Hindawi

Complexity

Volume 2018, Article ID 3469325, 16 pages
https://doi.org/10.1155/2018/3469325

Research Article

WILEY

Hindawi

Enabling the Analysis of Emergent Behavior in
Future Electrical Distribution Systems Using Agent-Based

Modeling and Simulation

Sonja Kolen), Stefan Dihling

, Timo Isermann, and Antonello Monti

Institute for Automation of Complex Power Systems, E.ON Energy Research Center, RWTH Aachen University,

MathieustrafSe 10, 52074 Aachen, Germany

Correspondence should be addressed to Sonja Kolen; skolen@eonerc.rwth-aachen.de

Received 2 June 2017; Revised 6 December 2017; Accepted 22 January 2018; Published 21 February 2018

Academic Editor: Liz Varga

Copyright © 2018 Sonja Kolen et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In future electrical distribution systems, component heterogeneity and their cyber-physical interactions through electrical lines
and communication lead to emergent system behavior. As the distribution systems represent the largest part of an energy system
with respect to the number of nodes and components, large-scale studies of their emergent behavior are vital for the development
of decentralized control strategies. This paper presents and evaluates DistAIX, a novel agent-based modeling and simulation tool to
conduct such studies. The major novelty is a parallelization of the entire model—including the power system, communication
system, control, and all interactions—using processes instead of threads. Thereby, a distribution of the simulation to multiple
computing nodes with a distributed memory architecture becomes possible. This makes DistAIX scalable and allows the inclusion
of as many processing units in the simulation as desired. The scalability of DistAIX is demonstrated by simulations of large-scale
scenarios. Additionally, the capability of observing emergent behavior is demonstrated for an exemplary distribution grid with a

large number of interacting components.

1. Introduction

The integration of new technologies enabling the energy
transition towards an efficient, environment-friendly, and
overall sustainable energy system increases the complexity of
distribution systems immensely. New technologies encom-
pass renewable energy sources, storage systems, informa-
tion and communication infrastructures, and new control
approaches. The rise in system complexity is a result of
the diversity of these technologies with respect to their
individual characteristics, time-wise properties, and level of
controllability of their behavior. Considering the growing
complexity of the system and the different levels of interaction
of components, it can be expected that its overall nature
cannot be determined based on the behavior of individual
components [1]. The state of the system will no longer be
given by the states of the components, but results from their
nonlinear cyber-physical interactions. The specific evolution,

which is a result of interactions in the system and does not
coincide with any of the components’ behaviors, is called
emergent behavior [2].

Emergent behavior is in contradiction with linear system
behavior because a linear superposition of subsystems” behav-
iors results again in a linear system with full predictability and
easy calculation. In emergent systems, nonlinear interactions
between system components preempt linearization of the
system behavior [2], making classical small-signal model-
ing impossible. To analyze the system behavior of future
distribution systems at a meaningful scale prior to their
implementation in the real world, a scalable modeling and
simulation approach is required which is able to create the
emergent system behavior based on nonlinear interactions of
the system’s components. The tool DistAIX (for DISTributed
Agent-based sImulation of compleX power systems) pre-
sented in this paper includes the following contributions
addressing this requirement:

http://orcid.org/0000-0002-1858-3641
http://orcid.org/0000-0002-7146-3868
http://orcid.org/0000-0003-1914-9801
https://doi.org/10.1155/2018/3469325

(i) Components: a system component is modeled as
an agent with respect to the component’s electrical,
communicative, and control behavior.

(ii) Emergent behavior: system behavior results from
agents’ cyber-physical interactions. Edges between
agents model the infrastructures of the system that are
used for interactions of components, that is, electrical
lines and communication links.

(iii) Scalability: the agent-based model is parallelized
using processes with respect to the electrical topology
of the system under study. This allows a distributed
simulation of the model on multiple computing
nodes.

Agent-based modeling is used for the definition of compo-
nents as autonomous elements of a multiagent system. Other
approaches such as metaheuristics have been previously used
for analysis and optimization problems in complex energy
systems [3]. This approach is not considered here because
we do not target a search for the solution of an optimization
problem, but the observability of a system behavior that
emerges from components’ interactions. Agent-based mod-
eling has been proven to be a powerful method for modeling
emergent behaviors of complex systems [4, 5]. Specialized
simulation tools for agent-based modeling in general [6]
and power system modeling and simulation in particular
[7] have been proposed in the literature. For example, the
tool GridLAB-D is capable of coupling the modeling of the
domains power, thermal, control algorithms, and market in
an agent-based modeling approach.

DistAIX is not the attempt of a GridLAB-D duplicate,
but it aims specifically at improving scalability of agent-based
modeling and simulation for distribution systems. GridLAB-
D uses a power-flow module with an algebraic solver for
the computation of currents and voltages of the system [7].
This limits its scalability to the one of the algebraic power-
flow module. A parallelization using POSIX threads has been
proposed for GridLAB-D [8]. Parallelization with threads
instead of processes limits the number of usable computing
nodes to one due to general memory locality restrictions of
threads [9].

DistAIX parallelizes the computation of the agent-based
model with processes and makes use of multiple distributed
computing nodes, for example, as available in computing
centers. The memory can be spread over multiple computing
nodes as each process has its own memory address space.
By using distributed memory and computing architectures,
the simulation of large, for example, nation-sized, energy
systems is possible [10]. We propose and combine methods
that address the arising challenges for distribution system
simulation, such as distributed power-flow computation and
message handling.

For a combined modeling and simulation of power
system, communication system, and control, several cosimu-
lation platforms have been proposed in the literature [11-16]
coupling different tools for distribution system, transmission
system, communication, or market simulations. In addition
to the stand-alone usage, DistAIX also extends the pool of
modeling and simulation tools that can be cosimulated with

Complexity

others. A co-simulation of multiple large-scale distribution
systems with DistAIX coupled with the simulation of a
transmission system using a different tool is a possible use
case. For example, the platform GridSpice [14] could be
used as scaling interface if a respective interface is added to
DistAIX. As we focus on the presentation and analysis of
DistAIX, cosimulation with other tools is not considered here
and left for further research.

Models of the components’ behaviors are required to
embed the possibility that emergent behavior, that is, non-
linearity, plays a critical role in the final solution. These
models can either be derived from literature or be found
experimentally. Especially for the control behavior, DistAIX
can serve as a testing environment during development of
a future control strategy. New component behavior models
can be developed using DistAIX. Despite the individual
behaviors of the components, the determination of their
electrical as well as communication interactions is vital for
an analysis of emergent behavior. Efforts have been made
for the identification and formalization of the calculation of
interactions on electrical level [17]. Combining electrical with
communication interactions and cyber-physical interactions
in one scalable modeling and simulation tool is one of the
contributions of this work.

Unlike traditional energy system simulation tools, for
which [18] provides an overview, DistAIX does not target a
system level solution. A fully decentralized implementation
of the iterative forward-backward sweep method [19] is
used for the determination of voltages and currents at all
nodes. For this method, only the local neighbors in the
electrical grid need to be known to each node and component
[19]. No system level solver for the power-flow calcula-
tion is required which eases the distribution of the model
to multiple processes. Communication links are modeled
based on individual properties such as latencies. Messages
are exchanged between components along these links and
are routed from one process to another where and when
necessary. Thereby, all interactions of components can be
calculated by distributed computing resources.

We believe that a simulative study of new control strate-
gies for future distribution systems at large-scale is an essen-
tial part on the way towards realization. Distribution systems
are the largest part of the electrical supply system with
respect to the number of electrical nodes and components.
In our opinion, a resilient analysis of emergent behavior
of distribution systems requires a model that includes all
components and their behaviors. For that reason, modeling
and simulation for such systems need to be scalable. We
present a simulation tool that finds a useful parallelization of
an agent-based model for a given set of computing resources
and distributes the computation to these resources. DistAIX
is designed to keep the computation time for large-scale
simulations of emergent system behavior manageable while
at the same time enabling a highly flexible modeling of
individual component behaviors in agents.

The paper is organized as follows: Section 2 introduces
the challenges and related research in the field of scalable
agent-based modeling and simulation of energy systems. In
Section 3, DistAIX is presented in detail while Section 4

Complexity

defines the evaluation methodology. Section 5 discusses the
results and Section 6 concludes this work.

2. Scalable Agent-Based Modeling and
Simulation of Energy Systems

Modeling and simulation of complex agent-based energy sys-
tems face the following challenges when the size of the system
under study and/or the number of available computing nodes
grows:

(1) Computation of power-flow
(2) Interagent data flow
(3) Result data acquisition.

A scalable modeling and simulation tool needs to address the
aforementioned challenges. An outline on solutions found
in the literature and how DistAIX makes use of them is
discussed in the following subsections.

2.1. Computation of Power-Flow. For the execution of a dis-
tribution system model on distributed computation resources
it is essential that methods working without a centralized
point of knowledge on all system variables are chosen. This
is especially important for the calculation of voltages and
currents in the system under study. Hence, a decentralized
power-flow calculation is needed, which can be formulated in
the intended way. This topic has been extensively investigated
in recent years, resulting in several decentralized power-flow
formulations.

In [20, 21] the grid is divided into a set of subgrids.
Two neighboring subgrids share common buses, the so-
called boundary buses. For each subgrid, the power-flow
is solved independently and the injected power from all
neighboring subgrids is calculated subsequently considering
the voltage mismatch of boundary buses. This process is
repeated iteratively until the power-flow solutions of all
subgrids converge. While the overall solution is found in a
decentralized way, the power-flow computation within one
subgrid is carried out centrally using algorithms such as
Newton-Raphson.

Other approaches aim at solving the Gauss-Seidel algo-
rithm in a decentralized way [22]. Each node calculates
its voltage using the previously calculated voltage of all
neighboring nodes. The new voltage value is passed to the
next node which then also updates its own voltage. In
this approach the calculation is performed on node level.
However, the convergence of Gauss-Seidel can be consid-
ered comparatively slow. In [23] an accelerated Gauss-Seidel
implementation using FPGAs is presented. Their approach
is not compatible with the requirement for a decentralized
power-flow calculation as mentioned above.

Another algorithm that can be used for decentralized
power-flow calculation of radial power grids is the so-called
forward-backward sweep method. It has been used for agent-
based smart grid simulation [24, 25] and consists of three
iteratively repeated steps [19]:

(1) Calculation of nodal currents: at each node, the
current injections into all components connected to a

node are calculated for a given nodal voltage. In the
first iteration, all nodal voltages are initialized with
the rated voltage. The nodal currents are obtained by
summing up all component currents of a node.

(2) Backward sweep: starting at the last node of each
feeder, the current flows through all branches are
calculated by applying Kirchhoft’s current law at the
nodes.

(3) Forward sweep: starting at the slack node, all node
voltages are updated based on the branch impedances
and the previously calculated branch currents.

Note that there are also other formulations of the forward-
backward sweep method which calculate power-flows instead
of current flows in the backward sweep [26]. Forward-
backward sweep provides considerable advantages for an
agent-based simulation. The most important ones are as
follows:

(i) The calculation is performed on node level and is
therefore highly decentralized. The electrical system
behavior emerges from the electrical interactions of
agents.

(ii) The algorithm makes use of the radial structure
of distribution grids. As a result, the processing of
forward and backward sweep in each feeder can be
computed in parallel.

(iii) The electrical behavior of grid components is calcu-
lated independently for each component in the first
step. Hence, this step can be parallelized.

(iv) Sufficient convergence has been shown for this algo-
rithm [27].

For DistAIX, we choose the forward-backward sweep tech-
nique presented in [19] as the given advantages ensure the
required scalability feature and allow a system analysis based
on the behavior and interactions of single components. Since
the algorithm makes use of the structure of a distribution grid
it is not able to deal with meshed grids. Extensions described
in literature solve this problem for weakly meshed grids [19]
such as electrical distribution systems.

2.2. Interagent Data Flow. The separation of a distribution
system model into subparts for distributed computation
demands an interagent data flow organization that handles
the distributed memory architecture in a scalable way. Intera-
gent data flow means the cyber-physical interactions of agents
which can take place within a model subpart and between
different model subparts. Two approaches addressing this
challenge have been identified in existing agent-based mod-
eling and simulation frameworks [28]:

(i) Message boards: Flame [29]
(ii) Agent copy and update: RepastHPC [30].

Both frameworks use the Message Passing Interface (MPI)
to parallelize the simulation on multiple computing nodes.
Flame uses a message board in each process for the realization

of agent interactions. Agents use the message board in their
process to exchange data with other agents and messages are
broadcast via MPI either to all or to a set of other agents.

The agent copy and update approach of RepastHPC is
illustrated in Figure 1 for a small example with two processes
and two agents. The methodology is introduced in [30].
Agent A in process 1 requires data of agent B that belongs
to process 2 and vice versa. The required data can be voltage
and currents, for example. In RepastHPC, process 1 creates
a copy of agent B in its own memory space. Process 2 does
the same for agent A. If agent A in process 1 needs to
access data of agent B, it reads from the copy in process 1
and not from the original agent. Agent-networks between
original and copy agents within the same process (red arrows
in Figure 1) are called SharedNetworks in RepastHPC and
are maintained in their own data structure. Copies are only
created for agent links that go across processes, that is, across
subparts of the model. Whenever required, the copies can
be updated with the state of the original agents by calling
an MPI-based synchronization method of RepastHPC (blue
arrows in Figure 1). In contrast to Flame, this method does
not use broadcast but asynchronous message sending and
receiving via MPL. In the example, the copy of agent B in
process 1 is updated with the state of the original agent
B and the copy of agent A is updated with the state of
the original agent A. The state of the agent copy is never
transferred back to the original agent. Thereby, frequent
interprocess communication is avoided and the programmer
has full control on the points in time when copy updates are
necessary.

As has been shown in [28], RepastHPC’s scalability
outperforms the one of Flame because of this difference
in the realization of agent interactions. Also, the memory
consumption of RepastHPC stays constant for increasing
number of processes used in the simulation while Flame’s
memory consumption increases [28]. Due to these benefits,
RepastHPC is used for the implementation of DistAIX. Two
agent network structures (SharedNetworks) are used in each
process to organize physical and cyber interactions of agents.
For more details on the implementation refer to Section 3.5.

2.3. Result Data Acquisition. Storing of simulation time
dependent and independent data should put only minimal
stress on the computation resources while at the same time
the analysis of result data and postprocessing have to be
flexible and convenient. The following two problems need to
be solved in an efficient way by a data acquisition solution:

(i) Store huge amounts of data per simulation time step.

(ii) Read specific result data for postprocessing and anal-
ysis.

Connecting the simulation to a database system is one
possible solution; for example, GridLAB-D offers an interface
to a MySQL database [31]. Relational databases such as
MySQL and PostgreSQL are useful for storing simulation
time independent data, that is, the metadata of the agents
and the model. However, they have problems in processing
large amounts of data at once in either direction, writing

Complexity

to or reading from the database. Benchmarks have shown
that NoSQL databases have a better performance when it
comes to fast storing of large amounts of data [32, 33]. For
these reasons, DistAIX is interfaced with both a PostgreSQL
database for meta information and a NoSQL database cluster
based on Cassandra for storing simulation time dependent
data in a scalable database system.

With respect to the huge amounts of data that need to be
acquired by the database system, serialization of data seems to
be a good option. Protocol Buffers [34] have proven to be an
efficient method for data serialization and deserialization in
other fields of application [35, 36] and are therefore explored
here for the decrease of time to write data to the Cassandra
database.

3. Modeling and Simulation with DistAIX

DistAIX is presented in this section. Section 3.1 discusses how
RepastHPC is used for the parallelization of a simulation and
Section 3.2 discusses the distribution of agents to processes.
In Section 3.3 we comment on the time step whereas details
on the modeling of agent behaviors and all agent types
are provided in Section 3.4. Section 3.5 focuses on agent
interactions and discusses the computation of communica-
tion as well as electrical interactions. Finally, the setup of a
simulation is addressed in Section 3.6.

3.1 Parallelization with RepastHPC. RepastHPC uses MPI
to parallel a simulation on a high performance computing
(HPC) system. A simulation is launched via mpiexec with
options specifying the hosts to use and the number of
processes to start. Each process executes one part of the agent-
based distribution system model. In DistAIX, this is reflected
by a C++ class Model which defines how each process is
configured, for which agents it is responsible, and which
connections exist among agents in this process and to agents
in other processes. The Model class also defines the schedule
of a process and data that need to be synchronized with other
processes.

Figure 2 shows the schedule of a process. The first step is
the initialization and encompasses the creation of all agents
of the process and all electrical connections between agents
in this process. Further, the electrical connections to agents
in other processes are established by the creation of copies of
these agents in the process. If these copies were not created,
electrical connections between agents belonging to different
processes would be missing in the simulated model. This
would lead to wrong simulation results. The model is kept
synchronous and consistent by updating copies with the state
of the original agent according to the copy update method
explained in Section 2.2. Agent copies are updated between
each step of the process schedule (white boxes in Figure 2)
and also during the forward-backward sweep step to reach
convergence.

After the initialization, a process executes simulation
steps for a given simulation step size (loop in Figure 2).
The agent messages and individual control behaviors are
processed in step 2. This part of the simulation considers

Complexity

Memory process 1 Memory process 2

- - - Electrical link
> Read from copy
—> Update copy

@ Original agent X

' Copy of agent X

FIGURE 1: RepastHPC’s agent copy and update synchronization.

(1) Initialization

(2) Process agent messages |, No
and control strategy

l

(3) Forward-backward
sweep until convergence

(4) Advance step

FIGURE 2: Schedule of each process as defined in Model C++ class.

the communication network infrastructure (how commu-
nication links are modeled is explained in Section 3.5) as
well as the control strategy under study. At the beginning
of step 2, agent messages have to be synchronized between
processes. After that, a process executes the behaviors of all
of its agents independently for each agent. Step 3 of a process
is the calculation of current and voltage at each node using the
iterative forward-backward sweep method until convergence.

The calculation of the forward-backward sweep algo-
rithm is parallelized according to its three phases as explained
in Section 2.1. Similar to the message processing, the cal-
culation of nodal currents is done independently of other
agents. The algorithm iterates backward and forward through
the grid topology in sweeps. During a sweep, only one node
per feeder can be active. After a sweep is completed, an
agent copy update is required to synchronize newly computed
values of currents and voltages at electrical agent connections
spanning over two processes. The three phases of the forward-
backward sweep algorithm are repeated until convergence
is reached. Step 4 of a process is composed of preparing
the next simulation time step, that is, saving results of
this step and resetting internal state variables used during
forward-backward sweep iterations. This final step is done
independently for each agent.

3.2. Distribution of Agents to Processes. Agents need to be
distributed to processes in such a way that processes wait for
others the least amount of time. The topology of the electrical
grid influences a good distribution of agents as only one agent
per feeder can be active in the forward-backward sweeping
at once. It can be expected that the number of processes

beneficial for the parallelization depends on the electrical
topology of the system and is therefore limited.

We adapt a node scheduling method [37] to work with
contiguous sequences of successive nonbifurcating nodes
of the electrical grid, called workitems in the following.
Workitems are the parts of the grid in which only one node
can be active in forward-backward sweeping at once. The
electrical topology of the grid under study is analyzed at the
start of a simulation. Workitems are determined by parsing
the graph topology of the grid under study with a depth-first-
search algorithm. The distribution of node agents to processes
works in the following steps:

(1) Leaf node agents and their depth in the topology are
determined.

(2) If the number of processes available is m, the m
deepest leaf node agents are selected (or less if there
are less than m leaf nodes in the topology).

(3) The m workitems in which the selected m leaf node
agents are included are assigned to one of the m
processes so that all m processes are responsible for
the nodes contained in one workitem. If n < m leaf
node agents were selected in the previous step, the
number of workitems and processes in this step is only
n.

(4) From now on only the topology of the remaining
nodes agents which are not yet assigned to a process
is considered. Continue with step 1 if there are still
nodes agents to be assigned to a process. Otherwise,
all node agents are distributed to processes.

Transformer agents and slack agent are both treated as node
agents regarding their distribution to processes. Compo-
nent agents (load, electric vehicle (EV), photovoltaic (PV),
combined heat and power (CHP), wind energy converter
(WEC), battery, and compensator) are always created in the
process where the node agent they are connected to is located.
Note that this procedure does not guarantee the usage of
all available processes. The topology of the electrical grid
influences the number of processes in use. This is user-
friendly as only the maximal available number of processes
needs to be known, but not the optimal number with respect
to the system under study. If more processes are available
than useful, the dispensable processes are idle during the
simulation and do not impede the calculations.

3.3. Simulation Time Step. The size of a simulation time
step is fixed for one simulation. The main reason for this
is that the occurrence of communication events cannot be
predetermined due to emergence in the system. A variable
time step would increase the chance to miss time steps in
which communication occurs. Another aspect to bear in
mind is the distributed simulation approach itself. As the
time step has to be the same in all processes, additional
synchronization would be necessary for the determination of
the time step size and the spreading of this information to all
processes. The overhead caused by the required synchroniza-
tion could possibly outweigh the performance improvements
of a flexible time step.

However, the number of calculations per time step on
agent level can be reduced. For example, the recalculation
of nodal currents in step 1 of the forward-backward sweep
algorithm can be managed in an event-driven way so that a
recalculation is done only when an event has occurred in the
signal of the nodal voltage. This can be an attempt to reduce
the computational effort for component agents in the future.
However, for a first demonstration of DistAIX we have not
implemented such a method yet.

3.4. Agent Behaviors. To draw conclusions on emergent
behavior of the system, the agent models used in DistAIX
are discussed in this section. Equations for the electri-
cal agent models are provided to show their role in the
forward-backward sweep iterations. Each agent represents
a component of the distribution system and consists of
an electrical model, behavior rules for the control, a state
and knowledge, and communication capabilities. Figure 3
provides an overview about the interconnection of these parts
within the agent model.

The electrical model of an agent and its communication
capabilities influence the state of the agent and its knowledge
about other components in the system. The control algorithm
of an agent is defined by its behavior rules operating based
on the current state and knowledge. Behavior rules result in
both control signals influencing the electrical model (right
side in Figure 3) and triggers for information exchange using
the communication capabilities (left side in Figure 3). An
agent can be connected to other agents in no more than two
ways: via communication and/or electrical network. Detailed
descriptions of the electrical steady state models are provided
in the following subsections. In the equations below, variables
indexed with “ctrl” indicate that this value is a control signal
determined by the control behavior rules of an agent.

3.4.1. Slack Agent. In the forward sweep, the nodal voltage of
the slack is calculated to be

Ve

v
Voode = c08 (O) + j—= sin (Ogpcrc) - 1
a =75 (Ogtack) J\/g (Otack) 1

V,, is the nominal voltage and 9, 4 is the defined voltage angle
at the slack node, usually set to zero. In the backward sweep,
the output current of the slack node flowing to the next node
is

Tout = Z Linn T Ueakm> (2)
neN

where N is the set of all next nodes, i, , is the incoming
current of node 7, and i}, is the leakage current of the line
connecting the slack node and node n.

3.4.2. Node Agent. In the forward sweep, the nodal voltage is
obtained by

Vnode = Vp — iout,p (Rl +]Xl)

. . 3
(G, + jBy) (R + jX;) 3)
+v, 5 ,

Complexity

Agent
4 N
Behavior rules
Trigger in-
formation Knowledge & state C(.)ntrol
signal
exchange / ,\
Communi- Electrical
cation model
o T T %
1 1
0
Communication Electrical

network network

FIGURE 3: Model of a component agent and its connections to
electrical and communication networks.

i R X
out,p
——{ i
ileakl ileal
—L B G —L B I
Ve — 2 2 — 2 2 | Vnode
O O

FIGURE 4: Single-phase reference circuit of a power line.

where v, is the nodal voltage of the previous node, io,
is the output current of the previous node, R;, X;, G;, B; are
parameters of the connecting PI-line (see Figure 4). In the
backward sweep, the output current from the previous node

18

iout,p = lout T fleak + zic’ (4)
ceC

where i is the output current of the investigated node, i},
is the leakage current of the line connecting this and the
previous node, C is the set of all components connected to
the node, and i, is the component current.

3.4.3. Transformer Agent. The transformer model is com-
posed of an RX-line and an ideal transformer as depicted in
Figure 5. In the forward sweep, the secondary node voltage is
obtained by

_ Vin — iout,p (Rt +]Xt) (5)

Vhode = >
node u

Complexity

X u:l
°] ’
Vin i Vnode
o O

FIGURE 5: Single-phase reference circuit of a transformer.

with the input current from the previous node i, ,,, the input
voltage at the primary node
. . (G + jB) (R + jX))
Vin = Vp ~ lout,p (Rl +]Xl) + Yp > (6)

2

the transformer parameters R, and X, and the turns ratio u.
R;, X}, G}, and B; are parameters of the PI-line connecting the
transformer with the previous node. In the backward sweep,
the output current from the previous node is

iout

iout,p = + ileak’ (7)
where i, is the sum of all currents flowing to the next nodes
and 7, is the leakage current of the line between this and the
previous node.

In DistAIX we use transformers with an On Load Tap
Changer (OLTC) capability. Therefore, the turns ratio can be
adjusted within a symmetrical range » around the nominal
value u, ... This is done in discrete steps N, where

nom-*

-N < thrl <N (8)
has to be satisfied and N is the number of possible steps. The
turns ratio is then calculated as

r
=U,m |1+ N, —). 9
u nom < ctrlN ()

3.4.4. Load Agent. The load model has an integrated profile
providing the active and reactive power demand for each step.
The component current is then calculated to

. P+jQ

1. = —. 1

=5 (10)

node

3.4.5. Electric Vehicle Agent. An EV is represented by a
battery with a capacity C that is periodically connected to
the grid. The connection status is provided by a profile. If
the EV is not connected to the grid, it has a certain power
consumption P, which is also stored in a profile and leads
to a discharge of the EV’s battery. For times of disconnection

the model output is
i, =0, (11)
with state of charge (SOC) of the battery being

Poon tstep

S0C =50Cyq = —5

(12)

el

If the EV is connected, the battery can be charged with an
adjustable active power. Moreover, the EV is able to provide a
certain amount of reactive power as it is connected to the grid
via a converter. With the control values for active and reactive
power P, and Q. the component current is

. Pctrl + chtrl
= - > 1
fe 3vnode (3)
and the SOC is
P . -t
SOC = SOC, + % (14)

el

The EV agent ensures that the component’s hardware limi-
tations such as converter capabilities as well as the battery
capacity are not violated. Location variability of EV is not
considered here as it does not influence the applicability of
DistAIX but only the control strategy under study.

3.4.6. Photovoltaic Agent. The model of a PV system is based
on a performance prediction model [38] calculating the
amount of active power P, . that can be generated. It requires
the solar irradiance and the temperature as input data. Similar
to an EV, PV systems are connected via a converter and
can therefore provide reactive power. Furthermore, the active
power supply can be curtailed if necessary. This leads to
the equation for the component current (see (13)) where the
control value for reactive power has to be within the limits
of the converter and the control value for active power has to
satisty

-P_.. <P

max — C

w <0. (15)

Note that P, is negative since active power is produced and
not consumed.

3.4.7. Wind Energy Converter Agent. The WEC model makes
use of a polynomial relation between wind speed and output
power [39]. Hence, the model uses a wind speed profile as
input data. Power generation starts when the minimum speed
v, is reached. Up to the rated speed v,, generation continues
following a polynomial relation. Maximum generation P, is
present until the cut off speed v, is reached. This relation is
illustrated by the following equations:

Pox) =0, v<uw,
PoM=a- vV +b-v +c-v+d, v,<v<w,
(16)
Pmax(v)zpr’ VpSVEV,
Pox) =0, v>wv.

Between speeds v, and v,, the relationship between wind
speed and maximum output power is described by a third-
order polynomial with coefficients a,b,c, and d which are
found so that a continuous curve is obtained. Similar to the
PV and EV, the WEC is connected to a converter, which
leads to similar constraints and enables the control of active
power P, and reactive power Q,, as shown in (13), while
respecting the limits of the generation unit (see (15)).

3.4.8. Combined Heat and Power Agent. The CHP model
consists of three main components: combustion engine, syn-
chronous generator, and heat exchanger. In a CHP, mechan-
ical power supplied by a combustion engine is converted
to electrical power by a generator. The occurring heat can
be used directly for building heating or stored for later use
in a thermal storage. Thus, the total fuel input power P, is
composed of the thermal output power Q,, the electrical
output power P,j, and losses P :

Pc = ch + Pel + Ploss' (17)

Thermal and electrical output power are determined con-
sidering a thermal and electrical efficiency 7, and 7,
respectively. With the control value for electrical active power
P_.;, the required fuel input power is

P
P = <4, (18)
Nel

resulting in the thermal output power

n
ch = ’/IthPc = Pctrl}/ILh' (19)

el

Moreover, the CHP can produce reactive power, as the
power factor of the synchronous machine can be affected by
controlling its excitation within the limits of the machine.

To simulate the CHP, a profile is required providing
the thermal power demand Qg for building heating at
each time step. The agent considers Qg.,,, and the currently
stored thermal energy Ey and controls P, and Q, of the
CHP model which returns the actual i. to the simulation
analogously to (13). The SOC of the thermal storage with
capacity Cy, is updated accordingly to

(ch - Qdem) tstep

C (20)

SOC = SOC,y +

for the next time step. One constraint of the operation of the
CHP agent is the satisfaction of limits of the thermal storage.

3.4.9. Battery Agent. Similar to the EV agent, the bat-
tery agent controls a battery system. Its battery can be
charged/discharged with an adjustable active power and is
connected to the grid via a converter. This enables the control
of P, and Qy, (see (13)). With respect to the loads of nearby
consumers, the battery agent releases power to or stores
power from the grid when necessary. Meanwhile, it ensures
that the battery’s operation boundaries will not be exceeded
in terms of (14).

3.4.10. Compensator Agent. The compensator can provide
capacitive reactive power to the grid to neutralize inductive
reactive power caused by most loads. Reduction of grid losses
is the main reason for the utilization of a compensator. To
counter losses, the compensator is operated through N stages
of switchable shunt capacitors with a nominal susceptance of

Complexity

B, om- The agent controls the step size N, of the shunt banks
resulting in the grid connected susceptance

N
nom I\C]tr M (21)

The output current i, is calculated as follows:

B=B

ic = jBVnode' (22)

3.5. Agent Interactions. As interactions play a major role
in emergent systems, they have to be modeled accurately.
RepastHPC’s SharedNetwork structure is used to model the
electrical network, where the agents are the nodes and com-
ponents in the network and cable models represent the edges
between them. A cable model includes an equation system
and parameters of a cable (see PI-line in Figure 4). Each
process stores the excerpt of the electrical network involving
its own agents and boundary agents to other processes in
a SharedNetwork object. This object is a part of the Model
class introduced in Section 3.1. The electrical interactions are
calculated based on the forward-backward sweep method as
explained in Section 2.1 and the SharedNetwork objects in the
processes.

A generic modeling of communication interactions and
communication edges requires a different approach. Assum-
ing that a control strategy may require flexible commu-
nication connections, communication between all agents
in all processes has to be possible. As the system under
study is emergent, it may be unknown in advance which
communication links will be used, that is, which agents
communicate with each other. If a SharedNetwork was
used for the modeling of communication links similar to
electrical edges, copies of all agents in all processes would
have to be synchronized. Hence, the SharedNetwork is not
a scalable method for explicit modeling of communication
edges, especially when only a small subset of all available
communication links is used.

For this reason, one message router is introduced in each
process (Figure 6). A message router does not represent
a hardware component of the distribution system but is
a method to implement the simulation of communication
between agents. In step 2 of a process schedule (see Figure 2),
the task of the message router is the collection of messages to
be sent from all agents in their process (orange in Figure 6).
For each message to be sent, the message router checks
the model of the communication link used by the message
transfer, for example, the latency or packet error rate of the
link. In case no specific communication link properties are
available, the user can define default values for all links. The
message router applies the communication link model to
determine whether or not a message has to be transmitted
in the current simulation time step. If the latency of a link
requires delaying a message, it will stay in a pending queue
of the message router and will be checked again in the next
simulation time step. If a message has to be transmitted to
the target agent, two cases have to be distinguished:

(1) If the target of a message is an agent in the process
of the message router, it will route the message to the
inbox of this agent.

Complexity

Agents Message router of process n
O Messages from agents
in other processes
© RepastHPC
Comm. : SharedNetwork
links’ . of message
models - routers

‘ Message to be sent

‘ Message to be received

FIGURE 6: Modeling of communication infrastructure with message
routers in process 7.

(2) If the target of a message is an agent in a different
process, the message is added to the out queue of the
message router.

Each process has a RepastHPC SharedNetwork in which
its own message router is connected to the message routers
of all other processes. Once all messages to be transmitted
are treated according to cases 1 or 2, the out queues of
all message routers are synchronized between all processes
via the SharedNetwork of message routers. Afterwards, each
process has an up-to-date copy of the out queue of each
message router. Each message router checks the others” out
queues for messages that target an agent in its process and
routes messages accordingly (red arrow in Figure 6). This way
of communication interaction modeling allows an individual
modeling of communication links and an efficient routing of
agent messages in the distributed simulation.

3.6. Simulation Setup. Figure 7 shows the setup of a sim-
ulation with DistAIX. The simulation time step size and
the number of time steps to simulate can be freely chosen.
However, they should be selected in a meaningful way for
the scenario and component models under study regarding
the desired resolution of electrical dynamics and message
exchange. Time series are used as input data for component
agents that require profile information. If a time step smaller
than the time step of the profile data is chosen, the profiles
can be either linearly interpolated using the respective func-
tionality of the GNU Scientific Library or the last value of the
profile is held until the next value of the profile is reached
by the simulation time. The user may choose between these
options when configuring a simulation.

The simulation scenario is configured by lists of the
nodes and components to be simulated and the electrical
lines. Furthermore, the properties of communication links
(e. g., package drop rates, latency) can be added as input
for the simulation if these parameters are relevant for the
scenario under study. It would also be possible to extend
the interfaces of the simulator so that scenarios available in
a Common Information Model (CIM) representation can
be used as input for the simulation tool. A method for the
automated transformation of CIM representations of distri-
bution systems to C++ classes has already been presented

9
oottt e N ST T T \
! Inputs : HPC system ! Results |
\ I | I
! Time step size i — CSVfiles i
I I
1 Number of steps | i '
! ; B i Agent-based ! Database i
! Scenario L distribution —:> (PostgreSQL + !
! Profiles | system model ! Cassandra) |

I : I
| Link properties | in RepastHPC | J/ |
| i | Graphical i
| ! i web front-end !
N e AN D e ——

FIGURE 7: Simulation setup of DistAIX with inputs and results.

by our research group in [40]. For an initial demonstration
of DistAIX, we choose a less complex method of scenario
reading.

The user can choose between a simulation result output in
a PostgreSQL and Cassandra database system, comma sepa-
rated value (CSV) files, or both. Simulation results in CSV test
simulations have proven to be useful during development of
DistAIX due to their simplicity. Database output is integrated
into the simulator because it allows a structured and efficient
storage of large amounts of simulation data. It also enables
a resource saving of the computing resources as database
queries can be sent to the databases via a computer network
and do not need to be handled by the executing computer
system.

If the database is selected as result storage option, all sim-
ulation parameters, such as configuration of the simulation
and constant agent properties, are stored as metadata in a
PostgreSQL database. The result data of all agents for each
simulation time step is stored in a Cassandra database system
which currently consists of three nodes. The Cassandra
cluster is horizontally scalable according to user demands.
The three Cassandra nodes handle the storing of results
into the database during simulation and split the workload
automatically in a fair manner. For the database output, a
graphical web front-end is available enabling an easy and
efficient inspection and evaluation of simulation results. To
further reduce the time it takes to send the result data of each
simulation time step to the database, the data is serialized
using Protocol Buffers and sent in a binary format. For the
extraction of data from the database, the Protocol Buffers
need to be applied again for deserialization.

4. Evaluation Methodology

For the evaluation of correctness and performance of Dis-
tAIX, we address three aspects: correctness of the distributed
forward-backward sweep implementation, observability of
emergent behavior, and the scalability of the simulator on an
HPC system. The methodology used to address these three
aspects is discussed in the following subsections.

4.1. Correctness of Distributed Power-Flow Calculation. The
utilized method for the calculation of electrical interactions
is the forward-backward sweep method. Convergence of this
method has already been shown in [27]. DistAIX implements

10

[3S]
wzz: —

4 ¢ 14 ¢ 24 ¢

54 15 ¢ 25 ¢

6 ¢ 16 ¢ 26 ¢

7 6 17 ¢ 27 ¢

8 ¢ 18 ¢ 28 ¢

JJJﬂJ

9 4 19 ¢

10 ¢ 20 ¢

11 21

jJJﬂJﬂJJJJ

12 ¢ 22 ¢

13 23

jJﬂJJJJﬂJj

V Load V EV A PV
A CHP [Battery @ Compensator
<& Slack ® Node A WEC

FIGURE 8: Low voltage distribution system for evaluation of correct-
ness of distributed forward-backward sweep implementation.

the algorithm in a distributed way. To demonstrate that our
implementation with processes provides numerically correct
results we select a small scenario and compare results to
those obtained from Modelica modeling and simulation of
the same scenario. Modelica is chosen for this demonstration,
due to its flexible use and free availability as OpenModelica.
As a metric to evaluate the correctness, we use the abso-
lute differences A between node voltages and line currents
obtained with DistAIX and Modelica as well as the number
of occurrences of such differences. From the voltage and line
current differences we derive conclusions on the correctness
of our implementation.

To obtain comparable results, the electrical components
are modeled according to Sections 3.4.1-3.4.10 in Modelica.
Further, the same profile data are used as input for the
electrical component models in both simulation environ-
ments. Control values for all components are found without
communication interactions by simple rules as presented
in the reference scenario in [41]. The distribution system
scenario used as reference is shown in Figure 8. All agent
types are used to ensure a general correctness of the presented
approach. For the Modelica simulation, we use the DASSL
solver with a tolerance of 10° and a time step of 60s. The
same time step is applied to our simulator. Convergence of
simulation results is detected when all nodal voltages change
less than a certain € between two iterations. The € is set to the
value of the DASSL solver tolerance 10~°. The simulation is
executed for a complete day.

4.2. Observability of Emergent Behavior. Methods to detect
and characterize emergent behavior in complex systems

Complexity

1,500

1,000 +

P (Watt)

FIGURE 9: Profile of single family household load.

are discussed in the literature, for example, [42-44]. Such
methods are always dependent on the application and system
under study. In order to analyze emergent behavior char-
acteristics of different control applications for distribution
systems, DistAIX enables observability of emergent behavior
in large-scale simulations. We demonstrate this functionality
by selecting one control application called SwarmGrid [41].
SwarmGrid is expected to result in emergent behavior of
the distribution system due to its bottom-up, decentralized
control strategy. In the SwarmGrid control concept, the
system level target is voltage stability of the system. Power
producers and consumers (agents) negotiate the amount
of power they supply or consume in a self-organized way.
Their main objective is the usage of flexibilities for the local
balancing of power production and consumption. Agents
form so-called swarms, that is, groups of agents that need to
interact with one another in order to achieve their goal.

The formulation of such a bottom-up heuristic control
as one complete analytical model is infeasible. However,
DistAIX allows the system behavior to emerge from the
definition of the individual component behaviors. The agent-
based concept and the need to simulate electrical and
communicative interactions as well as component control
together make the presented simulation tool suitable for an
evaluation of SwarmGrid control. Furthermore, due to the
vast number of components in the distribution grid that
can be utilized in control approaches such as SwarmGrid,
the system can be described as highly complex with various
possible interactions among agents.

For a demonstration of observability of emergent behav-
ior, we use the rural low voltage grid of 177 nodes as described
in Section 4.3 and the electrical models given in Sections
3.4.1-3.4.10. In order to provoke emergent behavior, all input
profiles have constant values except for the ones of single
family household loads. These profiles feature a ramp up of
1kW within 1s as depicted in Figure 9. The ramps happen
simultaneously, start at 4 s, and end at 5 s. As the total number
of single family households in the grid is 140, the aggregated
change in the total power exchange of the grid is 140 kW. The
time step size of this assessment is set to 10 ms and 1000 time
steps (10 s) are simulated. The communication link latency for
all links is set to 100 ms to consider delays caused by message
transmission. Thereby, the system behavior before, during,
and after the household load ramp can be analyzed.

We determine (a) the aggregated active power behavior
based on a reference simulation without self-organizing

Complexity

N1
Fdr. 1 Fdr.2 N2 Fdr. 3 Fdr. 4
B2 B77 B132 B167
N3 N78 N133 N168
B3 ilOm B78 :[ZOm BI133 :[40m B168 I40m

N4 N79 N134 N169
B4 B79 B134 B169
N5 N8O N135 N170

1 1 1

1 1 1 1

1 1 1
N75 N130 N165 N175
B75 B130 B165 B175
N76 N131 N166 N176
B76 B131 B166 B176
N77 N132 N167 N177

FIGURE 10: Low voltage grid with 177 nodes used in emergent
behavior and scalability methodologies; figure taken from [41].

control and (b) the aggregated active power behavior of
a simulation with SwarmGrid enabled. By comparing the
results for (a) and (b), we can conclude on how emergent
behavior appeared in the system and changed the overall
behavior of specific component types and the system itself.
As the emergent behavior results from the interactions of
agents, the number of exchanged messages is evaluated as an
additional indicator. Due to the individual and heterogeneous
control behaviors of the system components (agents) and
their situation-dependent interactions, it is virtually impos-
sible to anticipate their behavior as a group or swarm. Even
if their controls are designed to achieve a particular system
level result, such a control cannot possibly have targets for all
internal system variables. DistAIX enables the observation of
even these internal variables and understanding their relation
to the system level target.

4.3. Scalability. For the performance assessment of DistAIX
with respect to scalability, a rural low voltage grid containing
177 nodes and 310 components (i.e., a total of 487 agents)
is chosen. The low voltage grid is shown in Figure 10. It is
identical to the one used by the authors in [41] and consists
of four feeders with 75, 55, 35, and 10 nodes with different
distances between single nodes. While two of the feeders
are equipped with overhead lines the other two are built
with cables. The installed power is listed in Table 1. The total
installed producer power is 503.5 kVA and consumer power is
448.6 KVA. Moreover, it contains 275.2 kWh battery capacity
and 60 kvar reactive power compensation. The low voltage
grid is connected to a medium voltage feeder as many times
as needed to upscale the system. This means the number of
agents N, in the system is

agents

Nagents = NLV - 487 — (NLV - 1) > (23)
where Ny is the amount of low voltage grids connected to the
medium voltage feeder and (Nyy — 1) is subtracted as there is
only one slack bus.

This methodology is used to analyze the execution time
of the simulation for different quantities of agents. In order

1

TaBLE 1: Installed power in scenario of 177 nodes; table adapted from
[41].

Component Number Installed power/capacity
Load 175 282.6 kVA

EV 35 166 kVA

PV (peak power) 30 220kVA (165kW)
WEC (peak power) 5 84 kVA (69 kW)
CHP 25 199.5kVA
Storage 35 275.2kWh
Compensator 4 60 kvar

to evaluate the impact of communicative and electrical
interactions, two simulations are executed for each grid size:

(1) With agent communication: SwarmGrid [41] is
enabled.

(2) Without agent communication: components behave
in an uncoordinated manner based on currently valid
guidelines for Germany (same as reference case in

[41]).

The simulation execution time T(p) for a number of p
processes is measured and serves as scalability metric. The
fastest execution time and the respective number of processes
are used in the evaluation. The number of simulation time
steps to execute is set to 1000 with a time step size of 1s. All
component profiles consist of two different values (one for t =
0 and one for t = 1000). The intermediate steps are linearly
interpolated between these two values so that there is a power
demand or generation change in each time step. Hence,
the communicative interactions caused by SwarmGrid are
representative for a case where the power system conditions
change dynamically. Each simulation was carried out several
times to ensure stable results for the execution time.

The available computation resources are four computing
nodes. Each node includes 24 physical cores of type Intel
Xeon E5-2658 v3 at 2.20 GHz. One computing node is used
for simulations with 1-24 processes, two nodes for 25-48
processes, three nodes for 49-72 processes, and four nodes
for 73-96 processes. Processes are always split equally among
computing nodes. Each computing node has 126 GB RAM
and all four nodes are connected via an Ethernet network
for the benchmarks. They all run a CentOS 7.3 operating
system using a 3.10.0 Linux kernel. The MPI implementation
used on all computing nodes is the high performance MPI
library ParaStation MPI [45]. Since the base grid for the
scalability investigations has four feeders and our methodol-
ogy duplicates this grid Ny times to generate larger grids,
Niy = 25 is the largest scenario for the scalability study.
This scenario has 100 feeders, that is, workitems, which can be
optimally parallelized by the available computation resources.
Additionally, the execution times of three scenarios contain-
ing considerably more feeders than available processors are
investigated to give an impression of the examinable scenario
sizes.

In practice, DistAIX can use separate computer networks
(Ethernet and InfiniBand) for the interprocess communica-
tion and saving the result to the database. The database server

12

Complexity

TABLE 2: Number and magnitude of absolute deviations A among node voltages and line currents (unit of A is V for voltages and A for

currents).
A Re {Vnode} Im{vnode} Re{iline} Im{iline}
=0 37440 37431 35939 35987
€ (0,107 0 6 50 2
€ (107%,107°] 0 3 10 7
€ (107,107 0 0 1 4

is located on a resource different from the four computing
nodes. Thereby, the simulation execution itself and the
storage of result data are decoupled. The time required to
initiate the savings to the database is regarded as a steady
component of the simulation runtime and is therefore not
considered here. Simulation results presented in the following
section were obtained from a simulation setup without any
result saving (except for runtime of the simulation) with no
loss of generality.

5. Evaluation

The methodologies defined in the previous section are used
for an evaluation of DistAIX. The results are discussed in this
section.

5.1. Correctness of Distributed Power-Flow Calculation.
Table 2 provides the number of deviations A between node
voltages and line currents of the two simulations in four
intervals. The total number of current and voltage values
differs because there are more busses than lines in the
grid. As both simulations have an accuracy of 107, smaller
deviations are not discovered and are set to zero. Especially
the difference between nodal voltages is small. While all A
for node voltages are below or equal to 107>V for the line
currents, some A are between 107 and 10™* A. The reason
for this is the application of the convergence criteria of the
forward-backward sweep method to the node voltages. As
the current is calculated by each component, this value can
be considered the electrical interaction variable of agents.
Hence, for a demonstration of correctness it is important
to consider the line currents as well. For the imaginary
part of the line currents only 4 values differ by more than
107> A. Experiments have been repeatedly carried out for
different numbers of processes always yielding the same
results. Therefore, the overall correctness of the implemented
forward-backward sweep calculation is demonstrated and
deviations to the reference simulation are negligible.

5.2. Observability of Emergent Behavior. Figure 11 shows
the active power behavior of the whole grid at the slack
bus for the reference simulation without a communicative
control approach and for the SwarmGrid control approach.
The different starting values of the two simulation results
are caused by the way flexibility is used in the SwarmGrid
approach. The starting conditions for the two simulations
are identical. However, in SwarmGrid components nego-
tiate immediately for a local balancing of production and

Pyack (Watt)
Pchp (Watt)

— P,k SwarmGrid —— Py, reference

...... Pepp SwarmGrid woor Py reference

FIGURE 11: Active power behavior of slack bus and CHPs.

consumption resulting in a smaller load at the slack bus
compared to the reference case due to more efficient usage of
storage. When the load starts to increase at t = 4 s the active
power behavior at the slack bus in the reference simulation
follows. The difference between the end and start value of
active power at the slack bus is 153.2 kW, which corresponds
to the change of load power (140 kW) plus losses in the grid
due to higher currents. Therefore, the behavior of the whole
grid in the reference simulation can be determined from the
behavior of the single components, namely, in this case the
single family household loads.

The difference between the end and start value in the
SwarmGrid simulation is 90.1kW which equals only 64.4%
of the change of load power. Moreover, the shape of the
active power at the slack bus indicates that the overall grid
behavior does not follow the behavior of the loads. Instead,
the change of load power is partly compensated. This is a
dynamic process continuing after the single family household
loads have reached their final value at 5s. To find the cause
for this behavior difference, the results for internal variables
of single component types have to be investigated. Notice that
the load change compensation is done by flexible components
such as CHP. The total power production of all CHP is
also depicted in Figure 11. In the reference case, the CHP
determines the required power production according to the
thermal demand, which is constant during the simulation
time. In SwarmGrid control, the CHP utilizes thermal storage
capacity to offer flexibility. As a result, the power production
changes after the load power starts to increase.

Note that there is no centralized controller or optimiza-
tion driving CHP towards this behavior. Instead, agents
interact and determine their control values autonomously

Complexity

gﬂ 1,000
5
=
S 500
2
£
= 0
t(s)

FIGURE 12: Number of messages sent between agents.

TABLE 3: Execution time results for different grid sizes.
SwarmGrid :
on/off Ny p T(p) in sec
On 1 4 20.02
On 5 19 31.74
On 10 39 42.27
On 15 59 55.68
On 20 61 69.25
On 25 96 87.84
off 1 3 10.66
off 5 20 20.00
Off 10 39 2758
Ooff 15 44 39.04
off 20 61 51.27
off 25 44 61.88

according to behavior rules. The overall system behavior, that
is, the power behavior at the slack bus, emerges from the
behavior of the single components and cannot be predeter-
mined as in the reference case. Since the communication of
agents plays a critical role in this process, Figure 12 shows
the number of messages that are generated per time step. A
large amount of interactions takes place during the change of
load behavior and also afterwards. The number of messages
decreases again when the system reaches a stable end value.
The intensity of communication depends on the operating
conditions and evolution of the physical system and can
therefore not be anticipated precisely. Overall, these results
demonstrate that emergent behaviors of distribution systems
can be observed with DistAIX.

5.3. Scalability. The results of simulation benchmarks with
respect to scalability are shown in Table 3. The minimal
simulation execution time T'(p) scales almost linearly with
the number of agents in the scenario for both cases with
and without SwarmGrid control enabled. This result can
also be observed in Figure 13 and is achieved by using
more processes and spreading the simulation across multiple
computing nodes; for example, for Njy = 10 the simulation
execution time is minimal for 39 processes. The simulation
is spread across 2 computing nodes running 19 and 20
processes, respectively. The gradient of the T'(p) scaling factor
is considerably lower than 1, indicating that the parallelization

13

=)

'S

S}

Scaling factor of T'(p)

1 1 1 1 1
0 5 10 15 20 25

Scaling factor of scenario size

—e— With SwarmGrid
—m— Without SwarmGrid

FIGURE 13: Scaling factors of scenario size in relation to scaling
factors of minimal simulation execution time T'(p).

with processes is able to exploit computation resources
efficiently for growing scenario sizes.

Linear scalability means that large electrical grids plus
agent-based control can be simulated efficiently by an appro-
priate number of processes. It also indicates that the com-
putation of communicative agent interactions adds an offset
to the simulation execution time but does not change the
scalability behavior in essence. Another aspect taken from
Figure 13 is that the scaling for the case with communication
is better than without. Keeping in mind that the benchmark
scenarios were chosen in such a way as to require an extensive
amount of agent communication, this leads to the conclusion
that the message router concept is an effective method
to parallelize the computational burden of agent message
processing. However, the results presented here are only valid
for the specific agent-based control strategy under study [41].
The experiments have to be repeated for different strategies
resulting in potentially different communication link usages
of agents to draw more general conclusions.

In most cases, the number of processes p of the minimal
execution time T(p) correlates well with the number of
feeders in the electrical grid. This demonstrates the benefits
of the proposed agent distribution methodology (see Sec-
tion 3.2) for the simulation execution time and scalability.
As the chosen benchmarking methodology uses grids with
repetitive electrical topology with only a few workitems
compared to the number of agents, it provides a worst case
scenario for agent distribution. In more realistic grids of
similar size containing more bifurcation nodes as considered
here, the number of workitems will increase and the size
(length) of each workitem will decrease. Hence, the execution
time for a grid with a similar number of agents but more
branched electrical topology can be expected to be equal to
or smaller than the presented results.

Figure 14 shows the decrease of execution time with
increasing number of processes for the Njy = 10 scenario.
The execution time decreases rapidly up to 10 processes and
is close to the minimal value afterwards. DistAIX enables an
efficient simulation even if less than the optimal number of
processes for the given electrical topology is available. We
observed this behavior for other scenario sizes as well. Future
investigations on how to recommend a reasonable minimal
number of processes to the user for a given electrical topology

14

Complexity

TABLE 4: Execution time results for large grid sizes generated with 96 processes on 4 computational nodes.

SwarmGrid on/off Ny Grid nodes Nagents T(p) in sec
On 50 8,850 24,301 196.69
On 100 17,700 48,601 481.89
On 250 44,250 121,501 2019.86
off 50 8,850 24,301 155.78
Off 100 17,700 48,601 401.05
Off 250 44,250 121,501 1824.61
- ° ' ' ' ' scalability. The properties of communication links between
bt agents, such as latencies, can be modeled. DistAIX facilitates
£ 400 - o - . :
k= the design and analysis of agent-based bottom-up control
§ oo 9@ concepts for distribution systems. Due to nonlinear cyber-
g "o 8 L] 2 : : physical interactions of the agents, such concepts may result
i "=unls 220g 0 lm.mmn’m in emergent system behavior. The emergent behavior can
ol ..y R T T . A . . .
0 10 20 30 20 be observed in simulations with DistAIX. Process-based

Number of processes

® With SwarmGrid
m Without SwarmGrid

FIGURE 14: Execution time results of scenario with Nyy,q = 10.

are necessary to exploit computation resources even more
efficiently.

The results include only scenarios in which agents are
assigned to all processes. Experiments with small testing
scenarios such as the 27-node low voltage grid used for
power-flow demonstrations showed that the influence of
dispensable processes on the simulation execution time is
negligible. Due to limitations of the hardware used for the
benchmark simulations, only scenarios up to Ny, = 25 canbe
reasonably analyzed here with respect to scaling. The results
for three additional scenarios are shown in Table 4. They
demonstrate that even for grids exceeding the 40,000 nodes
the presented approach provides a solution in a reasonable
amount of time—even if not the optimal number of processes
but only a maximum of 96 processes is available. Due to the
memory limits of our computing nodes we do not provide
results for larger scenarios here. It should be noted that the
increase in execution time for the large scenarios is mainly
caused by initialization procedures for the communication
network setup which are specific for the control strategy used
here and can be improved in the future.

6. Conclusion

This paper introduces DistAIX, an agent-based modeling and
simulation approach for electrical distribution systems. It is
designed to study emergent behavior of such systems at large
scale. The simulation is parallelized by processes enabling
the distribution of computations to multiple computing
nodes with distributed memory. The distribution system
components are modeled as agents in the required level of
detail. No model simplifications or restrictions are needed for

parallelization and linear scalability properties of DistAIX
enable the study of models at nation scale if appropriate
computation resources are used.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This work was supported by the German Federal Ministry of
Education and Research in the project SwarmGrid (Grant no.
03EK3568A).

References

[1] C. E. Hmelo-Silver and R. Azevedo, “Understanding complex
systems: Some core challenges,” Journal of the Learning Sciences,
vol. 15, no. 1, pp. 53-61, 2006.

[2] T. El-Mezyani, R. Wilson, M. Sattler, S. K. Srivastava, C. S.
Edrington, and D. A. Cartes, “Quantification of complexity
of power electronics based systems,” IET Electrical Systems in
Transportation, vol. 2, no. 4, pp. 211-222, 2012.

[3] S.Ikedaand R. Ooka, “Metaheuristic optimization methods for
a comprehensive operating schedule of battery, thermal energy
storage, and heat source in a building energy system,” Applied
Energy, vol. 151, pp. 192-205, 2015.

[4] W. K. V. Chan, Y.-J. Son, and C. M. Macal, “Agent-based

simulation tutorial - Simulation of emergent behavior and

differences between agent-based simulation and discrete-event
simulation,” in Proceedings of the 2010 43rd Winter Simulation

Conference, WSC’10, pp. 135-150, USA, December 2010.

P. Ringler, D. Keles, and W. Fichtner, “Agent-based modelling

and simulation of smart electricity grids and markets - A

literature review;” Renewable & Sustainable Energy Reviews, vol.

57, pp. 205-215, 2016.

[6] A. Pokahr, L. Braubach, and W. Lamersdorf, “Jadex: A BDI
Reasoning Engine,” in Multi-Agent Programming, vol. 15 of
Multiagent Systems, Artificial Societies, and Simulated Organi-
zations, pp. 149-174, Springer US, Boston, Ma, 2005.

[5

Complexity

[7] D.P.Chassin,]. C. Fuller, and N. Djilali, “GridLAB-D: An agent-

based simulation framework for smart grids,” Journal of Applied
Mathematics, vol. 2014, Article ID 492320, 2014.

S. Jin and D. P. Chassin, “Thread group multithreading:
Accelerating the computation of an agent-based power system
modeling and simulation tool - GridLAB-D,” in Proceedings of
the 47th Hawaii International Conference on System Sciences,
HICSS 2014, pp. 2536-2545, USA, January 2014.

A. Tanenbaum and H. Bos, Modern Operating Systems, ,
Pearson, 4th edition, 2015.

C. Kuschel and U. Riide, “High-performance simulation of
nation-sized smart grids,” International Journal of Parallel,
Emergent and Distributed Systems, vol. 32, no. 6, pp. 647-668,
2016.

P. Oliveira, T. Pinto, H. Morais, and Z. Vale, “MASGriP a multi-
agent smart grid simulation platform,” in Proceedings of the 2012
IEEE Power and Energy Society General Meeting, PES 2012, USA,
July 2012.

J. C. Fuller, S. Ciraci, J. A. Daily, A. R. Fisher, and M. Hauer,
“Communication simulations for power system applications,”
in Proceedings of the 2013 Workshop on Modeling and Simulation
of Cyber-Physical Energy Systems, MSCPES 2013, USA, May
2013.

M. Stifter, E. Widl, E Andren, A. Elsheikh, T. Strasser, and P.
Palensky, “Co-simulation of components, controls and power
systems based on open source software,” in Proceedings of the
2013 IEEE Power and Energy Society General Meeting, PES 2013,
Canada, July 2013.

K. Anderson, J. Du, A. Narayan, and A. E. Gamal, “GridSpice:
A distributed simulation platform for the smart grid,” IEEE
Transactions on Industrial Informatics, vol. 10, no. 4, pp. 2354-
2363, 2014.

R. Bottura and A. Borghetti, “Simulation of the volt/var control
in distribution feeders by means of a networked multiagent
system,” IEEE Transactions on Industrial Informatics, vol. 10, no.
4, pp. 2340-2353, 2014.

[16] J. Vaubourg, Y. Presse, B. Camus et al., “Multi-agent Multi-

Model Simulation of Smart Grids in the MS4SG Project,
in Advances in Practical Applications of Agents, Multi-Agent
Systems, and Sustainability: The PAAMS Collection, vol. 9086
of Lecture Notes in Computer Science, pp. 240-251, Springer
International Publishing, Cham, 2015.

M. Cvetkovic and M. Ilic, “Interaction variables for distributed
numerical integration of nonlinear power system dynamics,”
in Proceedings of the 53rd Annual Allerton Conference on
Communication, Control, and Computing, Allerton 2015, pp.
560-566, USA, October 2015.

K. Mets, J. A. Ojea, and C. Develder, “Combining Power and
Communication Network Simulation for Cost-Effective Smart
Grid Analysis,” IEEE Communications Surveys Tutorials, vol. 16,
no. 3, pp. 1771-1796, 2014.

D. Shirmohammadi, H. W. Hong, A. Semlyen, and G. X. Luo,
“A compensation-based power flow method for weakly meshed
distribution and transmission networks,” IEEE Transactions on
Power Systems, vol. 3, no. 2, pp. 753-762, 1988.

Z. Haibo, Z. Boming, S. Hongbin, and A. Ran, “A new dis-
tributed power flow algorithm between multi-control-centers
based on asynchronous iteration,” in Proceedings of the 2006
International Conference on Power System Technology, pp. 1-7,

15

in Proceedings of the Transmission and Distribution Exposition
Conference: 2008 IEEE PES Powering Toward the Future, PIMS
2008, USA, April 2008.

J. M. Gonzalez de Durana, O. Barambones, E. Kremers, and
L. Varga, “Agent based modeling of energy networks,” Energy
Conversion and Management, vol. 82, pp. 308-319, 2014.

J-H. Byun, A. Ravindran, A. Mukherjee, B. Joshi, and D.
Chassin, “Accelerating the gauss-seidel power flow solver on a
high performance reconfigurable computer,” in Proceedings of
the IEEE Symposium on Field Programmable Custom Computing
Machines, FCCM 2009, pp. 227-230, USA, April 2009.

C.P.Nguyen and A. J. Flueck, “A Novel Agent-Based Distributed
Power Flow Solver for Smart Grids,” IEEE Transactions on Smart
Grid, vol. 6, no. 3, pp. 1261-1270, 2015.

X. Zhang, A. J. Flueck, and C. P. Nguyen, “Agent-Based Dis-
tributed Volt/Var Control with Distributed Power Flow Solver
in Smart Grid,” IEEE Transactions on Smart Grid, vol. 7, no. 2,
pp. 600-607, 2016.

M. Wolter, H. Guercke, T. Isermann, and L. Hofmann, “Multi-
agent based distributed power flow calculation,” in Proceedings
of the IEEE PES General Meeting, PES 2010, USA, July 2010.

R. D. Zimmerman, Comprehensive distribution power flow:
modeling, formulation, solution algorithms and analysis [Ph.D.
thesis], Cornell University, 1995, https://pdfs.semanticscholar
.org/alb6/eb1871701538ce2147523e8753a218t0894.pdf.

A. Rousset, B. Herrmann, C. Lang, and L. Philippe, “A survey
on parallel and distributed multi-agent systems for high perfor-
mance computing simulations,” Computer Science Review, vol.
22, pp. 27-46, 2016.

S. Coakley, M. Gheorghe, M. Holcombe, S. Chin, D. Worth, and
C. Greenough, “Exploitation of high performance computing in
the FLAME agent-based simulation framework,” in Proceedings
of the 14th IEEE International Conference on High Performance
Computing and Communications, HPCC-2012 - 9th IEEE Inter-
national Conference on Embedded Software and Systems, ICESS-
2012, pp. 538-545, gbr, June 2012.

N. Collier and M. North, “Parallel agent-based simulation with
Repast for High Performance Computing,” Simulation, vol. 89,
no. 10, pp. 1215-1235, 2013.

D. P. Chassin, K. Schneider, and C. Gerkensmeyer, “GridLAB-
D: An open-source power systems modeling and simulation
environment,” in Proceedings of the Transmission and Distribu-
tion Exposition Conference: 2008 IEEE PES Powering Toward the
Future, PIMS 2008, USA, April 2008.

J. S. van der Veen, B. van der Waaij, and R. J. Meijer, “Sensor
data storage performance: SQL or NoSQL, physical or virtual,”
in Proceedings of the IEEE 5th International Conference on Cloud
Computing (CLOUD ’12), pp. 431-438, IEEE, June 2012.

T. Rabl, M. Sadoghi, H.-A. Jacobsen, S. Gémez-Villamor, V.
Muntés-Mulero, and S. Mankovskii, “Solving big data chal-
lenges for enterprise application performance management,’
pp. 1724-1735.

K. Varda, “Protocol Buffers: Google’s Data Interchange Format,”
2008, https://opensource.googleblog.com/2008/07/protocol-
buffers-googles-data.html.

[35] J. Feng and J. Li, “Google protocol buffers research and applica-

tion in online game,” in Proceedings of the 2013 IEEE Conference
Anthology, pp. 1-4, China, January 2013.

Chongging, China, October 2006.
[21] H. Sun and B. Zhang, “Distributed power flow calculation
for whole networks including transmission and distribution,”

[36] S. Popi¢, D. Pezer, B. Mrazovac, and N. Tesli¢, “Performance
evaluation of using Protocol Buffers in the Internet of Things
communication: Protobuf vs. JSON/BSON comparison with a

https://pdfs.semanticscholar.org/a1b6/eb1871701538ce2147523e8753a218ff0894.pdf
https://pdfs.semanticscholar.org/a1b6/eb1871701538ce2147523e8753a218ff0894.pdf
https://opensource.googleblog.com/2008/07/protocol-buffers-googles-data.html
https://opensource.googleblog.com/2008/07/protocol-buffers-googles-data.html

16

focus on transportation’s IoT,” in Proceedings of the Ist IEEE
International Conference on Smart Systems and Technologies,
SST 2016, pp. 261-265, Croatia, October 2016.

[37] T. C. Hu, “Parallel sequencing and assembly line problems,”
Operations Research, vol. 9, pp. 841-848, 1961.

[38] W.Zhou, H. Yang, and Z. Fang, “A novel model for photovoltaic
array performance prediction,” Applied Energy, vol. 84, no. 12,
pp. 1187-1198, 2007.

[39] M.-R. Haghifam and S. Soltani, “Reliability models for wind
farms in generation system planning,” in Proceedings of the 2010
IEEE 1ith International Conference on Probabilistic Methods
Applied to Power Systems, PMAPS 2010, pp. 436-441, Singapore,
June 2010.

[40] L. Razik, M. Mirz, D. Knibbe, S. Lankes, and A. Monti,
“Automated deserializer generation from CIM ontologies:
CIM++—an easy-to-use and automated adaptable open-source
library for object deserialization in C++ from documents
based on user-specified UML models following the Common
Information Model (CIM) standards for the energy sector;
Computer Science - Research and Development, pp. 1-11, 2017.

(41

S. Kolen, T. Isermann, S. Ddhling, and A. Monti, “Swarm
behavior for distribution grid control,” in Proceedings of the 2017
IEEE PES Innovative Smart Grid Technologies Conference Europe
(ISGT-Europe), pp. 1-6, Torino, Italy, September 2017.

[42] W.K. Chan, “Interaction metric of emergent behaviors in agent-
based simulation,” in Proceedings of the 2011 Winter Simulation
Conference - (WSC 2011), pp. 357-368, 2011.

[43] C.Szabo and Y. M. Teo, “An integrated approach for the valida-
tion of emergence in component-based simulation models,” in
Proceedings of the Winter Simulation Conference, pp. 2412-2423.

[44] E. O’Toole, V. Nallur, and S. Clarke, “Towards Decentralised
Detection of Emergence in Complex Adaptive Systems,” in
Proceedings of the 2014 8th IEEE International Conference on
Self-Adaptive and Self-Organizing Systems, SASO 2014, pp. 60-

69, UK, September 2014.

C. Clauss, T. Moschny, and N. Eicker, “Dynamic Process
Management with Allocation-internal Co-Scheduling towards
Interactive Supercomputing,” in Proceedings of the 1st COSH
Workshop on Co-Scheduling of HPC Applications, 2016.

[45

Complexity

Advances in Advances in . Journal of The Scientific Journal of
Operations Research Decision Sciences Applied Mathematics World Journal Probability and Statistics

|nternational
Journal of
Mathematics and
Mathematical
Sciences

Journal of

Optimization

Hindawi

Submit your manuscripts at
www.hindawi.com

International Journal of
Engineering
Mathematics

International Journal of

Analysis

Journal of : Advances in] Mathematical Problems International Journal of Discrete Dynamics in
Complex Analysis Numerical Analysis in Engineering Differential Equations Nature and Society

International Journa!

of
Stochastic Analysis Mathematics Function Spaces Applied Analysis Mathematical Physics

Journal of Journal of Abstract and ; Advances in

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

