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We investigate a relative rotation system with backlash and dry friction. Firstly, the corresponding nonsmooth characters are
discussed by the differential inclusion theory, and the analytic conditions for stick and nonstick motions are developed to
understand themotion switchingmechanism. Based on such analytic conditions of motion switching, the influence of themaximal
static friction torque and the driving torque on the stick motion is studied. Moreover, the sliding time bifurcation diagrams, duty
cycle figures, time history diagrams, and theK-function time history diagram are also presented, which confirm the analytic results.
The methodology presented in this paper can be applied to predictions of motions in nonsmooth dynamical systems.

1. Introduction

Relative rotation system is a widespread power transmission
system,which containsmanynonlinear factors such as the non-
linear damping, stiffness, and backlash.These nonlinear factors
can generally lead to vibration, which will reduce the trans-
mission efficiency and performance. Therefore, the vibration
of the relative rotation system is always a hot research topic.

Since the theory of rotational relativistic mechanics was
first established byCarmeli in 1985 [1, 2], a lot of achievements
on the relative rotation system have been obtained. Luo set up
the theory of relativistic analyticalmechanics of the rotational
systems in [3, 4].TheHopf bifurcation for a kind of nonlinear
relative rotation system was investigated [5–7]. In [8, 9], the
bifurcation response equation of relative rotation system was
deduced with the method of multiple scales, and the bifurca-
tion and chaotic motions under combination resonance were
investigated.The chaotic behaviors of a relative rotation non-
linear dynamical system under parametric excitation and its
controlwere studied in [10, 11].Thepapers abovemade a better
research on the vibration of the relative rotation system, but
the nonsmooth factors were rarely taken into consideration.

At present, the nonsmooth dynamics are a hot research
topic. One reason for this is that the nonsmooth system
widely exists in different disciplines. Mechanical engineers

study the stick–slip oscillations in systems with dry friction
and the dynamics of impact phenomena with unilateral
constraints. Electrical circuits contain diodes and transistors,
which ideally behave in a nonsmooth way. Meanwhile, there
have been a lot of researches on the nonsmooth dynamics. In
[12], a research on a piecewise linear systemwithout damping
wasmade, and the closed-form solution for periodic response
was obtained. In [13], a mapping technique was developed to
investigate a linear system with a single discontinuity, and
the chaotic behavior was presented numerically. In [14], a
mapping approach was adopted to investigate the periodic
response and bifurcation of a piecewise linear system. In [15],
Luo initially proposed amapping structure for discontinuous
systems. In [16], the idea of mapping structure was used
to investigate a periodic forced piecewise linear system. In
addition, the investigations by Nordmark [17], Błazejczyk et
al. [18], Blazejczyk-Okolewska et al. [19], Luo et al. [20], di
Bernardo et al. [21, 22], and Luo et al. [23–26] can also provide
us with a plenty of meaningful conclusions.

Among the various nonsmooth factors, dry friction
extensively exists in engineering, such as disk brake systems,
turbine blades, and string music instruments. The disconti-
nuity caused by dry friction forces makes the system more
difficult to solve theoretically and numerically. Therefore, the
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Figure 1: Mechanical model.

friction-induced oscillations have been of great interest for
a long time. In [27], Hartog initially made an investigation
on the periodic motion of the forced linear oscillator with
Coulomb and viscous damping. In [28], from mathematical
point of view, Levitan discussed a friction oscillation model,
and the stability of the periodic motion was studied. In [29],
Shaw studied the stability for a nonstick, periodic motion
through the Poincare mapping. In [30], Feeny researched the
nonsmoothness of a Coulomb friction oscillator and pre-
sented the stick region analytically and graphically. Feeny and
Moon made the experimental and numerical investigations
of chaos in a dry friction oscillator. In [31], Feeny and Moon
investigated the dynamics of a oscillator with impact and
friction. In [32, 33], the stick and nonstick motions were
observed, and the chaos for a nonlinear friction model was
presented. In [34], the theoretical approach was discussed
to treat models of dynamical systems involving nonsmooth
nonlinearities, which was associated with differential inclu-
sions of mainly finite dimensional dynamical systems and
the introduction of maximal monotone operators (graphs) in
order to describe models of impact or friction.

In this paper, the nonsmooth vibration of a relative
rotation systemwith backlash and dry friction is investigated,
especially the sliding bifurcation caused by the dry friction.
Moreover, the analytic conditions for stick and nonstick
motions are developed, and the influence of the maximum
static friction torque and the driving torque on the stick
motion is predicted numerically.

2. Mechanical Model

The present paper investigates a relative rotation system with
backlash and dry friction, and the nonlinear model is shown
in Figure 1.

ByNewton’s theorem, the balance equations for themotor
and load parts can be obtained as

𝐽𝑚 ̈𝜃𝑚 + 𝑐𝑚 ̇𝜃𝑚 + 𝑇𝑠 = 𝑇𝑚
𝐽𝑙 ̈𝜃𝑙 + 𝑐𝑙 ̇𝜃𝑙 + 𝑇𝑑 = 𝑇𝑠

(1)

with

𝜃𝑑 = 𝜃𝑚 − 𝜃𝑙,
𝑇𝑠 = 𝑘𝑠𝑓 (𝜃𝑑) + 𝑐𝑠 ̇𝜃𝑑, (2)

where 𝐽𝑚 is the motor moment of inertia, 𝐽𝑙 is the load
moment of inertia,𝑇𝑠 represents the transmitted shaft torque,
𝑇𝑚 is the motor torque, 𝑇𝑑 is the load torque disturbance, 𝑐𝑠
is the inner damping coefficient of the shaft, 𝑐𝑚 is the motor
viscous friction coefficient, 𝑐𝑙 is the load viscous friction
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Figure 2: Approximate function.

coefficient, 𝑘𝑠 is the shaft elasticity, 2𝑏 is the total backlash
angle, and 𝑓(𝜃𝑑) is a dead zone function as

𝑓 (𝜃𝑑) =
{{
{{{

𝜃𝑑 − 𝑏, 𝜃𝑑 ≥ 𝑏
0, 󵄨󵄨󵄨󵄨𝜃𝑑󵄨󵄨󵄨󵄨 < 𝑏
𝜃𝑑 + 𝑏, 𝜃𝑑 ≤ −𝑏.

(3)

Let 𝑥1 = (𝜃𝑚 − 𝜃𝑙)/𝑏, 𝑥2 = ̇𝜃𝑚, and 𝑥3 = ̇𝜃𝑙; we can deduce

𝑥̇1 = 1
𝑏 ∗ ( ̇𝜃𝑚 − ̇𝜃𝑙) = 1

𝑏 ∗ (𝑥2 − 𝑥3)
𝑥̇2 = ̈𝜃𝑚 = 1

𝐽𝑚 ∗ (𝑇𝑚 − 𝑇𝑠 − 𝑐𝑚
̇𝜃𝑚)

= 1
𝐽𝑚 ∗ [𝑇𝑚 − 𝑘𝑠𝑏𝑓 (𝑥1) − 𝑐𝑠 (𝑥2 − 𝑥3) − 𝑐𝑚𝑥2]

𝑥̇3 = ̈𝜃𝑙 = 1
𝐽𝑙 ∗ (𝑇𝑠 − 𝑇𝑑 − 𝑐𝑙

̇𝜃𝑙)
= 1
𝐽𝑙 ∗ [𝑘𝑠𝑏𝑓 (𝑥1) + 𝑐𝑠 (𝑥2 − 𝑥3) − 𝑇𝑑 − 𝑐𝑙𝑥3]

(4)

with

𝑓 (𝑥1) =
{{
{{{

𝑥1 − 1 𝑥1 ≥ 1
0 󵄨󵄨󵄨󵄨𝑥1󵄨󵄨󵄨󵄨 < 1
𝑥1 + 1 𝑥1 ≤ −1.

(5)

Suppose 𝛼 = 1/𝑏, 𝑘1 = 𝑘𝑠𝑏/𝐽𝑚, 𝑐1 = 𝑐𝑠𝑏/𝐽𝑚, 𝑐2 = 𝑐𝑚/𝐽𝑚,𝑐3 = 𝑐𝑠𝑏/𝐽𝑙, 𝑐4 = 𝑐𝑙/𝐽𝑙, 𝑘2 = 𝑘𝑠𝑏/𝐽𝑙, and 𝐹𝑓 = 𝑇𝑑/𝐽𝑙; then
𝑥̇1 = 𝛼 (𝑥2 − 𝑥3)
𝑥̇2 = −𝑘1𝑓 (𝑥1) − (𝑐1 + 𝑐2) 𝑥2 + 𝑐1𝑥3 + 𝐹
𝑥̇3 = 𝑘2𝑓 (𝑥1) + 𝑐3𝑥2 − (𝑐3 + 𝑐4) 𝑥3 − 𝐹𝑓.

(6)

As for the dead zone function 𝑓(𝑥1), it can be approxi-
mately expressed as 𝑓(𝑥1) = 0.1538𝑥13 − 0.0566𝑥1, which is
shown in Figure 2.

For the system model (6) above, suppose the driving
torque as 𝐹 = 𝑓0 +𝑓1 sin(𝜔𝑡) and the dry friction load torque
as 𝐹𝑓 = 𝑓𝑠 sign(V𝑙 − V) − 𝜇1(V𝑙 − V) + 𝜇2(V𝑙 − V)3, where
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Figure 3: Dry friction.

𝑓𝑠 is the maximal static friction torque, 𝜇1 is the mixed
friction coefficient, 𝜇2 is the dynamic pressure friction coeffi-
cient, V𝑙 represents the line velocity of the load parts, V𝑙 = ̇𝜃𝑙𝑅𝑙,
and V is the load velocity; therefore 𝐹𝑓 = 𝑓𝑠 sign(𝑅𝑙𝑥3 − V) −
𝜇1(𝑅𝑙𝑥3 − V) + 𝜇2(𝑅𝑙𝑥3 − V)3, which can be approximately
described as shown in Figure 3. Then, the system model is
obtained as

𝑥̇1 = 𝛼 (𝑥2 − 𝑥3)
𝑥̇2 = −𝑘1 (0.1538𝑥31 − 0.0566𝑥1) − (𝑐1 + 𝑐2) 𝑥2 + 𝑐1𝑥3

+ 𝑓0 + 𝑓1 sin (𝜔𝑡)
𝑥̇3 = 𝑘2 (0.1538𝑥31 − 0.0566𝑥1) + 𝑐3𝑥2 − (𝑐3 + 𝑐4) 𝑥3
− 𝑓𝑠 sign (𝑅𝑙𝑥3 − V) + 𝜇1 (𝑅𝑙𝑥3 − V) − 𝜇2 (𝑅𝑙𝑥3 − V)3 .

(7)

3. Nonsmooth Analysis

The dry friction load makes the relative rotation system a
classical nonsmooth system, and the dynamics are obviously
different from the smooth system.

Σ
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Figure 4: System domain.

For the systemmodel in this paper, when the velocities of
the load parts and the friction load are different, the friction
size and direction are both changeable. The load friction
direction will be opposite for the relative velocity larger and
smaller than zero.Moreover, when the relative velocity is zero,
the friction torque is uncertain. Therefore, this mechanical
system model is a classical Filippov system, and we cannot
deal with it using the conventional method.

In order to better analyze the nonsmooth dynamics,
define the separation boundary as Σ = {𝑥 ∈ 𝑅3 | 𝑥3 − V/𝑅𝑙 =0}; then the system domain will be divided into three parts as

Ω1 = {𝑥 ∈ 𝑅3 | 𝑥3 − V
𝑅𝑙 < 0}

Ω2 = {𝑥 ∈ 𝑅3 | 𝑥3 − V
𝑅𝑙 > 0}

(8)

and Σ = {𝑥 ∈ 𝑅3 | 𝑥3 − V/𝑅𝑙 = 0}; they are shown in Figure 4.
According to the discussion above, in the subregions Ω1

andΩ2, the equations of motion are as follows, respectively:

𝐹1 (𝑥) =
{{
{{{

𝑥̇1 = 𝛼 (𝑥2 − 𝑥3)
𝑥̇2 = −𝑘1 (0.1538𝑥31 − 0.0566𝑥1) − (𝑐1 + 𝑐2) 𝑥2 + 𝑐1𝑥3 + 𝑓0 + 𝑓1 sin (𝜔𝑡)
𝑥̇3 = 𝑘2 (0.1538𝑥31 − 0.0566𝑥1) + 𝑐3𝑥2 − (𝑐3 + 𝑐4) 𝑥3 + 𝑓𝑠 + 𝜇1 (𝑅𝑙𝑥3 − V) − 𝜇2 (𝑅𝑙𝑥3 − V)3 ,

𝐹2 (𝑥) =
{{
{{{

𝑥̇1 = 𝛼 (𝑥2 − 𝑥3)
𝑥̇2 = −𝑘1 (0.1538𝑥31 − 0.0566𝑥1) − (𝑐1 + 𝑐2) 𝑥2 + 𝑐1𝑥3 + 𝑓0 + 𝑓1 sin (𝜔𝑡)
𝑥̇3 = 𝑘2 (0.1538𝑥31 − 0.0566𝑥1) + 𝑐3𝑥2 − (𝑐3 + 𝑐4) 𝑥3 − 𝑓𝑠 + 𝜇1 (𝑅𝑙𝑥3 − V) − 𝜇2 (𝑅𝑙𝑥3 − V)3 .

(9)

However, when the system flow arrives at the separation
boundary, 𝐹𝑓 is not a determined value but a range as
𝐹𝑓 ∈ [−𝑓𝑠, 𝑓𝑠]; we cannot obtain the corresponding equation
of motion. Therefore, the differential inclusion theory is
introduced in this section to deal with it.

From the analysis above, the vector field can be described
by a set-valued vector field as

𝑥̇ ∈ 𝐹 (𝑥) =
{{
{{{

𝐹1 (𝑥) 𝑥 ∈ Ω1
𝑐𝑜 {𝐹1 (𝑥) , 𝐹2 (𝑥)} 𝑥 ∈ Σ
𝐹2 (𝑥) 𝑥 ∈ Ω2,

(10)

where 𝑐𝑜{𝐹1(𝑥), 𝐹2(𝑥)} is a vector field along the separation
boundary, denoted by 𝐹𝑠(𝑥). From the convexity of the set-
valued vector field, we have

𝐹𝑠 (𝑥) = 𝜆𝐹2 (𝑥) + (1 − 𝜆) 𝐹1 (𝑥) , (11)
where 𝜆 ∈ [0, 1]; then the system vector field can be described
by a differential inclusion as follows:

𝑥̇ ∈ 𝐹 (𝑥) =
{{
{{{

𝐹1 (𝑥) 𝑥 ∈ Ω1, 𝜆 = 0
𝐹𝑠 (𝑥) 𝑥 ∈ Σ, ∃𝜆 ∈ (0, 1)
𝐹2 (𝑥) 𝑥 ∈ Ω2, 𝜆 = 1.

(12)
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Figure 5: Sliding bifurcation type.

Since the vector field 𝐹𝑠(𝑥) determines the system flow along
the separation boundary, we have 𝑛𝑇Σ𝐹𝑠(𝑥) = 0 with 𝑛𝑇Σ =
(0, 0, 1); then we get

𝜆 = 𝑛𝑇Σ𝐹1 (𝑥)
𝑛𝑇Σ [𝐹1 (𝑥) − 𝐹2 (𝑥)] . (13)

By using (11) and (13), the vector field 𝐹𝑠(𝑥) is obtained as

𝐹𝑠 (𝑥) =
{{
{{{

𝑥̇1 = 𝛼 (𝑥2 − 𝑥3)
𝑥̇2 = −𝑘1 (0.1538𝑥31 − 0.0566𝑥1) − (𝑐1 + 𝑐2) 𝑥2 + 𝑐1𝑥3 + 𝑓0 + 𝑓1 sin (𝜔𝑡)
𝑥̇3 = 0.

(14)

Then we can investigate the sliding dynamics along the
separation boundary.

4. Sliding Bifurcation

The model in the present work is a classical Filippov sys-
tem, and its typical nonsmooth phenomenon is the sliding
bifurcation. According to the existing literatures, the sling
bifurcation can be mainly divided into four types as follows.

Figure 5(a) depicts the scenario we term as sliding
bifurcation of type I.

In the case presented in Figure 5(b), instead, a section of
trajectory lying in region Ω1 or Ω2 grazes the boundary of
the sliding region from above (or below). Again, this causes
the formation of a section of sliding motion which locally
tends to leave Σ. We term this transition as a grazing-sliding
bifurcation.

A different bifurcation event, which we shall call sliding
bifurcation of type II or switching-sliding, is depicted in

Figure 5(c). This scenario is similar to the sliding bifurcation
of type I shown in Figure 5(a).

The fourth and last case is the so-calledmultisliding bifur-
cation, shown in Figure 5(d). It differs from the scenarios pre-
sented above, since the segment of the trajectorywhich under-
goes the bifurcation lies entirely within the sliding region Σ̂.

Under the influence of the dry friction, the system flow
may enter different subregions, and when the flow arrived at
the separation boundary, it may stay on the boundary; then
some type of sliding bifurcation may occur. Otherwise the
system flow leaves the boundary. As for the different cases
above, we give the corresponding analytic conditions in the
following.

When the following equation is satisfied

(𝑛𝑇Σ𝐹1 (𝑥)) (𝑛𝑇Σ𝐹2 (𝑥)) > 0 𝑥 ∈ Σ. (15)

the system flow will cross the separation boundary Σ. Mean-
while, when 𝑛𝑇Σ𝐹1(𝑥) < 0, 𝑛𝑇Σ𝐹2(𝑥) < 0, the system flow will
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enter the subregionΩ1, and when 𝑛𝑇Σ𝐹1(𝑥) > 0, 𝑛𝑇Σ𝐹2(𝑥) > 0,
the system flow will enter the subregionΩ2.

When the following condition is satisfied

𝑛𝑇Σ𝐹1 (𝑥) > 0
𝑛𝑇Σ𝐹2 (𝑥) < 0

𝑥 ∈ Σ.
(16)

the system flow will be sliding on the separation boundary.
The stick motion occurs.

As for the sliding region, it is defined as
Σ̂ = {𝑥 ∈ Σ : 0 ≤ 𝜆 (𝑥) ≤ 1} (17)

with
𝜕Σ̂ = 𝜕Σ̂+ ∩ 𝜕Σ̂−, (18)

where 𝜕Σ̂− = {𝑥 ∈ Σ : 𝜆(𝑥) = 0}, 𝜕Σ̂+ = {𝑥 ∈ Σ : 𝜆(𝑥) = 1}.
When 𝜆(𝑥) = 0, we have 𝐹𝑠(𝑥) = 𝐹1(𝑥) and 𝑛𝑇Σ𝐹1(𝑥) = 0;
when 𝜆(𝑥) = 1, we have 𝐹𝑠(𝑥) = 𝐹2(𝑥), 𝑛𝑇Σ𝐹2(𝑥) = 0. As for
the stick motion, it may end in two cases as follows.

Case 1. The system flow leaves the separation boundary and
enters the subregionΩ1.
Case 2. The system flow leaves the separation boundary and
enters the subregionΩ2.

For the first case, it should satisfy the following:

𝑛𝑇Σ𝐹1 (𝑥) = 0
𝑛𝑇Σ𝐹2 (𝑥) < 0

𝑥 ∈ Σ
(19)

and for the second case, it should satisfy the following:

𝑛𝑇Σ𝐹1 (𝑥) > 0
𝑛𝑇Σ𝐹2 (𝑥) = 0

𝑥 ∈ Σ.
(20)

Then, by using the analytic conditions listed above, we
can predict the sliding bifurcation for our system, which is
presented in the next section.

5. Numerical Predictions
In this section, we investigate the sliding dynamics by using
the analytic conditions listed above. Firstly, select the system
parameters as

𝛼 = 10,
𝑘1 = 10,
𝑘2 = 10,
𝑐1 = 0.2,
𝑐2 = 0.1,
𝑐3 = 0.2,
𝑐4 = 0.2,
𝜇1 = 0.1,
𝑅𝑙 = 1,
V = 10,
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Figure 6: Sliding time bifurcation diagram.

1.5 2 2.5 31
Fr

0

0.2

0.4

0.6

0.8

1

t s
/T

Figure 7: Sliding time duty cycle.

𝜇2 = 0.0005,
𝑓0 = 3,
𝑓1 = 1.5,
𝜔 = 10.

(21)

Then, in order to better study the sliding dynamics,
choose the separation boundary Σ as the Poincare section.
∏ = {(𝑥1, 𝑥2, 𝑥3)𝑇 | 𝑥3−V/𝑅𝑙 = 0}, and the Poincaremapping
is as∏→ ∏.

Choose the maximal static friction torque as the
researched parameter; then we obtain the sliding bifurcation
diagram and the sliding time duty cycle as shown in Figures
6 and 7.

From the bifurcation and the duty cycle diagram, we can
conclude as follows: when the maximal static friction torque
is smaller, there is no sliding bifurcation and the stick motion
cannot be observed. As it increases, the sliding bifurcation
occurs, and the sliding region shows the tendency of increase.
When the static friction increased to a certain extent, the
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system flow always stayed on the separation boundary, which
means that the stick motion occurs.

To better study the influence of maximal static friction
torque on the sliding dynamics and verify the analytic
conditions, define𝐾𝛼 = 𝑛𝑇Σ𝐹𝛼(𝑥), 𝛼 ∈ {1, 2}, and choose 𝑓𝑠 =1.2, 1.5, 1.8, 2.0, 2.5; then we can obtain the corresponding
time history diagram and K-function diagram as shown in
Figure 8.

From the above investigation, a conclusion is obtained as
follows: when the maximal static friction torque is smaller
(𝑓𝑠 = 1.2), the system flow crosses the separation boundary
periodically; there exist no stick motions. As it increases, the
sliding bifurcation occurs and the sliding region increases
with the static friction torque increasing.

Next, we investigate the influence of the driving torque𝑓0
on the sliding dynamics. Choose the system parameters as

𝛼 = 10,
𝑘1 = 10,
𝑘2 = 10,
𝑐1 = 0.2,
𝑐2 = 0.1,
𝑐3 = 0.2,
𝑐4 = 0.2,
𝜇1 = 0.1,
𝑅𝑙 = 1,
V = 10,
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𝜇2 = 0.0005,
𝑓1 = 1.5,
𝑓𝑠 = 1.5,
𝜔 = 10.

(22)

Then, we obtain the sliding bifurcation and the sliding
time duty cycle as shown in Figures 9 and 10.

To better understand the influence of the driving torque
𝑓0 on the sliding dynamics, select 𝑓0 = 3.5, 4, 4.5 to make
a detailed investigation; then the corresponding time history
and K-function are shown in Figure 11.

By observing the numerical conclusions above, we can
predict that the sliding region decreases with the increase
of 𝑓0 at first, then the sliding region increases, and at
last the sliding region may disappear through the grazing-
sliding bifurcation. To verify the prediction, choose 𝑓0 =

4.52, 4.531, 4.54; then the corresponding dynamics are shown
in Figure 12.

By observing Figure 12, when 𝑓0 = 4.532, the grazing-
sliding bifurcation occurs; then the sliding region disappears,
which is consistent with our prediction.

6. Conclusion

In this paper, we investigate the nonsmooth vibration of
a relative rotation system with backlash and dry friction,
especially the sliding bifurcation dynamics. The analytic
conditions for the sliding dynamics are also obtained. Then,
by using these conditions, we research the influence of
the maximal static friction and the driving torque on the
sliding dynamics. Moreover, the corresponding bifurcation
diagram, duty cycle, time history diagram, and K-function
are presented to predict the sliding bifurcation numerically,
which are consistent with the analytic conditions.

The present work not only makes us have a deeper
understanding of the sliding bifurcation dynamics, but also
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provides us with a method to study the nonsmooth vibration
of the nonsmooth systems.
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