10 shows the Search mobile component, automatically
derived from the Search concurrent task in Figure 5 by agentTool.

Determine Recipient State

c = getComponent(message)

Start Persistent Comps State

started = startComps()

Idle State

Start Comp State

c = createComp(message)

Update Component List State

addCompList(c)
[c !== null]

[c == null] / sorry(agent)
[c == null]

[c !== null] / relay(message, c)

extReceive(message, agent)

extReceive(terminate, agent)

[NOT started]

[started]

[stateinfo == null]

Reestablish State

compsStarted = restore(stateInof, moved, reason)

[stateinfo !== null]

[NOT compsStarted]

[compsStarted]

Move Decision State

 <reason, denied> = decision()

Try Move State

stateInfo = saveState(stateInfo)
<moved, reason> = move(dest)

Get Component List State

 list = getCompList()

[NOT denied] ^ terminate(comp)

[size(list) <= 0]

[moved]

[denied] ^ moveDenied(reason)

reqMove(dest, comp, stateInfo)

Wait State

Update

 stateInfo = saveState(stateInfo)
 list = remove(list, comp)

[NOT moved]

[size(list)>0] / broadCast(moveReq, list) read(stateInfo, comp)

[size(list) <= 0]

Figure 9. Agent Component for Mobile Searcher Agent Class

with Mobility Functionality

Search State

results = find(request)

search(request) [state == Move Needed]

[results != null] ^ send(info(results), bidder)

[results = null] ^ send(sorry(reason), bidder)

Try Move State

Move Needed State

 dest = searchDestination(request)
 currLoc = getLocation()
 needMove = compare(dest, currLoc)

[NOT needMove]

[needMove]

Restore State

 currLoc = getLocation()
<state, reason> = restart(stateInfo, currLoc)

start(stateInfo)

Move Received State

 stateInfo = saveCompState()
 comp = getCompName()

Move Called State

 stateInfo = saveCompState()
 comp = getCompName()

Wait State

read(stateInfo, comp)

^ reqMove(dest, comp, stateInfo)

terminate ^ read(stateInfo, comp)

moveDenied(reason) ^ sorry(reason)

[state == End] ^ sorry(reason)

moveReq

Figure 10. Mobile Search Component in MSS

The Search component is a mobile component and is started by
the internal message start(stateInfo). The getLocation and restart
activities in the Restore State determine the state in which the
component should begin executing. If the agent has successfully
moved as part of the search process and is restarting at the new
location, the component transitions directly to the Search State. If
the move was unsuccessful, the component transitions directly to
the end state and sends an internal sorry(reason) message to the
Bidder component. If there is a new search request then the
component transitions to the Move Needed State. The component
transitions to the Try Move State if a move is needed. The move
activity that was present in the task in Figure 4 has been removed

and replaced by two states and three transitions. The
saveCompState and getCompName activities in the Move Called
State prepare the reqMove message that is sent to the Agent
Component. The component then waits for a response. If a
terminate message is received the component sends its state
information to the Agent Component and terminates. If a
moveDenied(reason) message is received, then the component
sends an internal sorry(reason) message to the Bidder component.

4.3.3 Non-Mobile Components
A non-mobile component also has to be transformed to add the
ability to respond to a move required messages from the Agent
Component (including saving its current state) and restarting in
the proper state after a move. In actuality, this ability could exist
in any, or all states in the component state table. However, the
designer is given the choice of states in which move required
messages may be received. Figure 11 shows the Bid non-mobile
component automatically derived from the Bid task in Figure 3 by
agentTool.

Idle State

Wait for Bid Result State

Prepare Bid State

cost = costToPerform(task)
bid = acceptability(cost, task)

receive(announce(task, cost), mgr) ^ Conversation11-1(mgr)

[bid] / Conversation10-1(mgr, task, cost)

[NOT bid]
receive(announce(task, cost), mgr) / Conversation7-1(mgr)

Restore State

state = restart(stateInfo)

Move Received State

 stateInfo = saveCompState()
 comp = getCompName()

Null2 Wait for Search Result State

Null0

Null1
/ Conversation9-1(mgr, results)

info(results)

sorry(reason)

moveReq

receive(sorry(task), mgr) / Conversation12-1(mgr)

/ Conversation8-1(mgr, reason)
ready(stateInfo, comp)

start(stateInfo)

^ search(request)

Figure 11. Bid Component with Mobility Functionality

The Bid component is a non-mobile component and is started by
the internal message start(stateInfo). The restart activity in the
Restore State determines the state in which the component should
begin executing. In this case, the component transitions directly to
the Idle State whether the agent had successfully moved or had
just been created. Since, the Bid component is part of the Mobile
Searcher agent class it must check for moveReq messages from at
least one state. In this case, the designer chose only the Idle State.
Once a moveReq message has been received, the component
transitions to the Move Received State where the state information
is saved and then sent to the Agent Component using a
ready(stateInfo,comp) message.

For more detailed explanations of the functionality for non-
mobile, mobile and agent components that includes the definition
of formal transformations that convert the analysis models to
generic design models and then from generic design models to
mobile design models see the theses by Sparkman [14] and Self
[13].

5. Conclusions
Incorporating mobility into the analysis phase of the MaSE
methodology was accomplished with minimal impact. Adding
mobility to the design phase entailed defining requirements and
mapping those requirements to the different types of components,
including the agent component, that comprise a mobile agent
class. A semi-automated transformation system was integrated

54

into our agentTool environment [4] as a proof of concept. This
transformation system implemented all the transformations
discussed in this paper. These transformations are capable of
producing all the conversations between agents as well as the
internal design of the agent components. Several mobile
multiagent systems were developed using these transformations
[13].

Incorporating the other two dynamic agent properties namely
cloning and instantiation, is the main area for expanding this
work. Cloning and instantiation add to the power of a dynamic
agent system. Mobility is just a special case of cloning. Full
cloning capability would bring the advantages of parallel
computing and optimal distribution of tasks to a multiagent
system in order to solve performance bottlenecks. The decision to
clone should probably be the responsibility of the components, as
is the case with mobility, with the agent component carrying out
the details.

Mobile agent technology is a relatively new and exciting field in
the area of artificial intelligence and software engineering. This
research starts to bridge the gap between agent-oriented software
engineering methodologies and mobile agent systems. Merging
these two areas provides more power to solve the complex
problems in this new era of increasing mobile, distributed
computing.

6. Acknowledgements
The Air Force Office of Scientific Research sponsored this
research while both authors were at the Air Force Institute of
Technology. The views expressed in this paper are those of the
authors and do not reflect the official policy or position of the
United States Air Force, Department of Defense, or the U.S.
Government.

References
[1] Baumann, J., K. Rothermel, The Shadow Approach: An

Orphan Detection Protocol for Mobile Agents, Mobile
Agents. Second International Workshop, MA�98, 1998.
Stuttgart, Germany: Springer-Verlag.

[2] Bianchini, C. Fontes, D.S., do Prado, A.F. A Distributed
Software Agents Platform Framework. 1st International
Workshop on Software Engineering for Large-Scale Multi-
Agent Systems. May 29, 2002, Orlando, Florida.

[3] Chess, D., C. Harrison, and A. Kershenbaum, Mobile Agents:
Are They a Good Idea? Mobile Object Systems: Towards the
Programmable Internet. Second International Workshop,
MOS '9, 1996. Linz, Austria: Springer-Verlag.

[4] DeLoach, S. A. and Wood, M. Developing Multiagent
Systems with agentTool, in Y. Lesperance and C.
Castelfranchi, editors, Intelligent Agents VII - Proceedings
of the 7th International Workshop on Agent Theories,
Architectures, and Languages (ATAL'2000). Springer
Lecture Notes in AI, Springer Verlag, Berlin, 2001.

[5] DeLoach, S. A. Specifying Agent Behavior as Concurrent
Tasks: Defining the Behavior of Social Agents. Proceedings

of the Fifth Annual Conference on Autonomous Agents,
Montreal Canada, May 28 - June 1, 2001, ACM Press, pp.
102-103.

[6] DeLoach, S. A., Wood, M. F. and Sparkman, C. H.,
�Multiagent Systems Engineering�, The International
Journal of Software Engineering and Knowledge
Engineering, Volume 11 no. 3, pp. 231-258, June 2001.

[7] FIPA, Agent Management Specification, 2000:
www.fipa.org.

[8] Mamei, M. and Mahan, M. Engineering Mobility in Large
Multi Agent Systems: a case study in Urban Traffic
Management. 1st International Workshop on Software
Engineering for Large-Scale Multi-Agent Systems. May 29,
2002, Orlando, Florida.

[9] MESSAGE: Methodology for Engineering Systems of
Software Agents. Deliverable 1. Initial Methodology. July
2000. EURESCOM Project P907-GI.

[10] Milojicic, D., et al, MASIF: The OMG Mobile Agent System
Interoperability Facility, Mobile Agents. Second
International Workshop, MA�98, 1998. Stuttgart, Germany:
Springer-Verlag.

[11] Picco, G., A. Murphy and G.-C. Roman, Lime: Linda Meets
Mobility, in: D. Garlan, editor, Proc. of the 21 st Int.
Conference on Software Engineering (ICSE'99) (1999), pp.
368-377.

[12] Reyes, A. A. Introducing the MArSHLAnd Design
Optimization Tool for Mobile Multi-Agent Systems. 1st
International Workshop on Software Engineering for Large-
Scale Multi-Agent Systems. May 29, 2002, Orlando,
Florida.

[13] Self, Athie, Design and Specification of Dynamic, Mobile,
and Reconfigurable Multiagent Systems, MS thesis,
AFIT/GCS/ENG/01M-11. School of Engineering, Air Force
Institute of Technology, Wright Patterson Air Force Base,
OH, 2001.

[14] Sparkman, Clint, Transforming Analysis Models into Design
Models for the Multiagent Systems Engineering (MaSE)
Methodology, MS thesis, AFIT/GCS/ENG/01M-12. School
of Engineering, Air Force Institute of Technology, Wright
Patterson Air Force Base, OH, 2001.

[15] Wooldridge, M., Jennings, N.R., & Kinny, D. �The Gaia
Methodology for Agent-Oriented Analysis and Design.�
Journal of Autonomous Agents and Multi-Agent Systems. 3
(3), 2000.

[16] Zambonelli, F., Jennings, N.R., Omicini, A., and Wooldridge
M.J. Agent-Oriented Software Engineering for Internet
Applications. Coordination of Internet Agents: Models,
Technologies, and Applications, Chapter 13. Springer-
Verlag, March 2001.

55

