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ABSTRACT. An elementary inequality is proved in this note.
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I. INTRODUCTION AND RESULTS.

The following theorems present a series of closely related inequalities. The

form that was found originally is given first.

THEOREM i. If a, b _> 0 and n is a positive integer, then

n an-I a
n-2

b
2

b
n

(a + b
n

a + b + +’’’+ > (I i)n+ I 2

PROOF. Let Ix] be, as usual, the integer part of x, and let the
[n/2 ],

symbol be defined by
0
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Enl2]

o

x
0
+ x

1
+...+ X[n/2 ]

x0 + xI +...+ X[n/2]_ I

if n is odd

1+ x[n/2] if n is even.

Assuming, without loss of generality, that a > b, we divide through by a
n

in (I.I),

and set x b/a, obtaining

x
2 n n1+ x+ +...+ x > (1 + x)n+l 2

O-<x<- 1 (1.2)

Now

En/2]
(i + x)n * () (xi + xn-f)

o

and

n xn-ii + x + x
2 +...+ x <x

i +
0

so that we may rewrite (1.2) as

2- ()) (xi + xn-i) >- 0 0 < x -< I (1.3)

n n-I 2 n-2We now note that I + x > x + x > x + x >...> x
n-[n/2][n/2] + x This is

an example of the rearrangements inequality ([I ], p.261), since we can write

k n-k k+I/2 -I/2 n-k-I/2 XI/2X +X X X +X

and

k+l n-k-I k+I/2 1/2 n-k-I/2 -1/2
X + X X X + X X

k+I/2 n-k-i/2and for 0 < k _< [n/2] I, x and x

i/2
and x It follows that if we set

-1/2
are in the same order as x
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n-i
xi+x

a
i

x
I + x

n-i

2

if i < n/2

if n is even and i n/2

> >then a
0

-> a
I a[n/2 ]. If we also set

(n)b i n+l
2
n i

i I, 2, In/2]

-> b >-...> b[ and since (i.i) (1.3) are equalitiesit is clear that b I 2 n/2]

when a b, the sum of the b. is zero. (1.3) is then an immediate consequence of

the following obvious lemma, which is also related to the rearrangements inequality.

LEMMA. If k is a positive integer and a
I

> a
2

>...> a
k

>_ 0, and

b I
> b

2
>...> b

k
and b

I + b
2
+...+ b

k 0, then alb I + a2b2 +...+ akbk > 0.

COROLLARIES.

n )n-Ix -I > n(x-l)

n x+l.
n-I

x-I < n(x-l) (--)

x >_ 1 and n 0,1,2, (1.4)

0 _< x _< I and n 0,1,2, (1.5)

Inequality (1.4) is a sharpening of Hardy, Littlewood, and Polya’s (2.15.3)

for part of the latter’s range, while (1.5) is complementary to (2.15.3) for another

part of its range. These are immediate consequences of (1.2), which is valid for

all x _> 0 by Theorem i. (The case n 0 is not a consequence of Theorem I. but

is obvious; similarly (1.2) holds for n 0 if we interpret I + x + x
2 +...+ x

n

as 1 for that case.)

Setting x l+t in (1.4) and (1.5) gives us the inequalities

n-I
(l+t)

n
> l+nt(l+,) t > 0 and n 0,1,2, (1.6)

and
n-I

(l+t)
n

< l+nt(l+) -I _< t < 0 and n 0,1,2 (1.7)

Putting -t in place of t gives an alternative form:
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(l-t)
n-I

< l-nt(l-) 0 < t -< and n 0,1,2, (1.8)

Replacing t by I/t in (1.6) gives us

n-i
(t+l)

n > t
n + n(t+ ) t > 0 and n 0,1,2, (1.9)

This is better than (1.6) for t > 1 though not as good for t < (for n > 2).

Similarly, from (1.8) we obtain

n-I
(t_l)n < t

n I
n(t-) t > and n 0,1,2, (I.I0)

(1.6) is a sharpening of the observation that compound interest beats simple

interest: a period rate t, compounded for n periods, is better than simple

n-I
interest at the rate t(l+t/2)

(1.6) (i.i0) were obtained from (1.4) or (1.5) by invertible bilinear changes

of variable; similarly each of (1.4) and (1.5) may be obtained from the other by

replacing x by I/x. Thus (1.4)-(1.10) are equivalent, and equivalent to Theorem I.

Another bilinear transformation- setting x (l+t)/(l-t) in (1.4) gives us

(l+t)
n

(l-t)n > 2nt 0 < t < and n 0,1,2, (I.II)

which is obvious’. This provides a quick alternate proof of Theorem i., but one

which does not show the donnection with the rearrangements inequality.

The form of inequalities (1.4) (i. ii) suggests consideration of non-integral

n. The inequalities are equivalent in this precise sense; for any given n, one of

these inequalities holds for its stated range of values of the other variable

(x or t) if and only if all the other inequalities hold, for that n, for their

stated ranges of the other variable. Thus for each n we may choose which of (1.4)

(I.II) to study, at our convenience.

n nFor 0 < n < I (and 0 < t < I) the binomial expansion of (l+t) (l-t) is



ELEMENTARY INEQUALITY 535

and each of the coefficients () () is positive. It follows that I.

holds for n between 0 and I.

For n between I and 2, all of (), (), are negative. So for

I < n < 2 (and in fact I < n < 2), (I.II) holds with the inequality reversed.

For non-integral n > 2 we look at (1.6). Set

i + nt(l)n-I

f (t,n)
(l+t)

n

f(0,n) I. To show that (1.6) holds, it is sufficient to show that

- (l+t)n+l
(I + (I + ) I

is < 0 for t > 0, n > 2. Setting s n-2, the quantity in brackets is

t s( -) ( +) .
This is certainly negative when 1 st/2 is negative; when the latter is non-

negative, the whole quantity is

Summing up we have

st

< (z---) (e z_<o

THEOREM 2. Each of the inequalities (1.4) (I.II) holds also for non-lntegral

n, when 0 < n < I and when n > 2: for I < n < 2 each of (1.4) (i.ii) holds with

the direction of the inequality reversed.
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