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Abstract

Modifications in life-style and/or pharmacotherapies contribute to weight loss and ameliorate the metabolic profile of diet-
induced obese humans and rodents. Since these strategies fail to treat hypothalamic obesity, we have assessed the possible
mechanisms by which duodenal-jejunal bypass (DJB) surgery regulates hepatic lipid metabolism and the morphophysiology of
pancreatic islets, in hypothalamic obese (HyO) rats. During the first 5 days of life, male Wistar rats received subcutaneous
injections of monosodium glutamate (4 g/kg body weight, HyO group), or saline (CTL). At 90 days of age, HyO rats were
randomly subjected to DJB (HyO DJB group) or sham surgery (HyO Sham group). HyO Sham rats were morbidly obese, insulin
resistant, hypertriglyceridemic and displayed higher serum concentrations of non-esterified fatty acids (NEFA) and hepatic
triglyceride (TG). These effects were associated with higher expressions of the lipogenic genes and fatty acid synthase (FASN)
protein content in the liver. Furthermore, hepatic genes involved in f-oxidation and TG export were down-regulated in HyO rats.
In addition, these rats exhibited hyperinsulinemia, p-cell hypersecretion, a higher percentage of islets and p-cell area/pancreas
section, and enhanced nuclear content of Ki67 protein in islet-cells. At 2 months after DJB surgery, serum concentrations of TG
and NEFA, but not hepatic TG accumulation and gene and protein expressions, were normalized in HyO rats. Insulin release
and Ki67 positive cells were also normalized in HyO DJB islets. In conclusion, DJB decreased islet-cell proliferation, normalized
insulinemia, and ameliorated insulin sensitivity and plasma lipid profile, independently of changes in hepatic metabolism.
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Introduction

Obesity predisposes to insulin resistance and con-
tributes to the pathogenesis of type 2 diabetes (T2D) (1).
Insulin resistance also disrupts whole body lipid metabo-
lism, leading to hypertriglyceridemia and accumulation of
triglycerides (TG) in the liver, promoting nonalcoholic fatty
liver disease (NAFLD) (2). Insulin resistance is counter-
acted by an increase in insulin secretion, due to morpho-
logical and functional alterations in pancreatic B-cells.
However, when B-cell compensatory modifications cannot
be sustained, T2D is established (3,4).

The hypothalamus is a key regulator of body mass,
controlling food intake, energy expenditure, and body
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fat stores. Hypothalamic damage, promoted by genetic
defects, radiotherapy or the resection of a brain tumor
can lead to neuroendocrine dysfunctions resulting in
morbid obesity (5). Hypothalamic obese (HyO) patients
display hyperinsulinemia, insulin resistance, hypertrigly-
ceridemia, hyperleptinemia and NAFLD (6,7). Life-style
modifications, physical activity and/or pharmacotherapy
are used for weight loss in genetically and diet-induced
obesity (8), but often fail in HyO patients (9). An alternative
for these patients may be bariatric surgery, but the effects
of this procedure in HyO individuals are controversial
(5,9,10).


mailto:mlbonfleur@hotmail.com
http://dx.doi.org/10.1590/1414-431X20175858

DJB restores B-cell morphofunction in HyO rats

Duodenal-jejunal bypass (DJB) surgery seems to be a
good strategy to improve glucose homeostasis and NAFLD
in obese rodents, induced by hyper-caloric diet or genetic
alterations (11—14). However, information about the effects
of DJB upon hypothalamic obesity is scarce, possibly due
to a lack of experimental models that mimic the features
of this syndrome. The treatment of neonatal rodents with
monosodium glutamate (MSG) leads to hypothalamic lesions
that promote neuroendocrine dysfunctions and metabolic
disruptions, similar to those observed in HyO humans.
MSG-obese rats presented morbid obesity, NAFLD, glu-
cose intolerance, insulin resistance, hyperinsulinemia, hyper-
leptinemia, and pancreatic islet hyperfunction (15-17).
DJB surgery in MSG-treated rats does not decrease
adiposity and hepatic steatosis, but ameliorates body
glucose control and hepatic insulin action (18). Thus, we
aimed to better understand the mechanism of action by
which DJB surgery regulates hepatic lipid metabolism and
pancreatic islet morphophysiology in HyO rats.

Material and Methods

Induction of hypothalamic obesity and DJB surgery
protocol

Male newborn Wistar rats received a daily subcuta-
neous injection of MSG [4 g/kg body weight (BW), HyO
group], or hyperosmotic saline (1.25 g/kg BW, CTL group,
n=19) during the first 5 days of life. All rats were main-
tained on a 12-h light/dark cycle (lights on from 6:00 am to
6:00 pm) and controlled temperature (22 £ 1°C), with free
access to standard rodent chow (Biobase®, Brazil) and
water.

At 90 days of age, HyO rats were randomly submitted
to DJB (HyO DJB group, n=18) or sham surgery (HyO
Sham, n=12). Preoperative procedures were performed
as previously described by Meguid et al. (19). Rats were
deprived of food for 12 h and were anesthetized with
isoflurane (Isoforine®, Brazil). For DJB surgery, HyO rats
were laparotomized and a postpyloric transection was
made to separate the stomach from the duodenum. The
reconstruction of the intestinal passage was performed in
the terminolateral duodenojejunostomy 5 cm aboral of the
flexura duodenojejunalis. In HyO Sham rats, after the
laparotomy the stomach, duodenum and intestines were
massaged, and the incision was closed. Six HyO DJB rats
died from post-surgical complications (mortality rate 33%).
All experiments were approved by the Universidade Esta-
dual do Oeste do Parana Committee on Ethics in Animal
Experimentation.

Evaluation of obesity and biochemical parameters
BW was measured monthly during the experimental
period. The Lee index was calculated as follows: BW (g)"®/
nasoanal length (cm) x 1000 (20). Blood was obtained by
a cut in the tail tip from 8-h fasted rats, and glucose was
measured using a glucose analyzer (Abbott™, Optium
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Xceed, USA). Subsequently, the rats were euthanized by
decapitation and total blood was collected to obtain the
serum, which was used to measure TG, total cholesterol
(CHOL) and non-esterified fatty acids (NEFA) with stand-
ard commercial kits, according to the manufacturers’
instructions (Laborclin®, Bioliquid, Brazil and Wako®,
Germany, respectively). Serum insulin was measured by
radioimmunoassay.

Liver TG content and HOMA-IR

Fragments from the liver (right middle lobe; RML) were
collected and lipids were extracted by the Folch’s method
(21). The extract was evaporated and then diluted in
isopropanol, and TG was measured as described above.
Tissue insulin sensitivity was evaluated by the previously
validated homeostasis model assessment index of insulin
resistance (HOMA-IR) (22).

Static insulin secretion

Pancreatic islets were isolated by the collagenase
digestion of pancreases. For static incubation, groups of
four islets from each group were first incubated for 30 min
in Krebs-Ringer bicarbonate (KRB) solution containing:
115 mM NacCl, 5 mM KCI, 2.56 mM CaCl,, 1 mM MgCl,,
10 mM NaHCO;, 15 mM HEPES, supplemented with
5.6 mM glucose, 3 g BSA/L, and equilibrated with a
mixture of 95% 0,/5% CO, to give a pH of 7.4. This
medium was then replaced with fresh KRB buffer and the
islets were incubated for a further 1 h in the presence of
5.6 or 8.3 mM glucose. At the end of the incubation period,
aliquots of the supernatant were collected and maintained
at —20°C for posterior insulin measurement by radioim-
munoassay.

Pancreas morphometry and immunohistochemistry
The pancreas from all groups of rats was removed,
weighed and fixed for 24 h in 4% formaldehyde solution
(Sigma Aldrich Chemicals, USA). The tissue was then
embedded in Paraplast®™ (Sigma Aldrich Chemicals). From
each pancreas, five consecutive 7-um serial sections were
selected, and after an interval of 140 um in thickness,
five more consecutive sections were obtained. Three sec-
tions were randomly selected for insulin, two sections for
glucagon, and one for the Ki67 immunoperoxidase reaction.
For immunohistochemistry, Paraplast™ was removed, the
sections were rehydrated and washed with 0.05 M tris—
saline buffer (TBS) pH 7.4, and incubated with TBS
containing 0.3% H,0O, for endogenous peroxidase activity
blockade and permeabilized for 1 h with TTBS (0.1%
Tween 20 and 5 g/% of fat free milk in TBS). The sections
were incubated with a polyclonal guinea pig anti-insulin
(1:150; Dako North America, Inc., USA), or rabbit anti-glu-
cagon (1:50; Dako North America, Inc.), or rabbit mono-
clonal anti Ki67 (1:20; Spring Bioscience, USA) antibody at
4°C overnight. Subsequently, the sections were incubated
with rabbit anti-guinea pig IgG or goat anti-rabbit conjugated
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antibody with HRP for 1 h and 30 min. The positive insulin,
glucagon or Ki67 cells were detected with diaminobenzidine
(DAB; Sigma-Aldrich Chemicals) solution (10% DAB and
0.2% H,0, in TBS). Finally, the sections were quickly
stained with Ehrlich’s hematoxylin and mounted for micro-
scopic observation. All islets present in the sections were
covered systematically by capturing images with a digital
camera coupled to a microscope (Olympus DP71; Olympus
BX60, Japan). Pancreatic islet, B-cell and a-cell areas were
measured using the Image-Pro-Plus Media, Cybernetics
Software (USA). The islet, B-cell and a-cell masses were
calculated by the total islets, B-cell and o-cell areas
(% pancreas area) multiplied by pancreas weight (mg)
(17). The proliferation of islet cells is reported as the
percentage of nuclei in islets stained for Ki67 protein.

Isolation of RNA and qPCR

Total RNA from the RML of liver was isolated using the
PuriLink® RNA mini kit (Life Technologies, USA). Quanti-
fication of mMRNAs were performed using the 7500 Fast
Real-Time PCR System (Applied Biosystems, USA), and
the expression concentration of each amplified gene was
normalized to that of the glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) gene. The absolute amount of
gene expression was calculated by the use of standard
curves (108-10° copies/2 uL DNA molecules), produced
from the gene amplification products on 2% agarose gels.
Primer sequences used for rat gene are described in
Supplementary Table S1.

Western blot

For protein expression experiments, fragments of RML
of liver were solubilized in homogenization buffer (100 mM
Tris pH 7.5, 10 mM sodium pyrophosphate, 100 mM
sodium fluoride, 10 mM EDTA, 10 mM sodium vanadate,
2 mM PMSF and 1% Triton-X 100) at 4°C using a Polytron
MA 102/mini homogenizer (Marconi®, Brazil). The protein
concentration in the supernatants was assayed using a
commercial Bradford reagent (Bio-Agency Lab., Brazil)
and BSA for the standard curve. For SDS gel electro-
phoresis, the protein samples were homogenized with a
loading buffer containing dithiothreitol and heated at 95°C
for 5 min. Subsequently, the proteins were separated by
electrophoresis (100 pg protein/lane in 6.5% gels) and
transferred to nitrocellulose membranes. The membranes
were blotted with specific primary antibodies against ACC,
phospho-pACCS®"® (Cell Signaling Technology, USA),
FASN (Santa Cruz, USA), and CPT-1a (Abcam, Inc.,
USA). Visualization of specific protein bands was carried
out by incubating the membranes with secondary anti-
bodies, and images were captured using a PhotoDocu-
mentor (L-Pix Chemi Express, Loccus Biotecnology,
Brazil). Lablmage 1D software was used to analyze the
density of the bands (Loccus Biotecnology, SP, BRA). The
a-tubulin protein (Sigma-Aldrich Chemicals) was used as
a control of protein expression.
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Statistical analysis

Results are reported as means = SEM. Data were
analyzed using one-way ANOVA followed by the Tukey
post-test (P <0.05) with the GraphPad Prism® Software
version 5.00 (USA).

Results

General rat parameters

HyO rats showed a significantly lower BW at 2 months
of age; this weight remained lower compared to CTL rats
until the end of the experimental period (P <0.05). DJB
surgery did not modify BW in HyO DJB rats compared with
HyO Sham rats (Figure 1).

At the end of the experimental period, the final BW and
nasoanal length were lower in the HyO Sham rats com-
pared with CTL (both P <0.001). However, the HyO Sham
group displayed an enhanced Lee index and increases of
63 and 92% in the retroperitoneal and perigonadal fat
stores compared with CTL rats (P<0.01, P<0.001, and
P <0.001, respectively). At 2 months after DJB surgery, all
of these parameters were similar to those found in the
HyO Sham group (Table 1).

Serum and hepatic lipid profiles

We investigated the effects of HyO and DJB on body
lipid homeostasis. HyO Sham rats presented higher NEFA
serum concentrations, hypertriglyceridemia and higher TG
content in the liver (P<0.001). At 2 months after surgery,
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Figure 1. Body weight (BW) in control (CTL), hypothalamic obese
(HyO) Sham and HyO with duodenal-jejunal bypass (DJB) rats,
recorded during 5 months. Data are reported as means + SEM
(n=13-16). *P <0.05, HyO Sham and HyO DJB groups compared
to CTL (one-way ANOVA followed by the Tukey post-test).
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Table 1. Obesity parameters evaluated in control (CTL), hypothalamic obese (HyO)
Sham and HyO with duodenal-jejunal bypass (DJB) rats.

CTL HyO Sham HyO DJB
BW (g) 409 + 5° 286+ 17° 278 +15°
Nasoanal length (cm) 21.2+0.2° 17.8+0.4° 18.3+0.4°
Lee index 350+3.12 370+4.7° 366+5.2°
Retroperitoneal fat pad (% BW) 1.1+0.1° 1.8+0.1° 1.9+0.1°
Perigonadal fat pad (% BW) 1.3+0.1° 25+0.2° 23+0.2°

Data are reported as means + SEM (n=7-14). BW: body weight. P <0.05, different
superscript letters indicate significant differences (one-way ANOVA followed by the

Tukey post-test).

Table 2. Serum lipid parameters and triglycerides (TG) liver content in control (CTL),
hypothalamic obese (HyO) Sham and HyO with duodenal-jejunal bypass (DJB) rats.

CTL HyO Sham HyO DJB
Triglycerides (mg/dL) 120+ 4.0% 239+ 11.0° 142+8.32
Total cholesterol (mg/dL) 101+84 102+£8.1 102+8.5
NEFA (mEq/L) 0.68 +0.06° 1.14 £0.09° 0.89 +£0.04%
TG liver content (ug/mg liver) 5.0+0.4% 10+0.8° 75+0.7°

Data are reported as means £+ SEM (n=6-10 rats). NEFA: non-esterified fatty acids.
P <0.05, different superscript letters indicate significant differences (one-way ANOVA

followed by the Tukey post-test).

serum NEFA and TG were reduced by 42 and 26%,
respectively, in HyO DJB rats compared with HyO Sham
rats (P<0.001 and P<0.01). However, the hepatic TG
content in HyO DJB rats was similar to that of the HyO
Sham rats and higher than that of the CTL group. No
modifications in total serum CHOL values were observed
in the experimental groups (Table 2).

To better characterize hepatic lipid metabolism in HyO
rats, the expression of several genes and proteins involved
in de novo lipogenesis and fatty acid (FA) B-oxidation were
investigated. When compared to the CTL rats, HyO Sham
rats showed a higher expression of the hepatic lipogenic
mRNAs, LPK, ACC-1, FASN and SCD-1 (P<0.05, P<0.05,
P <0.001, and P <0.01, respectively), but reduced CPT-1a
and MTP gene expressions, key factors involved in f-
oxidation and in assembling of the TG-rich ApoB-containing
lipoproteins, respectively (P <0.05 and P <0.001; Figure 2).
However, only the hepatic protein content of FASN, an
enzyme that catalyzes the synthesis of long-chain FA from
acetyl-CoA and malonyl-CoA, was significantly higher in
the liver of HyO Sham rats compared with CTL animals
(P<0.05; Figure 3C). In addition, pACC/ACC protein
expression was significantly reduced in the liver of HyO
Sham rats (P<0.04: Figure 3B), indicating an increased
ACC activity and, therefore, higher FA synthesis. DJB sur-
gery failed to normalize hepatic gene and protein expres-
sions of the enzymes involved in de novo lipogenesis and
B-oxidation (Figures 2 and 3).
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Figure 2. LPK, ACC-1, FASN, SCD-1, ACO, CPT-1a and MTP
mRNA content in the livers of control (CTL), hypothalamic obese
(HyO) Sham and HyO with duodenal-jejunal bypass (DJB) rats.
Data are reported as means+*SEM (n=5-8). P<0.05, different
letters indicate significant differences (one-way ANOVA followed by
the Tukey post-test).
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Figure 3. Hepatic protein expressions of ACC
(A), pACCS®7%/ACC (B), FASN (C) and CPT-1a

(D) in control (CTL), hypothalamic obese (HyO)
| Sham and HyO with duodenal-jejunal bypass

(DJB) rats. Data are reported as means + SEM
(n=5-8 rats). P<0.05, different letters indicate
I significant differences (one-way ANOVA followed
by the Tukey post-test).
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Glucose homeostasis

HyO Sham rats presented normal fasting glycemia, but
higher insulinemia (P <0.02), indicating an impaired insulin
action in peripheral tissues, as indicated by the higher
HOMA-IR index in HyO Sham rats compared with CTL
(P<0.003). DJB surgery reduced the insulinemia to values
similar to those observed for the CTL; however, the HyO
DJB rats showed only a partial reduction in HOMA-IR
(Figure 4A-C).

The higher insulinemia, observed in the HyO Sham
group, was associated with enhanced pancreatic B-cell
responsiveness to glucose, since insulin secretion at
8.3 mM glucose in islets from HyO Sham rats was 1.9-fold
greater, than in CTL islets (P<0.05). The reduction in
insulinemia in HyO rats, observed at 2 months after DJB
surgery, was accompanied by a decrease in insulin release,
in response to 8.3 mM glucose in HyO DJB islets compared
with HyO Sham rats (P <0.01; Figure 4D).

Braz J Med Biol Res | doi: 10.1590/1414-431X20175858

Pancreatic islet morphology and morphometry

We analyzed whether the islet function modifications
induced by DJB surgery in HyO rats were due to altera-
tions in endocrine pancreas morphology. HyO Sham rats
presented 33% lower pancreas relative weight per BW
compared to the CTL rats (P<0.01). At 2 months after
DJB surgery, HyO DJB rats displayed a 1.6-fold increase
in pancreas relative weight compared with HyO Sham rats
(P <0.01; Table 3). Histological analysis of the pancreas of
CTL, HyO Sham and HyO DJB groups did not reveal any
significant difference in the islet architecture. The islets
from these groups were approximately spherical or oval
in shape, displaying a typical B-cell arrangement within
the islet core and a-cells at the periphery (Figure 5A).
However, the size of the islets, as well as the areas of
a- and B-cells, were smaller in HyO Sham rats than that
observed in the CTL pancreas (both P<0.001). In con-
trast, the pancreas of HyO Sham pancreas presented a
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Figure 4. Means + SEM (n=8-14) of A, serum glucose concentration, B, insulin concentration, and C, insulin sensitivity measured by the
HOMA-IR in fasted control (CTL), hypothalamic obese (HyO) Sham and HyO with duodenal-jejunal bypass (DJB) rats. D, Glucose-induced
insulin secretion in islets isolated from CTL, HyO Sham and HyO DJB rats. Groups of 4 islets were incubated for 1 h in the presence of 5.6
or 8.3 mM glucose. Data are reported as means + SEM obtained from 8-12 groups of islets in two independent experiments with 4 rats per
group. P<0.05, different letters indicate significant differences (one-way ANOVA followed by the Tukey post-test).

Table 3. Morphometric analysis of the pancreas from control (CTL), hypothalamic obese (HyO) Sham and
HyO with duodenal-jejunal bypass (DJB) rats.

CTL HyO Sham HyO DJB
Pancreas weight (% body weight) 1.2+0.08% 0.8+0.07° 1.3+0.072
Islet area (um?) 32384 + 1569% 22884 + 887° 19979+ 1012°
B-cell area (um?) 22466 + 10682 15082 + 570° 13432 +683°
a-cell area (um?) 6913 +532° 5319 +292° 4776 + 340°
Total islet area (% pancreas area) 0.9+0.07% 1.4+0.02° 0.7 +0.05%
Total B-cell area (% pancreas area) 0.7+0.07% 1.0+0.08° 0.5+0.05%
Total a-cell area (% pancreas area) 0.3+£0.07 0.4+0.05 0.2+0.02
Islet number per section 159+ 29 252 + 51 150+ 11
Number of islets analyzed 635 1007 598

Data are reported as means + SEM (n=4). P <0.05, different superscript letters indicate significant dif-

ferences (one-way ANOVA followed by the Tukey post-test).
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greater percentage of total islet and p-cell areas per
pancreas section than the CTL pancreas (P <0.001; Table
3). However, islets, B-cell and a-cell masses did not differ
between the HyO Sham and CTL groups (Figure 5B-D).
In contrast, HyO Sham pancreatic islets presented a
higher percentage of nuclei stained for Ki67 protein in
comparison to CTL islets (P<0.001; Figure 6A and B).
At 2 months after DJB surgery, HyO DJB pancreatic islets,
B and a-cell areas did not differ from those of the HyO
Sham group (Table 2), although significant reductions in
the total percentage of islet and f-cell areas per pancreas
section were evidenced in HyO DJB compared with the
HyO Sham group (P<0.001; Table 3). In addition, HyO
DJB pancreatic islets presented a reduced percentage of
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Figure 5. A, Representative images of pancreas
sections stained for insulin or glucagon. B, Islet,
C, B-cell masses, and D, a-cell masses in the
CTL, hypothalamic obese (HyO) Sham and HyO
with duodenal-jejunal bypass (DJB) pancreases.
Data are reported as means+ SEM (n=3-4).
P<0.05, different letters indicate significant
differences (one-way ANOVA followed by the
Tukey post-test).

o
CTL  HyO Sham HyO DJB

Ki67-positive nuclei compared to that of HyO sham rats
(P <0.001; Figure 6B).

Discussion

Hypothalamic obesity is a major and unsolved problem
in patients with hypothalamic lesions and has a major
negative impact on survival and quality of life (23). We,
herein, report data that provide evidence about the mech-
anism by which DJB surgery may regulate hepatic lipid
metabolism and endocrine pancreatic morphofunction in
HyO rats.

In accordance with our previous observations (15,16),
and similar to observations in HyO patients (6,7), with the
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exception of the lower BW, HyO Sham rats were
hypertriglyceridemic with higher serum NEFA and hepatic
TG concentrations. These alterations may be associated
with enhanced expression of de novo lipogenic genes
(LPK, ACC-1, FASN, and SCD-1) and FASN protein, and
ACC activation in the liver of HyO rats. In addition, the
higher concentrations of NEFA in the serum of HyO Sham
rats may enhance the accumulation of TG in the liver.
Circulating NEFAs are derived from three sources: the
diet, de novo FA synthesis and circulating FA (24). The
consumption of a high-fat or western diet leads to the
development of hepatic steatosis (14,25). Conversely, it
has been suggested that approximately 60% of liver fat is
derived from circulating NEFA in individuals who eat a
normal fat-containing diet (24). Since MSG hypothalamic
lesions do not enhance food consumption (15), but lead to
obesity and insulin resistance in skeletal muscle and
adipose tissue (26), this effect contributes to increased
plasma NEFA levels, due to increased lipid release from
adipose tissue, which enhances the FA source to the liver.
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Figure 6. A, Representative images of pancreas
sections stained for Ki67. B, Percent of Ki67
positive nucleus in the control (CTL), hypotha-
lamic obese (HyO) Sham and HyO with duode-
nal-jejunal bypass (DJB) pancreases. Arrows
represent the nucleus stained by Ki67. Data are

a reported as means+SEM (n=3-4). P<0.05,
different letters indicate significant differences
(one-way ANOVA followed by the Tukey post-
test).

CTL  HyO Sham HyO DIB

Furthermore, reductions in hepatic FA p-oxidation also
account for NAFLD (27). Although CPT-1a mRNA was
down-regulated in the liver of HyO rats, the hepatic
CPT-1a protein was not changed indicating that a post-
transcriptional modification occurs in the liver of these
rodents. However, MTP mRNA, which encodes a protein
that participates in the TG transfer to nascent apolipopro-
tein B to form very low-density lipoproteins (28), was
down-regulated in HyO Sham rats, indicating possible
impairment in hepatic TG export.

Previous observations using diet-induced obesity in
rodents demonstrated that the DJB intervention is bene-
ficial against liver fat deposition. At 8 weeks after DJB
surgery, high-fat diet rats treated with streptozotocin
presented reductions in ACC and FASN protein levels,
which lowered hepatic TG accumulation (25). In rats that
consumed a western diet, DJB also decreased circulating
and hepatic TG concentrations (14). Although HyO rats
displayed normal circulating TG and NEFA concentra-
tions, the expression of hepatic lipogenic genes was not
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decreased, nor was the expression of f-oxidation mRNAs
improved at 2 months after DJB surgery. Furthermore,
FASN protein and ACC activation were higher in HyO DJB
rats. This FA hepatic metabolic profile may contribute to
maintain the higher TG deposition in the liver of HyO DJB
rats. Conversely, the normalization of NEFA serum concen-
trations in HyO DJB rats may be due to the partial res-
toration of insulin action, as demonstrated by HOMA-IR
values in these rodents, suggesting that the improved
insulin action in adipose tissue can contribute to decrease
lipolysis and improve FA utilization by peripheral tissues.
Therefore, these data indicate that HyO pathophysiology
differs from other types of obesity. As such, it is plausible
that therapeutic strategies frequently used against nutri-
tion-related obesity do not provide full metabolic benefits
in HyO patients.

In contrast, HyO rats were normoglycemic, despite the
presence of a severe insulin resistance. Normoglycemia in
these rats was supported by hyperinsulinemia, provided
by insulin hypersecretion from the pancreatic -cells. Similar
features have been observed in HyO patients (6). Hyper-
insulinemia in hypothalamic lesions is frequently associ-
ated with the disruption of the autonomic nervous system
(ANS) in HyO humans and experimental rodents (29,30).
The ANS dysfunction is characterized by a lower inhibitory
sympathetic tone, associated with an augmented vagal
parasympathetic signaling to the pancreatic p-cells. Fur-
thermore, higher parasympathetic activity enhances $-cell
mass and secretion under normal and pathological con-
ditions (31,32). Accordingly, we recently demonstrated
that HyO pancreatic islets present a higher p-cell number
per islet, indicating that compensatory morphofunction
alterations in the HyO pancreas are accompanied by
enhanced islet-cell replication, induced by vagal hyperto-
nia, since truncal vagotomy in HyO rats normalized B-cell
amount per islet (17). In addition, we observed a higher
number of Ki67-positive cells in the HyO endocrine pan-
creas, a marker of islet-cell proliferation, which accounted
for the insulin hypersecretion from HyO islets. C57BI/6
mice, submitted to a high-fat diet, are reported to show an
expansion of their B-cell mass due to an increased f-cell
proliferation rate during the first week of the diet and
before the appearance of insulin resistance (4). This early
B-cell replication may occur due to increased parasym-
pathetic activity, since the vagus nerve controls cellular
proliferation in normal and pathological conditions, as
obesity (31,33,34).

DJB surgery, independent of changes in body adi-
posity, seems to be a good strategy to improve glucose
homeostasis in pre-diabetic and diabetic experimental
rodents and patients (13,18). However, the effects of DJB
intervention upon the morphofunction of the endocrine
pancreas are largely unknown. At 28 days after DJB
surgery, high-fat diet mice did not present modifications
in B-cell mass or B-cell proliferation (11). DJB surgery
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increased the B-cell area and reduced islet fibrosis after
12 months, in non-obese diabetic Goto-Kakizaki (GK)
rats (12). Our study is the first to demonstrate that DJB
normalizes islet-cell proliferation rate in HyO DJB rats.
This effect may contribute to the normalization of islet
and B-cell percentage per pancreas section in the HyO
pancreas, contributing to normalize the B-cell secretory
capacity. In addition, the improvement in hyperinsulinemia
and insulin sensitivity in HyO DJB rats (18), may also be
involved in such process.

The modifications in body glucose control and B-cell
function that occur following bariatric surgery are frequently
associated with the secretion of gut hormones such as
glucagon-like peptide (GLP)-1 and glucose-dependent
insulinotropic polypeptide (GIP) (12,35). These hor-
mones potentiate glucose-induced insulin release (the
so-called incretin effect) and regulate islet-cell survival
(36). However, in GK or in Zucker rats, DJB surgery
was not accompanied by an increase in GLP-1 and GIP
plasma concentrations (37,38). As such, our results sug-
gest that the benefits of bariatric surgeries upon endocrine
pancreatic morphofunction may be linked to alterations
in ANS function. A reduced vagal innervation close to the
proximal and distal stomach of high-fat diet mice, submit-
ted to Roux-en-Y gastric bypass (RYGB), was observed,
without alterations in the density of vagal fiber innerva-
tion to the pancreas (39). In accordance, lean Sprague-
Dawley rats, submitted to RYGB, presented reduced
activation of afferent and efferent fibers of the gastric
vagal branches, which disconnects the vagal signaling
from the stomach to the hindbrain (40).

In summary, our study is the first to show that, at
2 months after DJB, HyO rats did not reduce hepatic
TG accumulation due to the higher gene and protein
expression of de novo lipogenic enzymes, together with
reduced MTP mRNA, which probably impairs lipopoli-
protein assembly. However, DJB presented benefits on
endocrine pancreatic morphology in HyO rats, decreasing
islet-cell hyperplasia by reducing the cellular prolifera-
tion rate, which contributes to normalize insulin release,
insulinemia and, partly, the action of insulin.
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