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I present a numerical solution of linear and nonlinear stiff problems using the RK-Butcher
algorithm. The obtained discrete solutions using the RK-Butcher algorithm are found to
be very accurate and are compared with the exact solutions of the linear and nonlinear
stiff problems and also with the Runge-Kutta method based on arithmetic mean (RKAM).
A topic of stability for the RK-Butcher algorithm is discussed in detail. Error graphs for
discrete and exact solutions are presented in a graphical form to show the efficiency of
the RK-Butcher algorithm. The results obtained show that RK-Butcher algorithm is more
useful for solving linear and nonlinear stiff problems and the solution can be obtained for
any length of time.

Copyright © 2006 S. Sekar. This is an open access article distributed under the Creative
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1. Introduction

Mathematical modeling has been used more and more in many areas such as in sci-
ence, engineering, medicine, economics, and social sciences. Differential equations are
one of the important and widely used techniques in mathematical modeling. However,
not many differential equations have an analytic solution and even if there is one, usually
it is extremely difficult to obtain and it is not very practical. Thus, numerical methods
are truly a crucial part of solving differential equations which cannot be neglected. Since
the late 18th century, numerical methods for solving differential equations have been de-
veloped continuously by many mathematicians. Later on in the 20th century, this subject
made great improvements in the context of modern computers.

Among the models using differential equations (DEs), ordinary differential equations
are frequently used to describe various physical problems, for example, motions of the
planet in a gravity field like the Kepler problem, the simple pendulum, electrical circuits,
and chemical kinetics problems.
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An ordinary differential equation (ODE) has the form

y′(x)= f
(
x, y(x)

)
, (1.1)

where x is the independent variable which indicates the time in a physical problem and
the dependent variable y(x) is the solution. Moreover, since y(x) could be an N-dimen-
sional vector-valued function, the domain and range of the differential equation f and
the solution y are given by

f :R×RN −→RN ,

y :R−→RN .
(1.2)

The above equation (1.1) where f is a function of both x and y is called “nonau-
tonomous.” However, by simply introducing an extra variable which is always exactly
equal to x, it can be easily rewritten in an equivalent “autonomous” form below, where f
is a function of y only:

y′(x)= f
(
y(x)

)
. (1.3)

Even though many problems are naturally expressed in the nonautonomous form, the
autonomous form of differential equation (1.3) is preferred for most of the theoretical
investigations. Furthermore, the autonomous form has some advantages in numerical
analysis since it gives a greater possibility that numerical methods can solve the differen-
tial equation exactly.

The differential equation by itself is not enough to find a unique solution. Hence,
some other additional information is needed. However, if all components of y are given
at a certain value of x, that is, “initial conditions,” then the differential equation is called
an “initial value problem (IVP)” which is closely and naturally involved with physical
modeling.

An initial value problem with the given initial condition y(x0)= y0 has the structure

y′(x)= f
(
x, y(x)

)
, y

(
x0
)= y0, (1.4)

in nonautonomous form and

y′(x)= f
(
y(x)

)
, y

(
x0
)= y0, (1.5)

in autonomous form.
Runge-Kutta methods are being applied to determine numerical solutions for the

problems which are modeled as initial value problems (IVPs) involving differential equa-
tions that arise in the fields of science and engineering by Alexander and Coyle [1], Mu-
rugesan et al. [5–9], Shampine [14], and Yaakub and Evans [15, 16]. Runge-Kutta meth-
ods have both advantages and disadvantages. Runge-Kutta methods are stable and easy
to adapt for variable step size and order. However, they have difficulties in achieving high
accuracy at reasonable cost, which was discussed recently by Butcher [2, 3].
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Murugesan et al. [7, 8] have analyzed different second-order systems and multivariable
linear systems via RK method based on centroidal mean. Park et al. [11, 12] have applied
the RK-Butcher algorithm to optimal control of linear singular systems and observer de-
sign of singular systems (transistor circuits).

Murugesan et al. [10] and Sekar et al. [13] applied the RK-Butcher algorithm to in-
dustrial robot arm control problem and second-order IVPs. In this paper, I introduce
the RK-Butcher algorithm for finding the numerical solution of linear and nonlinear stiff
problems with more accuracy.

2. RK-Butcher algorithm

In [3], Butcher developed a new 6 stage order-5 RK method based on Taylor series to
solve a first-order equation of the form (1.4).

Let h denote the interval between equidistant values of x, then the fifth-order RK-
Butcher algorithm formula of the (n+ 1)th increment in y is computed as

fifth-order predictor

yn+1 = yn +
1

90

(
7k1 + 32k3 + 12k4 + 32k5 + 7k6

)
; (2.1)

fourth-order predictor

y∗n+1 = yn +
1
6

(
k1 + 4k4 + k6

)
; (2.2)

local truncation error estimate (EE)

EE= yn+1− y∗n+1, (2.3)

where

k1 = h f
(
xn, yn

)
,

k2 = h f
(
xn +

h

4
, yn +

k1

4

)
,

k3 = h f
(
xn +

h

4
, yn +

k1

8
+
k2

8

)
,

k4 = h f
(
xn +

h

2
, yn− k2

2
+ k3

)
,

k5 = h f
(
xn +

3h
4

, yn +
3k1

16
+

9k4

16

)
,

k6 = h f
(
xn +h, yn− 3k1

7
+

2k2

7
+

12k3

7
− 12k4

7
+

8k5

7

)
.

(2.4)



4 Stiff problems-RK-Butcher algorithm

3. Stability

The Runge-Kutta tableau given below is for the order-5 explicit method with 6 stages:

0

1
4

1
4

1
4

1
8

1
8

1
2

0 −1
2

1

3
4

3
16

0 0
9

16

1 −3
7

2
7

12
7

−12
7

8
7

7
90

0
32
90

12
90

32
90

7
90

1
6

0 0
4
6

0
1
6

Consider the standard test problem y′ = λy, where λ is a constant and also complex in
nature and it is used to determine the stability region of the method. The exact solution of
this linear test problem y′ = λy is bounded, if Re(λ)≤ 0. If the different order of Runge-
Kutta method is applied to this test problem, then the “stability function” R(z) is defined
by

Re(z)= 1 + zbT(I − zA)−11. (3.1)

However, to derive the stability function, let z = hλ. Then,

Y1 = y0,

Y2 = y0 +
h

4
F1 =

(
1 +

z

4

)
y0,

Y3 = y0 +
h

8
F1 +

h

8
F2 =

(
1 +

z

8
+
z

8

(
1 +

z

4

))
y0,

Y4 = y0− h

2
F2 +hF3 =

(
1− z

2

(
1 +

z

4

)
+ z
(

1 +
z

8
+
z

8

(
1 +

z

4

)))
y0,

Y5 = y0 +
3h
16

F1 +
9h
16

F4

=
(

1 +
3z
16

(
1 +

z

4

)
+

9z
16

(
1− z

2

(
1 +

z

4

)
+ z
(

1 +
z

8
+
z

8

(
1 +

z

4

))))
y0,
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Y6 = y0− 3h
7
F1 +

2h
7
F2 +

12h
7

F3− 12h
7

F4 +
8h
7
F5

=
(

1− 3z
7

+
2z
7

(
1 +

z

4

)
+

12z
7

(
1 +

z

8
+
z

8

(
1 +

z

4

))

− 12z
7

(
1− z

2

(
1 +

z

4

)
+ z
(

1 +
z

8
+
z

8

(
1 +

z

4

)))

+
8z
7

(
1 +

3z
16

(
1 +

z

4

)
+

9z
16

(
1− z

2

(
1 +

z

4

)
+ z
(

1 +
z

8
+
z

8

(
1 +

z

4

)))))
y0,

(3.2)

where

F1 = λy0,

F2 = λ
(

1 +
z

4

)
y0,

F3 = λ
(

1 +
z

8
+
z

8

(
1 +

z

4

))
y0,

F4 = λ
(

1− z

2

(
1 +

z

4

)
+ z
(

1 +
z

8
+
z

8

(
1 +

z

4

)))
y0,

Y5 = λ
(

1 +
3z
16

(
1 +

z

4

)
+

9z
16

(
1− z

2

(
1 +

z

4

)
+ z
(

1 +
z

8
+
z

8

(
1 +

z

4

))))
y0,

Y6 = λ
(

1− 3z
7

+
2z
7

(
1 +

z

4

)
+

12z
7

(
1 +

z

8
+
z

8

(
1 +

z

4

))

− 12z
7

(
1− z

2

(
1 +

z

4

)
+ z
(

1 +
z

8
+
z

8

(
1 +

z

4

)))

+
8z
7

(
1 +

3z
16

(
1 +

z

4

)
+

9z
16

(
1− z

2

(
1 +

z

4

)
+ z
(

1 +
z

8
+
z

8

(
1 +

z

4

)))))
y0.

(3.3)

Hence,

y1 = y0 +
h

90

(
7F1 + 32F3 + 12F4 + 32F5 + 7F6

)

= y0

(
1 + z+

1
2
z2 +

1
6
z3 +

1
24

z4 +
1

120
z5 +

1
720

z6
)
.

(3.4)

Note that 1 + z + (1/2)z2 + (1/6)z3 + (1/24)z4 + (1/120)z5 + (1/720)z6 is the stability
function, R(z), which is the first 6 terms of exp(z) series. This illustrates that the stability
function for an explicit Runge-Kutta method with 6 stages and order 5 is

R(z)= 1 + z+
z2

2!
+
z3

3!
+
z4

4!
+
z5

5!
+
z6

6!
. (3.5)
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Figure 3.1. Stability regions for explicit Runge-Kutta methods of order 2 to 5: (a) p = 2; (b) p = 3;
(c) p = 4; (d) p = 5.

The plots of the boundaries of the stability regions defined by above functions are shown
in Figure 3.1, where the unshaded part represents the stable region. In each case, the
stability region is the bounded set enclosed by the curves. To find the boundaries, that is
finding the values of z for which |R(z)= 1|, let 1 + z+ (z2/2!) + ···+ (z6/6!)= exp(i2πθ)
and find the roots of the polynomial. For example, when p = 6,

1 + z+
z2

2!
+
z3

3!
+
z4

4!
+
z5

5!
+
z6

6!
= ei2πθ ,

(
1− ei2πθ

)
+ z+

z2

2
+
z3

6
+
z4

24
+

z5

120
+

z6

720
= 0.

(3.6)

In Figure 3.1, p = 2 and p = 3 mentioned Runge-Kutta methods second and third orders,
p = 4 mentioned RKAM and p = 5 mentioned RK-Butcher algorithm.
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4. Stiff problems

Even if there exists the numerical solution to a differential equation, certain types of
differential equations are difficult to solve, in fact, they need certain types of numeri-
cal methods. This phenomenon known as “stiffness” was first recognized by Curtiss and
Hirschfelder [4]. Stiffness occurs when some components of the solution decay much
more rapidly than others. These problems have highly stable exact solutions but have
highly unstable numerical solutions. There are several ways of characterizing “stiffness”
and one way of understanding is looking at the Lipschitz constant. Stiff problems typi-
cally have a large Lipschitz constant; however, many of them have a more moderate size
one-sided Lipschitz constant.

Definition 4.1 (Butcher [3]). The function f : [a,b]×RN →RN is said to satisfy a “one-
sided Lipschitz condition” if there exists a “one-sided Lipschitz constant” l, such that for
all x ∈ [a,b] and all y,z ∈RN ,

〈
f (x, y)− f (x,z), y− z

〉≤ l‖y− z‖2, (4.1)

where the norm is defined by ‖y‖2 = 〈y, y〉 assuming that there exists an inner product
on RN .

Therefore, the Lipschitz constant could be large while the one-sided Lipschitz constant
could be small, or even negative. The following theorem leads me to deduce the following
result.

Theorem 4.2 (Butcher [3]). If f satisfies a one-sided Lipschitz condition with one-sided
Lipschitz constant l, and y and z are solutions of y′(x)= f (x, y(x)), then for all x ≥ x0,

∥
∥y(x)− z(x)

∥
∥≤ exp

(
l
(
x− x0

))∥∥y
(
x0
)− z

(
x0
)∥∥. (4.2)

Notice from this result that the distance between any two solutions will not increase
rapidly or may even decrease if the equation has an adequate one-sided Lipschitz con-
stant. Since stiffness is closely related to the behaviour of perturbations to a given solu-
tion, it is important to find out the effect of small perturbations with a one-sided Lipschitz
condition.

Consider

y′(x)= f
(
x, y(x)

)
(4.3)

with y(x), a solution, and εY(x), a small perturbation to the given solution. Replace y(x)
in (4.3) by y(x) + εY(x) and expand the solution in a series in powers of ε up to the second
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order, then get

y′(x) + εY ′(x)= f
(
x, y(x)

)
+ ε

∂ f

∂y
Y(x). (4.4)

Subtract (4.3) from (4.4) and simplify it, then finally obtain the equation which controls
the behaviour of the perturbation,

Y ′(x)= ∂ f

∂y
Y(x)

= J(x)Y(x),
(4.5)

where J(x) is the Jacobian matrix of f (x, y(x)). I can use the spectrum of eigenvalues of
J(x) to characterize stiffness. The eigenvalues of J(x) determine the growth rate of the
perturbation with a moderate change in the value of the solution and a very small change
in J(x) in a time interval Δx. The existence of one or more large and negative values of λ,
where λ∈ σ(J(x)) and where x ∈ Δx indicates that stiffness is present.

5. Examples of stiff problem

Stiffness can be understood by the practical difficulty found in numerical calculation
as well. The stiff problems are impossible or very difficult to solve by explicit methods,
mainly because the small bounded stability region of explicit methods forces the numer-
ical method to take very small step sizes for the smooth solution. Two examples of stiff
problems are given here to observe how explicit and implicit methods work for these
problems.

Example 5.1 (stiff linear problem). Consider the stiff system of three linear ordinary dif-
ferential equations with corresponding initial conditions of the form (1.4),

⎡

⎢
⎢
⎣

y′1(x)

y′2(x)

y′3(x)

⎤

⎥
⎥
⎦=

⎡

⎢
⎢
⎣

0 1 0

−1 0 0

−L 1 L

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

y1(x)

y2(x)

y3(x)

⎤

⎥
⎥
⎦,

⎡

⎢
⎢
⎣

y1(0)

y2(0)

y3(0)

⎤

⎥
⎥
⎦=

⎡

⎢
⎣

0
1
ε

⎤

⎥
⎦, (5.1)

where L=−25 and ε = 2.
The analytic solution is

⎡

⎢
⎢
⎣

y1(x)

y2(x)

y3(x)

⎤

⎥
⎥
⎦=

⎡

⎢
⎢
⎣

sin(x)

cos(x)

sin(x) + εexp(Lx)

⎤

⎥
⎥
⎦, (5.2)

which is drawn in Figure 5.1.
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Figure 5.1. Analytical solution of Example 5.1, stiff linear problem, exact solution on [0,1].
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Figure 5.2. RKAM solution of Example 5.1 with n= 4 and 8.

The results of using the RKAM and RK-Butcher algorithm methods for solving this
stiff problem on the interval of [0,1] are presented in Figures 5.2, 5.3, 5.4, 5.5, 5.6, and
5.7. Figures 5.2–5.4 show that the RKAM method definitely seems to have difficulty ap-
proximating y3 while y1 and y2 are computed without difficulties. Especially, the ap-
proximations with n = 10 and n = 15 are hopeless. However, the RK-Butcher algorithm
method performs perfectly well even for n as low as 4 as shown in Figures 5.5–5.7.
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Figure 5.3. RKAM solution of Example 5.1 with n= 12 and 16.
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Figure 5.4. RKAM solution of Example 5.1 with n= 20 and 30.
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Figure 5.5. RK-Butcher algorithm solution of Example 5.1 with n= 4 and 8.
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Figure 5.6. RK-Butcher algorithm solution of Example 5.1 with n= 12 and 16.
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Figure 5.7. RK-Butcher algorithm solution of Example 5.1 with n= 20 and 30.

Example 5.2 (stiff nonlinear problem (the Kaps problem)). Consider the stiff system of
two-dimensional Kaps problem with corresponding initial conditions of the form (1.4),

[
y′1(x)

y′2(x)

]

=
[−1002y1(x) + 1000y2(x)2

y1(x)− y2(x)
(
1 + y2(x)

)

]

,

[
y1(0)

y2(0)

]

=
[

1
1

]

. (5.3)

Analytic solution is

[
y1(x)

y2(x)

]

=
[

exp(−2x)

exp(−x)

]

, (5.4)

which is drawn in Figure 5.8.
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Figure 5.8. Analytical solution of Example 5.2, stiff nonlinear problem, exact solution on [0,10].
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Figure 5.9. RKAM solution of Example 5.2 with n= 4 and 8.

In Figures 5.9, 5.10, 5.11, 5.12, 5.13, and 5.14, the computed solutions of this prob-
lem using the RKAM and RK-Butcher algorithm method on the interval of [0,10] are
displayed. Even using a large number of steps, the RKAM method performs poorly. How-
ever the RK-Butcher algorithm method easily gives a good approximation.

From these two examples, it is clearly confirmed that the RKAM method is not suitable
but the RK-Butcher algorithm method is appropriate for stiff problems.
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Figure 5.10. RKAM solution of Example 5.2 with n= 12 and 16.
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Figure 5.11. RKAM solution of Example 5.2 with n= 20 and 30.
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Figure 5.12. RK-Butcher algorithm solution of Example 5.2 with n= 4 and 8.
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Figure 5.13. RK-Butcher algorithm solution of Example 5.2 with n= 12 and 16.
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Figure 5.14. RK-Butcher algorithm solution of Example 5.2 with n= 20 and 30.

6. Conclusions

The RKAM method is simple. It uses only four pieces of information from the past and
evaluates the driving function only four per step. However, the RKAM method is not very
practical for computational purpose since considerable computational effort is required
to improve accuracy. The study of stability of the RK-Butcher algorithm reveals that it
(RK-Butcher algorithm) converges faster than the other standard ordinary differential
equation solvers (see Butcher [3]). The stability regions are given in Figure 3.1. From
Figures 5.2–5.7 and Figures 5.9–5.14, one can predict that the error is less in RK-Butcher
algorithm when compared to the RKAM method. This RK-Butcher algorithm provided
a momentum for advancing numerical methods for solving linear and nonlinear stiff
problems.
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