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Abstract In this paper, we will analyze a theory of mod-
ified gravity, in which the field content of general relativ-
ity will be increased to include a vector field. We will use
the Horndeski formalism to non-minimally couple this vec-
tor field to the metric. As we will be using the Horndeski
formalism, this theory will not contain Ostrogradsky ghost
degree of freedom. We will analyze compact stars using this
vector–tensor-Horndeski theory.

1 Introduction

Even though general relativity is a very well-tested theory,
there is a strong motivation to modify general relativity at
large scale. This is because to explain the accelerating cos-
mic expansion in general relativity, a cosmological constant
has to be included [1–6]. Even though the existence of such a
cosmological constant is predicted from quantum field theo-
ries, quantum field theories predict a cosmological constant
which is 10120 times larger than the observed value of the
cosmological constant. This has motivated the study of mod-
ified theories of gravity, and the Scalar–Tensor theories are
such a modification of general relativity which could explain
accelerating cosmic expansion [7,8]. However, these theories
in general contain higher derivative terms in the action, and
such higher derivative terms gives rise to Ostrogradsky ghost
degree of freedom. These in turn cause instabilities in the the-
ory called Ostrogradsky instabilities. It is possible to avoid
Ostrogradsky ghosts by using a theory with galilean sym-
metry [9–12]. Even though this galilean theory also contains
higher derivative terms in the action, the galilean symmetry
ensures that the field equations are only second-order differ-
ential equations. Thus, the galilean symmetry ensures that the
Ostrogradski ghost instabilities are avoided in these theories.
In the decoupling limit, this theory contains a higher-order
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derivative interaction known as the cubic galilean. It is pos-
sible to construct a theory with quartic and quintic Galileon
[13]. It is necessary to add couplings of the scalar to curva-
ture tensors, away from the decoupling limit. This way the
Horndeski theory is obtained, and field equations for both the
scalar field and the metric are again second-order differen-
tial equations [14,15]. So, Horndeski theory is also free from
Ostrogradsky ghosts, and it does not contain the Ostrograd-
sky instabilities associated with these ghosts.

This Horndeski formalism is a general formalism and it
can be used to analyze a non-minimal coupling of other fields
to the metric. Thus, it is possible to analyze a Horndeski cou-
pling of the metric to a vector field [16,17]. In this formalism,
the vector field is again coupled to the metric using a non-
minimal coupling. Furthermore, the field equations for this
vector field are again second-order field equations. Thus, the
Ostrogradsky ghost terms are avoided even for the Horn-
deski coupling of a vector field to the metric. As we will be
interested in applying such a vector–tensor-Horndeski the-
ory to astrophysics, we will assume such a vector field to
be a fundamental field in nature, which is done by increas-
ing the field content of general relativity, and it is not the
usual electromagnetic field. This is important as astrophys-
ical objects are neutral and do not have an electric charge.
So, the electromagnetic field cannot have a direct effect on
the physics of such astrophysical objects. Furthermore, it is
well known that the gravity couples to the electromagnetic
field in the usual way, and there is no reason for it to cou-
ple to the physical electromagnetic field in a non-minimal
way in any astrophysical object. However, if we assume that
there exists an astrophysical vector field, which has negli-
gible effect on small scale, then it is possible that such an
astrophysical vector field can couple to the metric in a non-
minimal way. This coupling of such an astrophysical vector
field can have non-trivial effects on the astrophysical phe-
nomena. So, in this paper, we will analyze the effect of such
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a non-minimal coupling of an astrophysical vector field on
the physics of a compact star.

It may be noted that such fundamental vector fields have
been proposed as a solution to various different physical
problems, and have also been used to explain many inter-
esting astrophysical phenomena. Just like the scalar fields,
the vector field have also been used to explain cosmic expan-
sion [18,19], and even the naturalness problem [20,21]. It
may be noted that in his case the vector–tensor theories pro-
duce many non-trivial phenomenological effects which can-
not be produced in the scalar–tensor theories [22–25]. It has
been observed that anomalies exist in the alignment of the
low multipoles of the CMB [26,27] and the hemispherical
asymmetry [28]. Such anomalies suggest that there might
be a preferential direction in the universe, and this can be
explained using such a vector field. Furthermore, such fun-
damental vector fields have also been used to study infla-
tion [29,30]. The occurrence of higher derivative terms can
produce Ostrogradski ghost instability in such vector–tensor
theories. However, such Ostrogradski ghost instability can be
avoided by using the Horndeski formalism. Thus, it is inter-
esting to study a vector–tensor-Horndeski theory. It may be
noted that there are other interesting motivation to introduce
such vector fields. This is because there exists a discrepancy
between the predicted and observed dynamics of galaxies
[31–33], and it has been proposed that the discrepancy can
be resolved by increasing the field content of general rela-
tivity [34–39]. The field content of this modified theory of
gravity contains such a vector field. It may be noted that
this theory agrees with the predictions made by the modified
newtonian dynamics [40,41].

As general relativity contains a vector field, it has been
observed that astrophysical black holes in this modification of
gravity can mathematically resemble a Reissner–Nordstrom
solution [42,43]. However, the charge of this vector field is
generated from the mass and not an electromagnetic source
[42,43]. As the astrophysical objects are not charged, and so
any coupling of metric to an electromagnetic field cannot be
applied to study such astrophysical objects. However, as this
additional vector field is produced from mass and not electric
charge [42,43], it is possible that such a field can have direct
effect on astrophysical phenomena. Furthermore, in this the-
ory, there is a certain amount of freedom to choose the action
for vector field, and it has been demonstrated that coupling
the metric to a non-linear vector field can turn a black hole
into a gray hole [44]. As it has been demonstrated that dif-
ferent form of the vector field action can produce different
physical results, it is interesting to investigate other forms of
the coupling of vector field to metric. Furthermore, as this
vector field occur in the field content of general relativity, it
will also be interesting to investigate the astrophysical appli-
cation of such a theory. So, in this paper, we will use the
Horndeski formalism to couple a vector field to the metric,

and we use this vector–tensor-Horndeski theory to analyze a
compact star.

2 Vector–tensor-Horndeski theory

In this section, we will analyze the main features of a
vector–tensor-Horndeski theory. It has been proposed that
by increasing the field content of general relativity certain
astrophysical phenomena can be explained [34–39]. Fur-
thermore, for compact stars this would deform astrophysical
solutions, and these deformed solutions would resemble a
charged black hole solution [42,43]. It is physically impor-
tant to point out that the vector field introduced here is not
the usual electromagnetic field, but an astrophysical vector
field and it has negligible effect at small scale. However, it
is expected to change the astrophysical dynamics at larger
scale. In this section, we will use the Horndeski formalism
to non-minimally couple such a vector field to the metric.
Thus, we first introduce an astrophysical vector field Aμ

with the field tensor Fμν = ∇ν Aμ − ∇μAν . We denote the
source for such a vector field J ν . Now the energy-momentum
tensor for this astrophysical vector field can be written as
Tμν = 1

4π

(
Fα

μ Fνα − 1
4gμνFαβFαβ

)
, and we will also denote

the energy-momentum tensor for other fields in the theory by
T M

μν . There is a conserved charge associated with this vector
field, as we can write a divergence free current ∇ν J ν = 0.
Now using the Horndeski formalism [16,17], we couple this
astrophysical vector field to the metric as

Gμν = 8πG(Tμν + κUμν + T M
μν),

∇μF
μν + κ

2
∇αFβγRναβγ = 4π J ν (1)

where Uμν is given by

Uμν = 1

8π
(FαβF

β
γ Rμανγ + ∇βFμα∇αFν

β ). (2)

It may be noted that if κ = 0, this theory reduced to the usual
vector–tensor theory. However, we would like to analyze this
modified vector–tensor-Horndeski theory. The dual tensors
can be defined as Rαβ

μν = ηαβγ δημνεζ R
εζ
γ δ/4 and Fαβ =

ηαβγ δFγ δ/2, where η
αβ
γ δ = δ

[αβ]
[γ δ]/4! is total asymmetric Levi-

Civita tensor. Thus, we can write the Lagrangian for this
vector–tensor-Horndeski theory as

L = − R

16πG
+ FαβFαβ + κ

2
FαβF

γ δRαβ
γ δ . (3)

This Lagrangian has a non-trivial coupling between the astro-
physical vector field and the metric, which was not present
in other vector–tensor theories of gravity [34–39].

The static spherically symmetric solutions for a vec-
tor field has been studied using the Horndeski formalism
[16,17]. We will apply this solution to analyze a com-
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pact star in this theory, because even though physically,
this vector field is an astrophysical vector field, mathe-
matically, this solution will resemble the static spherically
symmetric solutions for a Horndeski vector field [16,17].
However, unlike the electromagnetic fields which cannot
have a direct effect on compact stars, this vector field can
change the behavior of compact stars. Now for this Horn-
deski astrophysical vector field Aμ, we have Jμdxμ =
j (r)dr , and for isotropic matter fields, we can take a per-
fect fluid with Tμ(M)

ν = (ρ,−p − p,−p). The static spher-
ically symmetric metric for a compact star can be written
in the Schwarzschild-Droste coordinates xμ = (t, r, ϕ, θ).
Furthermore, for this astrophysical vector field, we write
Fμνdxμ ⊗ dxν = f (r)gtt grr (dt ⊗ dr − dr ⊗ dt). Here
we choose the units, such that c = 1. Now the metric for this
solution can be written as

ds2 = e2ψ(r)dt ⊗ dt − e2φ(r)dr ⊗ dr − r2dθ ⊗ dθ

−r2 sin2 θdϕ ⊗ dϕ. (4)

The equation of motion for this solution can be written as

e−2φ

(
2φ′

r
+ e2φ − 1

r2

)
= f 2 + κ f 2

r2 (e−2φ − 1)

+ 8πGρ, (5)

e−2φ

(
2ψ ′

r
+ 1 − e2φ

r2

)
= − f 2 − κ f 2

r2 (3e−2φ − 1)

+8πGp (6)

e−2φ

(
ψ ′′ − φ′ψ ′ + ψ ′2 + ψ ′ − φ′

r

)
= f 2 + 8πGp

+κ f e−2φ

r
( f (φ′ − ψ ′) − 2 f ′) (7)

f ′ + 2 f

r
− κ

r2 ( f ′(1 − e−2φ) + 2 f φ′e−2φ) = 4π j (r).

(8)

We can write the hydrostatic equation for matter sec-
tor as ∇μT

μ(M)
ν = 0 for ν = r , and thus we obtain

p′+ψ ′(p+ρ) = 0. Now we can write Eqs. (5–8) in terms of
thermodynamic parameters, and this can be done by redefine
the metric function φ in terms of a mass function M(r) as

e−2φ = 1 − 2GM

r
. (9)

So, we can obtain the differential change in mass dM , which
is the mass stored in a layer with thickness dr as

GdM

dr
= 1

2
[1 − e−2φ(1 − 2rφ′)], (10)

where M is the mass of the compact object. Now make
the equations dimensionless by expressed them in terms
of { dp

dr , dM
dr , ρ, p}, and by using M → mM�, r → rgr ,

ρ → ρM�/r3
g , p → pM�/r3

g and R → R/r2
g . Here

rg = GNM� = 1.47473 km, M� is the mass of the Sun,
and

dφ

dr
= m

r2

1 − r
m

dm
dr

2m
r − 1

. (11)

Thus, we obtain

2m

r3

(
1 − r

m

dm

dr

)
− 2m

r3 + r2
g f

2 − 2mκ f 2

r3 = 8πρ, (12)

2p′

r(p + ρ)

(
1 − 2m

r

)
+ 2m

r3 − r2
g f

2 − 2κ f 2

r2

(
1 − 3m

r

)

= 8πp (13)
(

p′

p + ρ

)′
− m

r2

1 − r
m

dm
dr

2m
r − 1

p′

p + ρ
−

(
p′

p + ρ

)2

+ p′

r(p + ρ)
+ m

r3

1 − r
m

dm
dr

2m
r − 1

+ f 2r2
g

1 − 2m
r

(14)

+κ f

r

(

f

(
m

r2

1 − r
m

dm
dr

2m
r − 1

+ p′

p + ρ

)

− 2 f ′
)

= 8πp

1 − 2m
r

f ′ + 2 f

r
− κr−2

g

r2

(
2m f ′

r
− 2m f

r2

(
1 − r

m

dm

dr

))

= 4πrg j (r). (15)

We will analyze a compact start by solving Eqs. (12–15).
Furthermore, we will also use the equation of state p = p(ρ)

and a specific form of j (r) to obtain such solutions. The
function m(r) is important in analyzing the geometric mass
inside a sphere of radius r . This is because we can use Eq.
(10), and write

m′(r) = 1

2
[r(1 − e−2φ)]′. (16)

Furthermore, from Eq. (5), we obtain

m′(r) = 4πr2ρ − r2 f 2
[
1 + κ

r2 (e−2φ − 1)
]
. (17)

It may be noted in the absence of the Horndeski field, f = 0,
that Eq. (17) reduces to the usual form m′(r) = 4πr2ρ in
general relativity. Now by integrating Eq. (17), we obtain

m(R) ≡ M =
∫ R

0

(
4πr2ρ − r2 f 2

[
1 + κ

r2 (e−2φ − 1)

])
dr.

(18)

Now, using this result, we can obtain

2p′
r(p + ρ)

(1 − 2m

r
) + 2m

r3 +
⎡

⎣
8πρ + 2m

r3

(
1 − r

m
dm
dr

)
− 2m

r3

r2
g − 2mκ

r3

⎤

⎦

×
(
r2
g + 2κ

r2

(
1 − 3m

r

))
= 8πp. (19)

Now the equation of state for this system can be written
as p = p(ρ). It is possible to integrate this equation of
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state to obtain the behavior of this system in this vector–
tensor-Horndeski theory. The boundary conditions used for
analyzing this system in this vector–tensor-Horndeski the-
ory are similar to those used in the Einstein gravity, m(0) =
0, ρ(0) = ρc, and p(r0) = 0. So, the radius of the compact
star can be taken to be r0, such that the pressure vanishes.
Now we can analyze compact stars using this formalism. In
astrophysics, the term compact star is used to collectively
refer to white dwarfs, neutron stars, and black holes. They
are described by Tolman–Oppenheimer–Volkoff equations
[45,46]. In this section, we will analyze the effect of the
Horndeski astrophysical vector field on the physics of such
compact stars.

3 The gravitational binding energy

The gravitational binding energy of a system is the minimum
energy that must be added to that system for it to stop being
a gravitationally bound system. It is important to analyze the
gravitational binding energy of compact stars, such as the
neutron star, and such an analysis has been done using gen-
eral relativity [47–49]. So, in this section, we shall analyze
the effect of the astrophysical Horndeski field on the grav-
itational binding energy of a compact star. Thus, using the
definition of the mass function (18), the total mass of the
matter distribution of this system can be represented by

mADM = 4π

∫ ∞

o
drρ(r)r2 + �mADM. (20)

This mass is the Arnowitt–Deser–Misner (ADM) mass and
in the Horndeski-vector–tensor theory. It may be noted that
�mADM is the corrections to the usual ADM mass produced
by the Horndeski vector field,

�mADM = −
∫ ∞

0

(
r2 f 2

[
1 + κ

r2 (e−2φ − 1)
])

dr. (21)

Now we can define the density inside a proper volume ele-
ment

√−gd3x as the proper mass,

Mpr = 4π

∫ ∞

0
drρ(r)eφ(r)r2. (22)

We interpret the difference between the proper (22) and the
total mass (18) as the gravitational binding energy

Eb = Mpr − m > 0. (23)

In general relativity, due to the absence of vector or Horndeski
fields, f = 0 and �mADM = 0. However, as we have a non-
minimal coupling to the Horndeski field, the ADM mass is
corrected by a finite �mADM 
= 0.

To analyze the effect of the astrophysical vector field
on compact stars, we need to solve the modified Tolman–
Oppenheimer–Volkoff equation, Eq. (19). However, to solve
this equation, we need to use the equation of state for the

interior structure of the star. It is possible to write this equa-
tion of state using the central density, ρ(r = 0) = ρc, as a
free parameter. Thus, we can obtain the mass and radius of
a star by fixing the central density. This will correspond to
choosing a single point in the mass–radius diagram for the
star. As this system is described by a single parameter, we can
obtain the full mass–radius curve of the star by varying ρc. It
is possible to study the inner structure of the compact stars,
such as the neutron stars [50]. This is because it possible to
use microscopic many-body simulations to numerically ana-
lyze equation of state for such compact stars. The equation
of state for compact stars can be obtained using a mean-field
theoretical description of such a system [51–53]. In fact, it
is possible to describe the equation of state for a neutron star
using the nucleon–nucleon interaction. The equation of state
for such a star is is a polytrope equation of state [50],

p = kργ . (24)

The value of k can be taken to be k ≈ 2.0 × 105 cm5

gs2 when
γ = 2 [54]. We can now use this polytrope equation of state
to analyze the effect of Horndeski field on a neutron star.

We have used an adaptive step-size Runge–Kutta method
for analyzing a non-linear-integro-differential equation [55,
56]. This is because the modified Tolman–Oppenheimer–
Volkoff equation is a non-linear-integro-differential equa-
tion. In Fig. 2, blue line represents the vector–tensor-
Horndeski theory for κ = 0.01. It predicts the existence of
a typical neutron star with mass around 2M�, and a radius
around 10–15 km. Thus, this case is not physical. In fact, this
case can also be used to set a bound on the strength of the cou-
pling of this astrophysical vector field to general relativity. In
Fig. 3, the black line represents the standard general relativity,
κ = 0. The mass–radius diagram corresponding to this case
is given in Figs. 1, 2, 3 and 4. In Fig. 1, the red line represents
the vector–tensor-Horndeski theory with κ = 0.05. It does
not predict the existence of a typical neutron star with mass
around 2M�, and with a radius around 10–15 km. It may be
noted that, for κ < 0, the numerical evaluation does not con-
verge. Furthermore, a stable stellar configurations does not
exist for this case, as the hydrostatic equilibrium equations
are unstable. The mass–radius profile for a weakly coupled
vector–tensor-Horndeski theory (κ = 10−3) is plotted in Fig.
4. We observed that this profile around the maximum with
mass is similar to the profile obtained in the general relativ-
ity. However, for large radius, equilibrium configurations in
the vector–tensor-Horndeski theory are more massive than
in general relativity.

4 Density profile

It is possible to analyze a compact star to be represented by
a constant density. It may be noted that the compact stars
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Fig. 1 Mass–radius contours for a pure neutron star (with interactions)
using Prakash Method. Here Horndeski’s coupling is κ = 0.05

Fig. 2 Mass–radius contours for a pure neutron star (with interactions)
using Prakash Method. Here Horndeski’s coupling is κ = 0.01

with constant density have been analyzed in general rela-
tivity [57] (see [58] for a comprehensive review). In gen-
eral relativity the Tolman–Oppenheimer–Volkoff equation
admits an analytical solution, and this is obtained by impos-
ing p(r = r0) = 0. Here the central pressure pc = p(r = 0)

predicted by general relativity becomes infinite for the crit-
ical mass Mcr = 4/9m2

plr0 [59]. So, it is possible for stars
with M > Mcr to indicate a deviation from general relativity
[60]. Thus, it is interesting to analyze the effect of a Horn-
deski vector field for such a system. We can first analyze a
uniform mass density, called a top-hat density profile, inside
the star,

Fig. 3 Mass–radius contour in the absence of Horndeski’s field, when
general relativity is dominated, κ = 0

Fig. 4 Mass–radius contour when Horndeski’s field is weakly coupled,
κ = 0.001

ρ =
{

ρ0 r < r0

0 r0 < r
. (25)

Here we shall now analyze such a system using modified
vector–tensor-Horndeski theory. Now for this model and for
simplicity, we also choose j (r) = 0. So, the unknown func-
tions for this system are {m(r), f (r)}, and the metric func-
tion is ψ = ψ0. The exact solution for the vector–tensor-
Horndeski theory, for this system can be written as

m(r) = 4

3
π ρ r3 + 2π ρ rg2r5

15κ
+ O(r6). (26)
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Now using Eqs. (26) and (9), we obtain

φ(r) = −1

2
ln

(

1 + 8

3
π ρ r2 − 4

15

π ρ r4rg2

κ
+ O(r5)

)

.

(27)

The metric of this compact star can be written as

ds2 = e2ψ0 dt ⊗ dt − r2dθ ⊗ dθ − r2 sin2 θdϕ ⊗ dϕ

− dr ⊗ dr

1 + 8
3 π ρ r2 − 4

15
π ρ r4rg2

κ
+ O(r5)

. (28)

Now using this mass profile, we can integrate Eq. (15),
and obtain

f (r) = f0 + O((r − R)2)

+ (30 f0rg2 − 80 π ρ f0κ − 16 π ρ f0rg2R2)(r − R)

−15 Rrg2 + 40 π ρ Rκ + 4 π ρ R3rg2 .

(29)

Here we have assumed that this astrophysical vector field sat-
isfies the following initial condition on the surface of the star:
r = R, f (R) = f0. As the original function is corrected by
κ dependent terms, it can be argued that such corrections are
produced by the Horndeski vector field. As such a coupling
between gravity and Horndeski vector field is constrained by
experimental data, it is possible to use the astrophysical data
to constrain such a coupling.

We analyzed a compact star with a constant density. How-
ever, for real stars, we expect that the density to be a func-
tion of r . So, it is interesting to analyze various different
functional dependence of m(r), and analyze the effect of the
Horndeski vector field on a system described by such func-
tions. This is important to demonstrate that the dependence
of the system on Horndeski vector field is not a special fea-
ture of a system with a constant density. Now we can take
a simple function m(r) of r , such as m(r) = M0 ln(r), to
demonstrate that the Horndeski vector field effects the sys-
tems in which the density is not a constant. Now for such a
system, we obtain

f (r) = f0 + O((r − R)2)

+ 2 f0(R3rg2 + κ M0 ln(R) − κ M0)(r − R)

R(−R3rg2 + 2 κ M0 ln(R))
. (30)

The mass density of this system can be obtained from Eq.
(12), and it is given by

ρ(r) = f02�(−rg2r3 + 2mκ)

8r3R2(−R3rg2 + 2 κ M0 ln(R))2π
(31)

where we have defined � as

�1/2 = −3 R4rg
2 + 2 R3rg

2r + 2 κ M0 ln(R)r

−2 κ M0r + 2 κ M0R. (32)

The pressure for this system can also be obtained, and it is
given by

p(r) = X ρ (r − R)

R(−rg2R3 + 2 M0 ln(R)κ)(−R + 2 M0 ln(R))

+O((r − R)2) (33)

where we have defined X as

X = −M0 ln(R)rg
2R3 + 2 M0

2(ln(R))2κ

−4 π ρ R6rg
2 − 8 π ρ R4κ + 24 π ρ R3M0 ln(R)κ

+M0rg
2R3 + 2 M0κ R − 6 M0

2 ln(R)κ. (34)

Thus, the pressure of this system is affected by the Horndeski
vector field. This is because the pressure of this system is
corrected by terms proportional to κ , and so this system is
affected by the Horndeski vector field.

It may be noted that it is possible to take other functions
describing m(r), and analyze the pressure of the compact
stars using those functions. This procedure can be repeated
for those functions. It is expected that the pressure in such
systems will also depend on the Horndeski vector field.
So, for example, we can take another form of the function
m(r) = M0r ln(r) + M1r + M2r2, and demonstrate that the
system described by this function will also be affected by the
Horndeski vector field. Thus, using this function, we obtain

f (r) = f0 + O((r − R)2)

−
(

2 f0
R

+ 2 κ

R4rg2 (M0R ln(R) + M2R
2 + M1R)A

)

×(r − R), (35)

where

A =
f0

(
1 − R(2 M2R+M1+M0+M0 ln(R))

M0R ln(R)+M2R2+M1R

)

(
1 − 2

κ (M0R ln(R)+M2R2+M1R)
R3rg2

) . (36)

We observe that this system is again corrected by terms pro-
portional to κ , and so the physics of compact starts is affected
by the Horndeski vector field. This function can be used to
obtain the mass density and pressure of the compact star. As
the original function was corrected by the Horndeski vec-
tor field, the mass density and pressure of the compact star
in this theory would again depend on the Horndeski vector
field. These results can be compared with experimental data,
and bounds on the existence of such an astrophysical vector
field can thus be obtained. Thus, we have analyzed compact
stars in a vector–tensor-Horndeski theory, and observed that
the dynamics of this system is corrected by terms which are
proportional to the coupling constant of the Horndeski field.

4.1 Astrophysical monopole

It may be noted that as we are using an astrophysical vector
field, it is possible that such a vector field will also contain
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monopoles. Furthermore, as this vector field will have a negli-
gible effect at small distance, we cannot rule out the existence
of such monopoles in this vector field. These monopoles
can affect the astrophysical phenomena, and have a direct
effect on the physics of compact stars. Thus, if we assume
a monopole with charge Q is located at r = 0, then we can
write j (r) = Q/r2. The exact solution for this system can
now be written as

f (r) = f0 (37)

+
(

30 f0rg2 − 80 π ρ f0κ − 16 π ρ f0rg2R2

−15 Rrg2 + 40 π ρ Rκ + 4 π ρ R3rg2 + 4π rgQ

R2

)

×(r − R) + O((r − R)2). (38)

As the constant density solutions have been studied in gen-
eral relativity [57], it is interesting to analyze different limits
of such solutions. It is possible to take a constant density
solution, ρ(r) = ρ0 with j (r) = 0, and to analyze the effect
of the Horndeski vector field using f (r) = f0/r , where f0
is a constant. Now using this form of f (r), we can obtain

m(r) = rg2r3

2κ
+ cr2. (39)

Now using this mass profile we can integrate Eq. (19), and
obtain the pressure as

p(r) = ρ �

2Rcκ (−κ + 2 Rcκ + R2rg2)
(r − R)

+ O((r − R)2) (40)

where we have defined � as

� = −12 R2cκ rg
2 + 8 π ρ κ R3rg

2 + 24 π ρ κ2R2c

−10 Rc2κ2 − 8 π ρ κ2R − 3 R3rg
4 + 4 cκ2

+ 3 Rrg
2κ. (41)

So, the existence of astrophysical monopole from Horndeski
vector field can correct the pressure of a compact star. Thus,
astrophysical monopoles can have interesting effects on the
physics of compact stars in a Horndeski-vector–tensor the-
ory of gravity. As the monopoles have not been detected in
the electromagnetic vector field, there are strong constraints
of including the effects of such monopoles in physical sys-
tems. However, the Horndeski vector field is different from
electromagnetic vector field, so the constraint on the electro-
magnetic vector field from the absence of electromagnetic
monopoles do not apply to such Horndeski vector fields, and
hence it is possible that such vector fields change the physics
of compact stars.

5 Conclusion

In this paper, we have analyzed a theory of modified grav-
ity. In this theory, the field content of general relativity was

increased to include an astrophysical vector field. We have
used the Horndeski formalism to non-minimally couple this
astrophysical vector field to the metric. As we have used the
Horndeski formalism, this theory did not contain any Ostro-
gradsky ghost degree of freedom. We would analyze a com-
pact star using this vector–tensor-Horndeski theory. Thus, we
analyzed the effect of such a Horndeski vector field on the
gravitational binding energy. We used a polytrope equation
of state for analyzing a neutron star in Horndeski-vector–
tensor theory of gravity. We analyzed this system using an
adaptive step-size Runge–Kutta method [56]. We also ana-
lyzed various different cases for this system, and obtained
the mass density and pressure for the compact stars corre-
sponding to those cases. It was demonstrated that the Horn-
deski changed the physics of this system for these different
cases. It would be interesting to compare the results of this
paper to experimental data, and thus obtain bounds on the
vector–tensor-Horndeski theory. Finally, we proposed that it
is possible for a monopole to exist in such a modified theory
of gravity. As no monopole has been detected in the electro-
magnetic field, there are strong constraints on the existence of
monopoles in such a theory. However, the Horndeski vector
field was not constrained by the constraint on the electro-
magnetic vector field, and so we analyzed the effects of an
astrophysical monopole on the compact stars. It was demon-
strated that such an astrophysical vector field would change
the pressure of the compact star.

It may be noted that it is possible to analyze compact
stars with an anisotropy. In fact, multipole moments for com-
pact stars with anisotropic pressure have been studied [61].
The compact stars with anisotropy have been studied using
a modified Tolman–Oppenheimer–Volkoff equation [62]. It
has been observed that the pressure anisotropy can effect the
surface tension of these stars. This is because the anisotropy
decreases the value of the surface tension. It would be inter-
esting to introduce such an anisotropy using a vector field.
Furthermore, this vector field can be coupled non-minimally
to the metric using the Horndeski formalism. It would be
interesting to analyze the phenomenological effects of such
a model. The vector fields have been used to modify general
relativity, and it has been possible to use this modified theory
of gravity to obtain the correct dynamics of galaxies without
the need for dark matter [34–39]. It would be interesting to
analyze the dynamics of galaxies using a Horndeski vector
field. It might be possible to obtain the correct dynamics of
galaxies by suitable modifying such a theory, and possibly by
adding other fields to it. It would also be interesting to ana-
lyze the effects of such a theory on inflation. This is because
vector fields have been used to study inflation [29,30], and
it would be interesting to repeat this calculation using the
Horndeski formalism.

It is possible to make observations on a neutron star, and
these observations can be compared with the predictions of
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the vector–tensor-Horndeski theory. This can be used to both
verify the existence of a Horndeski vector field, if such effects
are detected. However, if such effects are not detected then
it can be used to set bounds on the strength of the coupling
of such an astrophysical vector field to general relativity. It
may be noted that as the κ = 0.05 does not predict the exis-
tence of a neutron star with a typical mass and radius, so
this case does not fit the experimental data. Thus, this case
is not physical. In fact, this case also establish a bound on
the strength of coupling parameter of the Horndeski vector
field to general relativity. It may be noted that this coupling
does change the behavior of mass–radius diagram. Such a
mass–radius diagram of a neutron star can be observed, and
the observations can be compared with this analysis. This
can be used to test the existence of such a Horndeski astro-
physical vector field, and also to establish a bound on the
strength of the coupling of such a field. It may be noted that
it is possible to obtain such experimental data for neutron
stars using gravitational lensing [63,64]. However, it is also
important to analyze the effect of the Horndeski vector field
on the gravitational lensing for such an analysis. It is possi-
ble to use the burst oscillations in the X-ray flux to obtain the
observational behavior of mass–radius of a neutron star [65].
It is also possible to use quiescent neutron stars to make such
observations on a neutron star [66]. It would be interesting
to analyze the effect of the Horndeski vector field on neutron
stars using such data.

It would be interesting to analyze other effects of this
Horndeski vector field which can be observed using compact
stars. The accretion in the Reissner–Nordstrom spacetime has
already been studied [67]. It was observed that the electro-
magnetic field can have interesting effect on such an accretion
around a compact star. In fact, the effect of a monopole on
the accretion has also been studied [68]. As the astrophysical
objects are not changed, such systems cannot be physically
realized. However, in this paper, we have proposed that a
Horndeski astrophysical vector field can couple to general
relativity, and the bounds on the strength of such a coupling
can be obtained from observations. Such an astrophysical
vector field will also change the accretion around compact
stars. It would be interesting to analyze the accretion in this
vector–tensor-Horndeski theory. It would also be interesting
to compare the result thus obtained to observations, and test
the vector–tensor-Horndeski theory.
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