The Greenstone plugin architecture

lan H. Witten David Bainbridge
Computer Science Dept Computer Science Dept
University of Waikato University of Waikato
New Zealand New Zealand

+64 7838-4407
davidb @cs.waikao.ac.nz

+64 7838-4346
ihw@cs.waikato.ac.nz

ABSTRACT

This note describes how the Greenstone digital library system
uses “plugins” to import documents and metadata in different
formats, and associate metadata with the appropriate
documents. Plugins that import documents can perform their
own format conversion internally, or take advantage of
existing conversion programs. Metadata can be read from the
input documents, or from separate metadata files, or are
computed from the documents themselves. New plugins can be
written for novel situations.

Categories and Subject Descriptors:

H 3.7 Digital Libraries: systems issues.
General Terms: Algorithms, Design.

Keywords: DL architecture, metadata, Greenstone software.

1. INTRODUCTION

Flexible digital library systems need to be able to accept
documents and metadata in many different forms. Documents
may be available in web-oriented formats such as HTML and
XML, or in word-processor formats such as Microsoft Word or
RTF, or expressed in page description languages such as
PostScript or PDF. Metadata may also be available in many
different forms: embedded in the documents, in metadata files,
in spreadsheets, or even encoded into file naming
conventions; or it may be extracted from the documents
themselves. Digital library designers must either insist that
users adopt a prescribed scheme for document and metadata
specification, or implement flexible, extensible, ways of
allowing different formats to be accommodated.

The Greenstone digital library software uses an extensible
architecture [1]. Input documents and metadata specifications
are imported using software modules called “plugins.” These
convert documents and metadata into a uniform XML
representation (which includes the possibility of referencing
external resources) that is then used throughout the system.
There are plugins for standard document formats and standard
metadata formats. Plugins are even used to traverse the
directory hierarchy in which source documents are
stored—this admits the possibility of cross-referencing
metadata with source documents based on the filename path.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

JCDL °02, July 13-17, s002, Portland, Oregon, USA.

Copyright 2002 ACM 1-58113-513-0/02/0007...$5.00.

Gordon Paynter Stefan Boddie
University of California Computer Science Dept
Riverside University of Waikato
California, U.S. New Zealand

+1909 787-2279 +64 7838-6038
gordon.paynter@ucr.edu sjboddie @cs.wakato.ac.nz

New plugins can be written to accommodate new document and
metadata types.

2. THE PLUGIN PIPELINE

Greenstone collections typically involve documents and
metadata in several different formats, and for each format there
must be a plugin that can process it. Plugins fit together into a
cascaded pipeline that provides a highly configurable
workflow system. The order of plugins in the pipeline is
determined by the order in which they are listed in the
collection’s configuration file. Conceptually, there are three
types of plugin: structural, markup, and extraction; we give
examples below.

The import process is initiated by feeding the name of the top-
level directory that contains the source documents into the
pipeline. This name is passed from plugin to plugin until one
of them signals that it can process the file. Under normal
operating conditions, any filename that names a directory is
processed by a “structural” plugin called RecPlug (for
“recursive plugin”) that lists all files in the named directory
and feeds their names, one by one, into the pipeline. In general
this list includes further subdirectories, which will be
processed in the same way. RecPlug is the normal way of
traversing the directory structure associated with a collection.
However, it can easily be adapted for particular situations,
such as when certain files or directories need special treatment,
or the names of directories are significant for metadata
assignment purposes.

Microsoft Word documents, to take just one example of a
document type, are processed into Greenstone’s standard XML
form by a “markup” plugin called WORDPlug. The text and
metadata that WORDPIlug identifies are passed into a
secondary pipeline of “extraction” plugins, again determined
by the collection’s configuration file. These plugins extract
“metadata” (we use the term in an extended sense) from the file,
such as acronyms, dates and e-mail addresses.

If an item reaches the end of the pipeline without being
processed by any plugin, the system generates a warning
message and moves on to the next item. The process stops
when the queue is empty.

3. PLUGINS

Plugins are written in a standard object-oriented fashion and
utilize an inheritance structure to minimize code duplication.
They all derive from a basic object called BasPlug, which
performs universally-required operations like creating a new
Greenstone document to work with, assigning an object
identifier, and handling the sections in a document. The
implementation does not enforce a rigid distinction between
the three types of plugins because in practice there is

considerable overlap in functionality. This allows, for
example, structural plugins to be enhanced with markup
capabilities and vice versa—a useful ability when metadata
and documents are represented separately in the file system. As
another example, it simplifies the triggering of the cascading
pipeline, when a particular markup plugin needs to pass a
document on to an extraction plugin for further processing.
Finally, it increases efficiency of operation because there is no
need to physically pass large volumes of textual data from one
extraction plugin to the next.

The inheritance hierarchy distinguishes two special categories
of markup plugin: conversion plugins and splitter plugins,
and appropriate high-level functionality is provided for each
type. Conversion plugins are those that use existing external
programs to convert a particular format to either HTML or text
form and add them back into the pipeline. Splitter plugins
process files (such as e-mail formats) that contain several
documents per file, and provides functions for splitting them
into separate documents for the processing pipeline. To be
useful, BasPlug, ConvertToPlug and SplitPlug must each be
further subclassed into fully-functioning plugins that are used
in the actual pipeline.

Plugins are written in the Perl language, and new ones can be
added that process document formats not handled by existing
ones, format documents in some special way, assign metadata
specified in new formats, or extract new kinds of metadata from
the document text. Given the established body of plugins
available, the best way to write a new plugin is usually to find
an existing one that does something similar and modify it. The
object-oriented structure encourages subclassing particular
plugins to add new features.

4. DOCUMENT PROCESSING PLUGINS

Table 1 lists the plugins used for widely-used document
formats. TEXTPIug interprets a plain text file as a simple
document. HTMLPlug processes HTML files. It extracts Title
metadata based on the HTML <title> tag; other metadata
expressed using HTML’s metatag syntax can be extracted too.
It also parses and processes any links that the file contains.

TEXTPlug Plain text.
HTMLPlug HTML, replacing hyperlinks appropriately.
WordPlug Microsoft Word documents.
PDFPlug PDF documents.
PSPlug PostScript documents.

EMAILPIlug E-mail messages, recognizing author, subject,
date, etc.

BibTexPlug Bibliography files in BibTex format.
ReferPlug Bibliography files in refer format.
SRCPlug Source code files.
ImagePlug Image files for creating a library of images.
SplitPlug Splits a document file into parts.
ZIPPlug Uncompresses files.
BookPlug Specially marked-up HTML.
GBPlug Project Gutenberg E-text.
TCCPlug E-mail documents from Computists’ Weekly.
PrePlug HTML output from the PRESCRIPT program.

Table 1 Document processing plugins

Links to other files in the collection are trapped and replaced
by references to the corresponding documents within the
digital library. Several options are available with this plugin,
including a switch for when source documents are derived
from a set of mirrored web sites.

WORDPIlug imports Microsoft Word documents. There are
many variants on this format—even Microsoft programs
sometimes have conversion failures. PDFPlug imports
documents in PDF, Adobe’s “Portable Document Format.”
Both these plugins use independent programs to convert
source files to HTML.

PSPlug imports documents in PostScript. It works best if a
standard conversion program is already installed on your
computer, but if not the system resorts to a simple text
extraction algorithm. EMAILPlug imports files containing e-
mail, and deals with common formats such as are used by the
Netscape, Eudora, and Unix mail readers. Each source
document is examined to see if it contains an e-mail, or several
joined together in one file, and if so the contents are
processed. The plugin extracts Subject, To, From, and Date
metadata.

ZIPPlug handles compressed and/or archived input formats. It
relies on standard utility programs being present. The final
four entries in Table 1 are one-off plugins for particular
collections.

5. PLUGIN OPTIONS

The collection configuration file can supply options to a
plugin that modify its behavior. For example:

plugin WordPlug -input encoding iso 8859 1

fixes the character encoding for Word documents to be ISO
8859-1 rather than relying on the default. Aside from ASCII
and Unicode, the input_encoding option has some 30 other
possible values, including about 15 for languages such as
Chinese, Cyrillic, Greek, Hebrew; 5 ISO standards; and 10
different Windows standards. The default value, auto,
automatically determines the character encoding for each
document individually using an automatic language
identification module.

This option is implemented by BasPlug, and therefore by all
plugins that inherit from it. There are several others. One
specifies which files a plugin can process, in terms of a set of
filename patterns. Each plugin has a default value; HTMLPlug’s
is an expression that includes filenames with the extension
.htm or .html regardless of case. Another option specifies files
that are to be blocked, and not passed further down the list of
plugins. HTMLPlug blocks files with such extensions as .gif,
.png and .jpg because they do not contain any text or metadata
but are embedded in documents when they are viewed.

Plugins can define their own options as well as inheriting base-
level ones. Thus they can augment the set of possible options
with ones that are meaningful in particular contexts.

6. REFERENCES

[1] Witten, L.LH., McNab, R.J., Boddie, S.J. and Bainbridge, D.
(2000) “Greenstone: A comprehensive open-source
digital library software system.” Proc Digital Libraries,
113-121

