
Eur. Phys. J. C (2015) 75:317
DOI 10.1140/epjc/s10052-015-3529-z

Regular Article - Theoretical Physics

Yang–Mills theory for semidirect products G � g∗
and its instantons

F. Ruiz Ruiza

Departamento de Física Teórica I, Universidad Complutense de Madrid, 28040 Madrid, Spain

Received: 16 September 2014 / Accepted: 11 June 2015 / Published online: 8 July 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract Yang–Mills theory with a symmetry algebra that
is the semidirect product h � h∗ defined by the coadjoint
action of a Lie algebra h on its dual h∗ is studied. The gauge
group is the semidirect product Gh�h∗, a noncompact group
given by the coadjoint action on h∗ of the Lie group Gh

of h. For h simple, a method to construct the self–antiself
dual instantons of the theory and their gauge nonequivalent
deformations is presented. Every Gh � h∗ instanton has an
embedded Gh instanton with the same instanton charge, in
terms of which the construction is realized. As an example,
h = su(2) and instanton charge one is considered. The gauge
group is in this case SU (2) � R3. Explicit expressions for
the selfdual connection, the zero modes and the metric and
complex structures of the moduli space are given.

1 Introduction

Motivated by an interest in finding new gauge configurations,
we consider Yang–Mills theory with a symmetry algebra that
is the classical double of a real Lie algebra and study its self–
antiself dual solutions. By the classical double of a real Lie
algebra h we understand in this paper the semidirect product
h�h∗ defined by the action ofhon its dualh∗ via the coadjoint
representation. Our concern here is Yang–Mills theory with
gauge group the simply connected Lie group Gh�h∗ obtained
from h � h∗ by exponentiation.

The group Gh�h∗ admits several descriptions. From a geo-
metric point of view, it is the cotangent bundle of the Lie
group Gh ofh. Algebraically, it can be regarded as the semidi-
rect product Gh � Gh∗ of Gh with the Lie group Gh∗ of h∗.
The cotangent bundle construction is standard in symplectic
mechanics. The semidirect product approach is not new either
in the physics literature. The Chern–Simons formulation of
three-dimensional gravity [1,2] is probably the most cele-
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brated example of a gauge theory with a gauge group of this
type. In that case,h is the Lorentz algebra in three dimensions,
h∗ is the algebra of three-dimensional translations, h � h∗
is the algebra of isometries iso(1, 2), and Gh � Gh∗ is the
isometry group ISO(1, 2). Other forms of semidirect prod-
ucts, some involving finite groups, have been employed in
various scenarios, including quantization of monopoles with
nonabelian magnetic charges [3], neutrino mixing [4,5], and
hypercharge quantization [6,7].

An important property of h � h∗ is that it is a metric Lie
algebra. This means that it admits an invariant, nondegener-
ate, symmetric, bilinear form, called metric, that takes values
in R. The relevance of this property comes from the obser-
vation that if g is a metric Lie algebra and � is a metric on
it, it is possible to formulate Yang–Mills theory with gauge
group the Lie group Gg of g. To do this on a d-dimensional
spacetime manifold, introduce a one-form gauge field κ and
its two-form field strength K = dκ + κ ∧ κ , both valued in
g, and consider the Yang–Mills d-form Lym = �(K , �K ).
Nondegeneracy of � ensures thatLym contains a kinetic term
for the gauge field κ , while invariance of � guarantees that
Lym is invariant under Gg gauge transformations. By con-
sidering the classical double h � h∗, it is thus possible to
define a gauge theory even if h is not metric. Similarly, four-
dimensional topological field theory and three-dimensional
Chern–Simons theory can be considered, with Lagrangians
given by �(K , K ) and �

(
κ, dκ + 2

3κ ∧ κ
)
.

In view of this, it seems natural to ask how many dif-
ferent real metric Lie algebras there are. The list of them is
exhausted by (i) reductive algebras, (ii) classical doubles, and
(iii) double extensions. Reductive algebras are direct sums of
semisimple Lie algebras and the Abelian algebra. They are
the Lie algebras of the compact Lie groups, and their gauge
theories have been the subject of continuous study over the
last 40 years. Less is known about the gauge theories for alge-
bras of type (ii) and (iii). Yang–Mills theory for classical dou-
bles is the object of this paper. As regards double extensions,
they are obtained by a nontrivial generalization [8] due to
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Medina and Revoy of the semidirect product that defines the
classical double. In fact, a classical double can be regarded
as a double extension of the trivial algebra. These authors
proved a structure theorem that states (a) that every real met-
ric Lie algebra is an orthogonal sum of indecomposable real
metric Lie algebras, and (b) that every indecomposable real
metric Lie algebra is simple, one-dimensional or the double
extension of a metric Lie algebra by either a simple or a one-
dimensional Lie algebra. A discussion of the theorem can be
found in Ref. [9]. Some Wess–Zumino-Witten models and
gauge theories for double extensions have been considered
in Refs. [9–12].

Let us center on the case of interest here, gauge theo-
ries with symmetry algebra h � h∗. In these theories, the
gauge field κ takes values in h � h∗ and has nonzero pro-
jections onto h and h∗. New degrees of freedom are thus
introduced when h is replaced with h � h∗. In Sect. 2, it is
shown, however, that the homology and homotopy invariants
for the group Gh�h∗ are the same as for Gh. This has two
implications. Homotopically nontrivial solutions for Gh�h∗
gauge theory exist if they do for Gh gauge theory, and the
h∗-component of the gauge field κ does not contribute to the
theory’s invariants. Here we study these questions. It will be
shown that Gh�h∗ instantons indeed have the same instanton
charge as their embedded Gh instantons, but larger moduli
spaces. A method to construct Gh�h∗ ∼= T ∗Gh

∼= Gh � Gh∗
instantons and their moduli spaces from those of Gh instan-
tons will be presented.

This paper is organized as follows. Section 2 is dedicated
to review the definition and basic properties of h � h∗ and
its Lie group Gh�h∗ . The Lagrangian and field content of
Gh�h∗ Yang–Mills theory are discussed in Sect. 3. The con-
struction of self–antiself dual Gh�h∗ instantons in terms of
the embedded Gh instantons is presented in Sect. 4. This con-
struction is explicitly realized for h = su(2) and instanton
charge one in Sect. 5, where expressions for the gauge field,
the zero modes and the metric and complex structures of the
moduli space are presented. In Sect. 6 we collect our final
comments.

2 The classical double of a Lie algebra and its Lie group

Let us start by reviewing the construction of the classical dou-
ble as a semidirect product. Assume thath is a real Lie algebra
of dimension n with basis {Ti } satisfying [Ti , Tj ] = fi j kTk .
Denote by h∗ its dual vector space, and take for h∗ the canon-
ical dual basis {Zi }, defined by Zi (Tj ) = δi j . Form the
vector space h ⊕ h∗. Its elements are pairs (T, Z), with
T in h and Z in h∗, and as a basis on it one may take
{(0, Ti ), (0, Z j )}. Consider the semidirect product h�h∗ that
results from acting with h on h∗ via the coadjoint representa-
tion. For T in h, the coadjoint representation ad∗

T : h∗ → h∗

associates Z �→ ad∗
T Z , with action on T ′ in h given by

ad∗
T Z(T ′) = Z(adT T ′) = Z([T, T ′]). This results in a Lie

algebra of dimension 2n with Lie bracket

[(T, Z), (T ′, Z ′)] = ( [T, T ′],− ad�
T Z

′+ ad�
T ′ Z

)
. (2.1)

For the bases {Ti } and {Zi }, one has ad�
Ti
Z j (Tk) = fik j , so

the Lie bracket becomes

[Ti , Tj ] = fi j
kTk, [Ti , Z j ] = − fik

j Zk, [Zi , Z j ] = 0.

(2.2)

Here we have introduced the notation, which we will often
use, Ti + Z j := (Ti , Z j ), so that Ti := (Ti , 0) and Zi :=
(0, Zi ). The semidirect product h� h∗ is a particular type of
Drinfeld double [13], namely the one specified by the trivial
bialgebra structure on h.

Let us also recall that a bilinear symmetric form � on a
Lie algebra is invariant if, for all A, B, and C in the algebra,
it satisfies

�(A, [B,C]) = �([A, B],C). (2.3)

This in turn implies invariance under the group adjoint action,
or more precisely,

�(e−C A eC , e−C B eC ) = �(A, B). (2.4)

Coming back to h � h∗, it is very easy to see that

� = Ti
Zi

Tj Z j
(

ωi j δ
j
i

δi
j 0

)
(2.5)

is nondegenerate and solves condition (2.3) for the commu-
tators (2.2), where ωi j = ω(Ti , Tj ) are the components of an
arbitrary symmetric, possibly degenerate, invariant, bilinear
form ω on h. Hence h� h∗ is a real metric Lie algebra, even
if h is not, and � is a metric on it.

The algebras h, h∗ and h� h∗ define through exponentia-
tion simply connected Lie groups that we denote by Gh, Gh∗
and Gh�h∗ . From a geometric point of view, Gh�h∗ is the
cotangent bundle T ∗Gh of Gh, a standard construction in
geometry. T ∗Gh is in turn isomorphic to the semidirect prod-
uct Gh � h∗, where Gh acts on h∗ by the coadjoint action.
For h in Gh, the coadjoint representation Ad∗

h : h∗ → h∗
maps Z to Ad∗

h Z , whose action on T ′ in h is given by
Ad∗

h Z(T ′) = Z(AdhT ′) = Z(h−1T ′h). The elements of
Gh�h∗ are pairs (h, Z)with product law (h1, Z1) (h2, Z2) =
(h1h2, Ad∗

h2
Z1+ Z2). Since h in Gh can be uniquely written

as h = eT, with T in h, the derivative of Ad∗
h is the coadjoint

action ad∗
T used to construct the semidirect product h � h∗.

As a group, h∗ is Abelian, noncompact and homeomorphic
to Rn , and {0} × h∗ is a normal subgroup. For example, for
h = su(2), this gives Gh�h∗ ∼= SU (2) � R3.

One may also adopt the following approach to Gh�h∗ .
Consider the Cartesian product Gh × Gh∗ , whose elements
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are pairs (h, n) that can be uniquely written as (eT, eZ ), for
some T in h and some Z in h∗. The homomorphism ϕ : Gh→
Aut(Gh∗), where ϕ(h) = ϕh acts on Gh∗ by conjugation,
ϕh(n) = h−1nh, defines a group structure on Gh×Gh∗ . This
results in the semidirect product Gh � Gh∗ , with group law
(h1, n1) (h2, n2) = (h1h2, (h−1

2 n1 h2) n2) and Lie algebra
h � h∗. As a group, Gh∗ is Abelian, noncompact, and home-
omorphic to Rn+. The map [0, 1]× (Gh � Gh∗) → Gh ×{0},
given by (t, (h, n)) �→ (h, tn), is then a homotopy. This
means that Gh �Gh∗ and Gh ×{0} are homotopically equiv-
alent, hence have the same homology and homotopy invari-
ants. In particular, they have the same third homotopy group.
For the elements of Gh � Gh∗ we will use the notation
g = hn = (h, n). It is clear that Gh � Gh∗ and Gh � h∗
are isomorphic.

We finish this section with two comments, one on repre-
sentations and one on deformations.

Comment 1. Given any p-dimensional matrix representa-
tion of h that associates to its basis {Ti } matrices {Mi } with
[Mi , M j ] = fi j k Mk , it is very easy to see that

ρ(Ti , 0) =
(

Mi 0
0 Mi

)
, ρ(0, Zi ) =

(
0 0

Mi 0

)
(2.6)

is a 2p-dimensional matrix representation of h � h∗. In the
adjoint representation of h, the matrices {Mi } are n × n and
have entries (Mad

i ) j
k =− fi j k . It is straightforward to check

that ρ above is then the adjoint representation of h � h∗.
Representations other than (2.6) are possible. An example is
the following. Let ei be the unit column vector in Rn , with
components (ei ) j = δi j . Some simple algebra shows that the
matrices

ρ ′(Ti , 0) =
(

Mad
i 0

0 0

)
, ρ ′(0, Zi ) =

(
0 ei
0 0

)
(2.7)

form a (n+1)-dimensional representation of h � h∗. Note
finally that every matrix representation of h � h∗ induces a
matrix representation of Gh�h∗ via matrix exponentiation.

Comment 2. Assume that the algebra h is metric, so that ωi j

in Eq. (2.5) can be taken as the components of a metric. One
may use ωi j and its inverse ωi j , given by ωikωk j = δi j , to
lower and raise indices in the structure constants fi j k . This
yields completely antisymmetric structure constants

fi jk = fi j
lωlk = ω([Ti , Tj ], Tk), fi jk = − f j ik = fki j .

(2.8)

Perform in h∗ the change of generators {Zi } → {Zi }, with
Zi = ωik Z j . This gives

[Ti , Tj ] = fi j
kTk, [Ti , Z j ] = fi j

k Zk, [Zi , Z j ] = 0.

(2.9)

Consider the commutators

[Ti , Tj ] = fi j
kTk, [Ti , Z j ] = fi j

k Zk,

[Zi , Z j ] = s2 fi j
kTk, (2.10)

where s in [Zi , Z j ] is an arbitrary real parameter. These com-
mutators satisfy the Jacobi identity for all s and reduce to the
Lie bracket (2.9) of the classical double when s → 0. The
vector space h ⊕ h∗ with the Lie bracket (2.10) is thus a Lie
algebra, call it h �s h

∗, and a deformation of h � h∗ with
deformation parameter s. The algebra h�s h

∗ is metric since
it admits the metric

�s = Ti
Zi

Tj Z j(
ωi j ωi j

ωi j s2ωi j

)
. (2.11)

In h �s h
∗ introduce generators {Xi ,Y j } given by

Xi = 1

2

(
Ti + 1

s
Zi

)
, Yi = 1

2

(
Ti − 1

s
Zi

)
. (2.12)

In the new basis, the Lie bracket (2.10) becomes

[Xi , X j ] = fi j
k Xk, [Xi ,Y j ] = 0, [Yi ,Y j ] = fi j

kYk,

(2.13)

and the metric �s takes the diagonal form

�s = Xi

Y j

X j Y j( 1
2

(
1 + 1

s

)
ωi j 0

0 1
2

(
1 − 1

s

)
ωi j

)
. (2.14)

The deformed algebra h�s h
∗ is thus the direct sum h⊕h and

its simply connected Lie group Gh�sh∗ becomes the direct
product Gh× Gh.

3 The gauge theory and its field content

Our interest here is Yang–Mills theory with gauge group
Gh�h∗ . Consider a spacetime manifold Md of dimension d
equipped with a metric γ . Greek letters μ, ν, . . . will label
coordinate indices 1, 2, . . . , d in a local chart {xμ}. In such
a chart, γμν will denote the metric components and γ μν the
components of the inverse metric. For an r-form ζ we will
adopt the normalization ζ = 1

r ! ζμ1···μr dxμ1 ∧ · · · ∧ dxμr .
Indices will be raised and lowered using γ μν and γμν metric.
For the commutator of an r-form ζ with an s-form ξ , both tak-
ing values in h�h∗, we will use [ζ, ξ ] = ζ ∧ξ −(−)rs ξ ∧ζ .

The gauge field is a connection one-form κ on Md that
takes values in h � h∗. The connection defines a covariant
derivative dκ , whose action on an (h � h∗)-valued r-form ζ

is given by dκ ζ = dζ + [κ, ζ ], and a curvature two-form or
field strength

K = dκ + 1
2 [κ, κ]. (3.1)
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The curvature takes values in h�h∗ and satisfies the Bianchi
identity dκK = 0. Gauge transformations

κ → κ ′ = g−1 dg + g−1 κ g (3.2)

are implemented by Gh�h∗ valued functions g(x). Under
such transformations, the curvature changes as

K → K ′ = g−1Kg. (3.3)

As usual, infinitesimal gauge transformation are obtained by
expanding g = eT eZ in powers of T and Z and keeping
terms up to order one. With  := T + Z , they read

κ → κ ′ = κ + dκ , (3.4)

K → K ′ = K + [K , ]. (3.5)

Consider the d-form �(K , �K ), where �K is the Hodge
dual of K and � is an invariant metric on h� h∗. The trans-
formation law (3.3) for K , the observation that any g can
be written as g = eT eZ , and the invariance condition (2.4)
imply that �(K , �K ) remains unchanged under gauge trans-
formations. The functional

Sym = 1

8π2

∫

Md

�(K , �K )

= 1

16π2

∫

Md

√
γ ddx �

(
Kμν, Kμν

)
(3.6)

is thus gauge invariant and can be taken as the classical action
of Gh�h∗ Yang–Mills theory. Variation of Sym with respect
to κ gives for the field equation

dκ �K = 0. (3.7)

For d ≥ 4, it is also possible to consider the gauge invari-
ant four-form �(K , K ). Since �(K , K ) does not require a
metric, it can be regarded as the Lagrangian of a topological
field theory in four dimensions, the classical action being

Sp = 1

8π2

∫

M4

�(K , K ). (3.8)

The form �(K , K ) is the first Pontrjagin class of the prin-
cipal bundle over Md with structure group Gh�h∗, and the
exterior derivative of a Chern–Simons three-form. That is,
�(K , K ) = dLcs(κ) with

Lcs(κ) = �
(
κ, dκ + 2

3 κ ∧ κ
)
. (3.9)

In analogy with the case of semisimple Lie algebras, one may
formulate Chern–Simons field theory on a three-dimensional
manifold M3 with the classical action

Scs = 1

8π2

∫

M3

Lcs(κ). (3.10)

The connection κ and the curvature K can be expanded
in the Lie algebra basis {Ti , Z j } as

κ = α + β, α := αi Ti , β := βi Z
i , (3.11)

K = F + B, F := Fi Ti , B := Bi Z
i , (3.12)

where αi and βi are one-forms on Md , and Fi and Bi are
two-forms. Substitution in Eq. (3.1) gives

F = dα + 1
2 [α, α] ⇔ Fi = dαi + 1

2 f jk
i α j ∧ αk, (3.13)

B = dβ + [α, β] ⇔ Bi = dβi + fi j
k α j ∧ βk . (3.14)

In infinitesimal form, gauge transformations read

α → α′ = α + dT + [α, T ], (3.15)

β → β ′ = β + dZ + [α, Z ] + [β, T ], (3.16)

whereas for the field strength they become

F → F ′ = F + [F, T ], (3.17)

B → B ′ = B + [B, T ] + [F, Z ]. (3.18)

The Bianchi identity dκK = 0 unfolds in the two identities

dF + [α, F] = 0, (3.19)

dB + [α, B] + [β, F] = 0, (3.20)

and the field equation dκ � K = 0 splits in

d � F + [α, �F] = 0, (3.21)

d � B + [α, �B] + [β, �F] = 0. (3.22)

There are a few observations that, despite their simplic-
ity, are worth making. Firstly, the curvature F has the same
dependence on α as results from gauging the algebra h. It is
B that mixes α with β. Secondly, the Lagrangian �(K , �K )

has a kinetic term for all the field components αi and βi

of the gauge field κ . Note in this regard that, for ω degen-
erate, ω(F, �F) does not define a Yang–Mills Lagrangian
since it does not contain a kinetic term for all the αi . Thirdly,
the field strength B, its Bianchi identity (3.20) and its field
equation (3.22) are linear in β. And lastly, the field equa-
tions (3.21) and (3.22) do not depend on ω.

The Pontrjagin and Chern–Simons forms read

�(K , K ) = ω(F, F) + 2 �(F, B) (3.23)

and

Lcs(κ) = Lcs(α) + 2 �(β, F) + d�(β, α). (3.24)

The first term on the right hand side in Eq. (3.24) is the
Chern–Simons three-form for α computed with the invariant
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bilinear form ω,

Lcs(α) = ω
(
α, dα + 2

3 α ∧ α
)
. (3.25)

For h the Lorentz algebra in three dimensions, the metric �

has the form in Eq. (2.5) and Lcs(κ) in Eq. (3.24) gives, for
ωi j = 0, the Chern–Simons Lagrangian of three-dimensional
gravity [1,2], modulo an exact form.

4 Semidirect instantons: general analysis

Let us turn our attention to self–antiself dual instantons on
R4. They are described by connections κs that solve the equa-
tion �K =±K , where the positive sign corresponds to selfd-
uality and the negative sign to anti-selfduality. For such con-
nections, the field equation reduces to the Bianchi identity;
thus it is trivially satisfied, and Sym[κs] = Sp[κs]. Since the
Pontrjagin index Sp[κs] is a homotopy invariant and homo-
topy invariants are the same as for Gh gauge theory, one has

Sym
[
Gh�h∗ ; κs

] = ±Sp
[
Gh�h∗ ; κs

]

= ±Sp
[
Gh;αs

] = Sym
[
Gh;αs

]
. (4.1)

Finiteness of the Yang–Mills action on the rightmost side
of this equation requires the curvature h-component Fs to
approach zero at the three-sphere S3∞ at infinity. This in turn
demands αs to approach a pure gauge configuration. That is,
αs → h−1dh at S3∞ for some h in Gh. Note that no boundary
condition for βs is needed. These arguments can be made
more explicit by noting that Sp[κ] is the integral over S3∞
of the Chern–Simons three-form Lcs(κ) in Eq. (3.24). For a
connection κ = (α, β) that approaches (α∞ = h−1dh, β∞)

at S3∞, with β∞ arbitrary, Eq. (3.24) and F∞ = 0 imply that
Sp[Gh�h∗ ; κ] = Sp[Gh;α].

All in all, the instanton charge, call it N , and the boundary
conditions for a self–antiself dual Gh�h∗ instanton κs =
(αs, βs) are specified by those of the embedded Gh instanton,

N = Sp
[
Gh�h∗ ;αs, βs

] = 1

8π2

∫

R4
ω(Fs, Fs). (4.2)

This implies in particular that βs does not contribute to the
instanton charge,

1

8π2

∫

R4
�(Fs, Bs) = 0. (4.3)

The self–antiself duality equation �K =±K splits in

�F = ±F ⇔ �
(

dα + 1
2 [α, α] ) = ± (

dα + 1
2 [α, α] ) ,

(4.4)

�B = ±B ⇔ � ( dβ + [α, β] ) = ± ( dβ + [α, β] ) .

(4.5)

Equation (4.4) and the boundary condition α → h−1dh set
a differential problem for α, whose solutions are the self–

antiself dual Gh instantons. For every solution αs, Eq. (4.5)
becomes an homogeneous linear differential problem for β,
with solution βs. In what follows we present a method to find
the most general solution βs for a given αs.

Take h to be simple and ωi j in Eq. (2.5) a metric on h. This
is the case of all self–antiself dual Gh instantons known to
date [14–24]. Introduce generators Zi = ωi j Z j . The com-
mutation relations for {Ti , Z j } and the metric � take the
form (2.9) and (2.11), with s = 0. Since any gauge field
κ ′ = (α ′, β ′) obtained from a solution κs = (αs, βs) by a
Gh�h∗ gauge transformation is trivially a solution, we restrict
our attention to gauge nonequivalent solutions. The space of
all such solutions with instanton charge N is the moduli space
MN (Gh�h∗).

Standard arguments [25,26] show that if κs is a solution
to the self–antiself duality equation, κ ′ = κs + δκ is a gauge
nonequivalent solution if δκ satisfies the equation

dκsδκ = � dκsδκ (4.6)

and the gauge-fixing condition

dκs � δκ = 0. (4.7)

Any infinitesimal local gauge transformation dκs = d +
[κs,], with  in h � h∗, solves Eq. (4.6). Its solutions δκ

may then include a transformation of this type. The point is
that for κ ′ and κs to be gauge nonequivalent, δκ cannot just
be an infinitesimal gauge transformation, and this is what
Eq. (4.7) takes care of.

Expand δκ in the basis {Ti , Z j } as

δκ = δα + δβ, δα := δαi Ti , δβ := δβ i Zi , (4.8)

and substitute these expansions in Eqs. (4.6) and (4.7). This
gives for δα and δβ the equations

� ( d δα + [αs, δα] ) = ± ( d δα + [αs, δα] ) , (4.9)

d � δα + [αs , � δα ] = 0, (4.10)

and

� ( d δβ + [αs, δβ] + [βs, δα] ) = ± ( d δβ + [αs, δβ]
+[βs, δα] ) , (4.11)

d � δβ + [αs , � δβ ] + [βs , � δα ] = 0. (4.12)

The solutions δκs = (δαs, δβs) to these equations describe
gauge nonequivalent displacements in the moduli space
MN (Gh�h∗). We will use standard terminology and refer
to them as zero modes (since they are the zero modes of a
linear differential operator).

In Eqs. (4.4), (4.9), and (4.10) one recognizes the prob-
lem of charge N self–antiself dual Gh instantons and their
zero modes. Given its solution {αs, δαs}, we want to solve
Eqs. (4.5), (4.11), and (4.12) for β and δβ. Let us first
understand the solution to the Gh problem. A solution αs

to Eq. (4.4) depends on a set of free parameters {ua} that
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describe instanton degrees of freedom and that occur in the
differential problem as integration constants [19–26]. In the
ADHM approach, the {ua} appear as free parameters in the
quaternion matrices in terms of which αs is constructed.
Using the fact that partial derivatives ∂/∂ua commute with
the exterior differential d and noting the Jacobi identity for
the generators {Ti } ofh, it is trivial to check that (i) derivatives
∂αs/∂ua of αs along ua and (ii) rotations [αs, Ti ] of αs about
Ti solve the moduli equation (4.9). The problem is that they
may not satisfy the gauge-fixing condition (4.10). To correct
this, one includes infinitesimal local Gh transformations and
writes for the zero modes

δ(a)αs = ∂αs

∂ua
+ d t(a) + [αs , t(a)], (4.13)

δ(i)αs = [αs, Ti ] + d t(i) + [αs , t(i)], (4.14)

where t(a) = t j
(a)Tj and t(i) = t j

(i)Tj are h-valued functions
that must be chosen so that Eq. (4.10) holds. The zero modes
δ(a)αs and δ(i)αs give the gauge nonequivalent deformations
of αs. Introducing angles τ i for the rotations around Ti , one
may take {ua, τ i } as local coordinates on the moduli space
of charge N self–antiself dual Gh instantons MN (Gh).

4.1 The connection

We now turn to Eq. (4.5). Writing β = β i Zi and noting
the commutation relations [Ti , Tj ] = fi j kTk and [Ti , Z j ] =
fi j k Zk , Eq. (4.5) gives for β i the same equation as the mod-
uli equation (4.9) gives for the components δαi of δα. The
latter is solved by derivatives ∂αs/∂ua and rotations [αs, Ti ].
Hence, modulo gauge transformations, the most general solu-
tion for β is a linear combination

βs =
∑

a

ũa
∂αi

s

∂ua
Zi + τ̃ i [αs , Zi ] (4.15)

with arbitrary coefficients ũa and τ̃ i . Upon substitution in
Eq. (3.14), the h∗-component of the curvature becomes

Bs =
∑

a

ũa
∂Fi

s

∂ua
Zi + τ̃ i [Fs, Zi ]. (4.16)

This is trivially self–antiself dual and does not contribute to
the instanton charge. To check the latter, use� (F, [F, Zi ]) =
0 for any two-form F , so that

∫

R4
�(Fs, Bs) = 1

2

∑

a

ũa
∂

∂ua

∫

R4
ω(Fs, Fs). (4.17)

Since
∫
ω(Fs, Fs) is a constant, equal to 8π2N , with N the

charge of the Gh instanton specified by αs, the derivatives on
the right hand side vanish and Eq. (4.3) is reproduced.

Once we have (αs, βs), we look for the solutions δβ to
Eqs. (4.11) and (4.12). There are two types of solutions: those
with δα = δαs = 0, and those with δα = 0.

4.2 Zero modes with δα = 0

A perturbation αs → αs + δαs produces a change βs →
βs + δβs given by

δβs =
∑

b

ũb
∂ δα

j
s

∂ub
Z j + τ̃ j [δαs , Z j ]. (4.18)

Employing the fact that δαs satisfies Eqs. (4.9) and (4.10), it is
a matter of simple algebra to check that δβs solves the moduli
equation (4.11) and the gauge-fixing condition (4.10). Hence,
to every Gh zero mode δαs there corresponds a Gh�h∗ zero
mode (δαs, δβs).

Using the expressions for δαs in Eqs. (4.13) and (4.14),
δβs can be recast as

δ(a)βs = ∂β i
s

∂ua
Zi + d z(a) + [αs, z(a)] + [βs, t(a)], (4.19)

δ(i)βs = [βs, Ti ] + d z(i) + [αs, z(i)] + [βs, t(i)]. (4.20)

Here z(a) and z(i) are the h∗-valued functions

z(a) =
∑

b

ũb
∂ t j(a)

∂ub
Z j + τ̃ j [t(a), Z j ], (4.21)

z(i) =
∑

b

ũb
∂

∂ub

(
Ti + t j(i)Z j

)
+ τ̃ j [

t(i)+ Ti , Z j
]
,

(4.22)

and t(a) and t(i) are the same functions as occur in the zero
modes δ(a)αs and δ(i)αs. The deformations δ(a)βs, δ(i)βs

in Eqs. (4.19) and (4.20) exhibit the pattern of a paramet-
ric derivative ∂βs/∂ua , rotation [βs, Ti ], followed by an
infinitesimal gauge transformation. Furthermore, δαs and δβs

can be combined in

δ(a)κs = ∂κs

∂ua
+ d(a) + [

κs,(a)

]
, (4.23)

δ(i)κs = [κs, Ti ] + d(i) + [κs,(i)], (4.24)

where (a) = t(a) + z(a) and (i) = t(i) + z(i).
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4.3 Zero modes with δα = 0

For δα = 0, the moduli equation (4.11) and the gauge-fixing
condition (4.12) for δβ i reduce to those for the zero modes
δαi of the self–antiself dual Gh instanton αs. It then trivially
follows that there are dimN (Gh) additional zero modes δκs =
(δαs, δβs) with

δ(ã)αs = 0,

δ(ã)βs = δ(a)α
j
s Z j = ∂βs

∂ ũa
+ d t j(a)Z j + [αs, t

j
(a)Z j ] ,

(4.25)

δ
(ĩ)αs = 0,

δ
( j̃)βs = δ(i)α

j
s Z j = ∂βs

∂τ̃ i
+ d t j(i)Z j + [αs, t

j
(i)Z j ]. (4.26)

These have the same structure of all zero modes, partial
derivatives with respect to moduli parameters, ũa and τ̃ i in
this case, followed by infinitesimal gauge transformations.

To summarize, the gauge field (αs, βs), with αs the con-
nection of a charge N self–antiself dual Gh instanton and βs

as in Eq. (4.15), specifies a self–antiself dual Gh�h∗ instan-
ton with the same charge. The dimension of its moduli space
MN (Gh�h∗) is twice the dimension of MN (Gh). As local
coordinates on MN (Gh�h∗), one may take {ua, τ j , ũa, τ̃ j },
where ua and τ i are local coordinates on MN (Gh), and ũa

and τ̃ i are kind of dual coordinates. If the zero modes of the
Gh instanton αs are given by Eqs. (4.13) and (4.14), the zero
modes of the (αs, βs) instanton take the form in Eqs. (4.13)–
(4.14), (4.19)–(4.20), and (4.25)–(4.26). We may call these
instantons cotangent T ∗Gh, or semidirect Gh � Gh∗ instan-
tons.

The moduli space MN (Gh�h∗) inherits a natural metric
from the field theory defined by the overlap of deformations
δκ = (δα, δβ). If U and V stand for two arbitrary moduli
coordinates, the moduli space metric coefficients are given
by

GUV = 1

8π2

∫

R4
�

(
δ(U )κ, � δ(V )κ

)
. (4.27)

Denote by H the metric on MN (Gh), with components

Hpq = 1

8π2

∫

R4
ω

(
δ(p)α, � δ(q)α

)
. (4.28)

Using �(Ti , Tj ) = �(Ti , Z j ) = ω(Ti , Tj ) and the results
in this section for the zero modes, one has

GUV = p
p̃

q q̃(
Hpq + �pq Hpq

Hpq 0

)
. (4.29)

where �pq stands for

�pq = 1

8π2

∫

R4

[
ω

(
δ(p)α, � δ(q)β

) + (p ↔ q)
]
. (4.30)

The hh-coefficient Gpq is the sum of Hpq and a contribu-
tion �pq that arises from the h∗-components δ(p,q)β of the
deformations along the moduli space directions p and q.

In the next section we explicitly realize this construction
for h = su(2) and instanton charge one.

5 The semidirect extension BPST instanton and its
moduli

On R4 take coordinates xμ = (x1, x2, x3, x4) and Euclidean
metric δμν . Set h = su(2), with basis [Ti , Tj ] = εi jk Tk . The
most general invariant bilinear form ω that can be defined
on su(2) is ωi j = ω0δi j , with ω0 an arbitrary constant that is
conventionally set equal to 1/2g2.

The classical double su(2)�su(2)∗ has commutators

[Ti , Tj ] = εi jk Tk, [Ti , Z j ] = εi jk Zk,

[Zi , Z j ] = 0, i = 1, 2, 3, (5.1)

and the most general metric � on it reads

� = Ti
Zi

1

2g2

Tj Z j(
δi j δi j
δi j 0

)
. (5.2)

This is of the form (2.5), or more precisely, of the form (2.11)
with s = 0. In the basis {Ti , Z j } the connection κ has com-
ponents αi and β j , and the curvature K has components F i

and B j , given by

F i = dαi + 1

2
εi jk α j ∧ αk, B i = dβ i + εi jk α j ∧ βk .

(5.3)

In what follows we restrict ourselves to the positive sign in
the equation �K = ±K . This corresponds to selfdual instan-
tons and, with the metric convention (5.2), positive instan-
ton charge. The negative sign, antiself dual instantons with
negative instanton charge, is analogously treated. The group
Gsu(2)�su(2)∗ is the cotangent bundle T ∗SU (2), isomorphic
to the semidirect product SU (2) � R3.

Equation �F i = F i , with F i as in Eq. (5.3), is solved
by SU (2) selfdual instantons. Take as solution the BPST
instanton [14], whose connection α i

s and curvature F i
s are

given in singular gauge by

α i
s = 2ρ2

r2
a (r2

a + ρ2)
η̄iμν (x − a)ν dxμ (5.4)

and

F i
s = 2ρ2

r2
a (r2

a + ρ2)
2

×
[
4 η̄ i

μγ (x − a)γ (x − a)ν − η̄ i
μν r

2
a

]
dxμ ∧ dxν .

(5.5)
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Here ρ is an arbitrary constant, ra is the radius of the three-
sphere

r2
a = (x − a)μ(x − a)μ (5.6)

centered at any point aμ in R4, and η̄iμν are the ’t Hooft
symbols [27]

η̄ i
μν = − η̄ i

νμ, η̄ i
4 j = δi j , η̄ i

jk = εi jk, (5.7)

whose properties are collected in the appendix. The BPST
connection has instanton charge one in units of 1/g2,

Sp[SU (2);αs] = 1

16π2g2

∫

R4
F i
s ∧ F i

s = 1

g2 . (5.8)

The moduli space of the BPST instanton [21–26] is an eight-
dimensional manifold on which one may take as global coor-
dinates the instanton size ρ, the four coordinates aμ of the
instanton center, and three angles τ i , which account for rota-
tions about the generators {Ti } of su(2). The deformations
along these moduli directions are [25]

δ(ρ)αs = ∂αs

∂ρ
, (5.9)

δ(aμ)αs = ∂αs

∂aμ
+ dαμ s + [αs, αμ s] = − Fμν s dxν,

(5.10)

δ(τ i )αs = [αs, Ti ] + d t Ti + [αs, t Ti ], (5.11)

where t is the function

t (ra) = − ρ2

r2
a + ρ2 . (5.12)

5.1 The semidirect BPST instanton and its zero modes

The results in Sect. 4 imply that, for α = αs, the most gen-
eral solution to the equation �B i = B i is, modulo gauge
transformations,

β i
s = ρ̃

∂αi
s

∂ρ
+ ãμ ∂αi

s

∂aμ
+ εik j αk

s τ̃ j , (5.13)

where ρ̃, ãμ and τ̃ j are free parameters. The curvature B i

then becomes

B i
s =

(
ρ̃

∂

∂ρ
+ ãμ ∂

∂aμ

)
F i
s + εik j F k

s τ̃ j . (5.14)

The su(2)�su(2)∗ connection (αs, βs) specifies a charge one
SU (2) � R3 instanton that we call a semidirect or cotangent
BPST instanton. It depends on 16 moduli parameters, ρ, aμ,
τ j , ρ̃, ãμ, and τ̃ j . The derivatives entering β i

s and Bi
s are

trivially calculated from the expression of αs.
The su(2)-components of the zero modes along the moduli

directions ρ, aμ and τ i are those in Eqs. (5.9)–(5.11). Upon

substitution in Eqs. (4.19) and (4.20), we obtain for their
su(2)∗-companions

δ(ρ)β = ∂βs

∂ρ
, (5.15)

δ(aμ)β = ∂βs

∂aμ
+ dβμs + [αs, βμs] + [βs, αμs] = − Bμν s dxν,

(5.16)

δ(τ i )β = [βs, Ti ] + d z(τ i ) + [αs, z(τ i )] + [βs, t Ti ], (5.17)

where z(τ i ) is a function of xμ given by

z(τ i )(x) = − 2ρ

(r2
a + ρ2)2

[
ρ̃ r2

a + ρ ãλ(x − a)λ

]
Zi

+ r2
a

r2
a + ρ2 τ̃ j [Ti , Z j ]. (5.18)

As a cross check, one may directly verify, by a long but simple
calculation, that δ(ρ,aμ,τ i )βs indeed satisfy the moduli equa-
tion (4.11) and the gauge-fixing condition (4.12). We remark
that δ(ρ,aμ,τ i )βs follow from Eqs. (4.19) and (4.20) and that
no additional gauge transformation has been introduced so
as to ensure that the gauge-fixing condition holds.

The zero modes associated to the moduli coordinates ρ̃,
ãμ and τ̃ i are given by Eqs. (4.25)–(4.26), which in our case
take the form

δ(ρ̃) α = 0, δ(ρ̃)β = ∂α i
s

∂ρ
Zi , (5.19)

δ(ãμ)α = 0, δ(ãμ)β = −F i
μν s Zi dxν, (5.20)

δ(τ̃ i )α = 0, δ(τ̃ i )β = d t Zi + [αs, (1 + t) Zi ], (5.21)

with t as in Eq. (5.12).

5.2 The moduli space metric

The expressions for the zero modes above and some calcu-
lations lead to the moduli space metric

ρ aν τ j ρ̃ ãν τ̃ j

GUV =

ρ

1
2g2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0 2 0 0
⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

aμ 0 δμν 0 0 δμν 0

τ i 0 0 1
2 ρ (ρ + 2ρ̃) δij 0 0 1

2 ρ2 δij

ρ̃ 2 0 0 0 0 0

ãμ 0 δμν 0 0 0 0

τ̃ i 0 0 1
2 ρ2 δij 0 0 0

(5.22)

The change of coordinates

σ = ρ̃ − ρ r−,

σ̃ = ρ̃ − ρ r+,

bμ = ãμ − aμ r−,

b̃μ = ãμ − aμ r+,

θ i = τ i − τ̃ i s+,

θ̃ i = τ i − τ̃ i s−,
(5.23)
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with r± and s± given by

r± = 2

1 ± √
5

s± = 2ρ

ρ + 2ρ̃ ± √
4ρ2 + (ρ + 2ρ̃)2

, (5.24)

brings the metric to the diagonal form

dL2 = 1

2g2

[
dσ 2 + dbμ dbμ + f dθ i dθ i − dσ̃ 2

−db̃μ db̃μ − f̃ d θ̃ i d θ̃ i
]
, (5.25)

where f and f̃ are positive functions of σ and σ̃ . This shows
that the metric has signature (8, 8).

The field theory is invariant under translations and SO(4)

rotations in R4, and under SU (2) � R3 gauge transforma-
tions. These symmetries go into isometries of the moduli
metric. Indeed, R4 translations give rise to translations in bμ

and b̃μ, generated by ∂/∂bμ and ∂/∂ b̃μ. Rotations become
SO(4) ∼= SU (2)+× SU (2)− rotations in bμ and b̃μ, gener-
ated by

χ i± = 1

2

[
εi jk b j ∂

∂bk
±

(
bi

∂

∂b4 − b4 ∂

∂bi

)]
(5.26)

and χ̃ i±, obtained from Eq. (5.26) by replacing bμ with b̃μ.
Finally gauge transformations become translations in τ i and
τ̃ i generated by ∂/∂τ i and ∂/∂τ̃ i . Note that, in the conven-
tional BPST instanton, one has translational and rotational
invariance in aμ. The first one is an isometry here, but the
second one is not, due to the occurrence of the term daμdãμ

in the moduli metric.

5.3 Complex structures

Let us show that the moduli space M1
(
SU (2) � R3

)
is a

hyper-Kähler manifold. We do this by finding three complex
structures J i = 1

2 (J i )UV dU∧dV , with components (J i )UV ,
such that

(J i )UW (J j )W V = − δi j δUV + εi jk (J k)U V . (5.27)

As in the BPST case, one expects the moduli space to inherit
its complex structures from those of R4, which can be written
as −η̄iμν dxμ ∧ dxn . This suggests the ansatz

(J i )UV = − 1

8π2

∫

R4
d4x η̄iμν �

(
δ(U )κ

μ, δ(V )κ
ν
)
.

(5.28)

Using the expressions for the zero modes and some algebra
and integration, one has

ρ aν τk ρ̃ ãν τ̃k

(Ji)UV =

ρ

− 1
2g2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 (ρ+ ρ̃)δi
k 0 0 ρδi

k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

aμ 0 η̄i
μν 0 0 η̄i

μν 0
τ j −(ρ+ ρ̃)δi

j 0 1
2ρ(ρ+2ρ̃) i

jk −ρδi
j 0 1

2ρ
2 i

jk

ρ̃ 0 0 ρδi
k 0 0 0

aμ 0 η̄i
μν 0 0 0 0

τ j −ρδi
j 0 1

2ρ
2 i

jk 0 0 0

(5.29)

Noting that (J i )U V = GUW (J i )WV , with GUV the
inverse of GUV in (5.22), it is straightforward to check that
the two-forms J i in Eq. (5.29) indeed satisfy Eq. (5.27);
hence they are complex structures. It is worth remarking that
the moduli space is hyper-Kähler, despite not being a Rie-
mannian manifold. It looks like hyper-Kählerity is “transmit-
ted” to M1(SU (2) � R3) via its Riemannian submanifolds.

We finish by studying the compatibility of the isometries
of the moduli metric with the complex structures. Recall
that for an isometry generated by a Killing vector ξ to be
compatible with a tensor A, the Lie derivative Lξ A of A
along ξ must vanish. For an isometry given in a chart {ua}
by u a → u′ a = ua + ε ξa(u), we use for the Lie deriva-
tive the convention LξA = limε→0

1
ε

[
A ′(u) − A(u)

]
. With

this convention, one may check that the isometries gener-
ated by ξ = ∂bμ, ∂ b̃μ, χ i+, ∂τ i and ∂τ̃ i are compatible with
the complex structures J i . However, for ξ = χ i−, one has
Lχ i−J

j = εi jk J k . The complex structures are thus rotated by
SU (2)− rotations, but they remain unchanged by the other
isometries.

6 Outlook

In this paper we have proposed a method to obtain the self–
antiself dual solutions for a gauge group Gh�h∗ from those
for Gh. This hints to using Medina and Revoy’s theorem [8]
to find structure results for the self–antiself dual instantons of
the Lie groups with metric Lie algebras. One may advance a
few ideas on the subject. According to the theorem, it would
suffice to consider three cases: (1) simple Lie algebras, (2)
Abelian algebras, and (3) double extensions of a metric Lie
algebra by either a simple or a one-dimensional Lie algebra.

Simple real Lie algebras are the Lie algebras of real simple
Lie groups, whose instantons would be regarded as the basic
objects in terms of which state structure results. Next on the
list is the Abelian Lie algebra. This case is trivial, since on
R4 there are no Abelian instantons. One is left with the Lie
groups of double extensions.

The double extension d(m, h) of a metric Lie algebram by
a Lie algebra h is obtained [8,9] by forming the classical dou-
ble h�h∗ and, then, by acting with m on h via antisymmetric
derivations. Since m needs to be metric, three possibilities
must be considered for m. The first one is that m is a simple

123



317 Page 10 of 11 Eur. Phys. J. C (2015) 75 :317

real Lie algebra. In this case [9], the algebra of antisymmetric
derivations of m is m itself and the double extension is iso-
morphic to the direct productm×(m�m∗). The correspond-
ing Lie group is then the direct product Gm × Gm�m∗ and
its instantons are determined in terms of the Gm instantons
using the construction presented here. The second possibil-
ity is that m is Abelian, of dimension m. Being Abelian, any
nondegenerate, symmetric bilinear form on m is a metric,
and this can always be brought to a diagonal form with all its
eigenvalues equal to either +1 or −1. If there are p positive
and q negative eigenvalues, the algebra h of antisymmetric
derivations is any subalgebra of so(p, q). In this case, by
extending the arguments at the beginning of Section 4, it can
be shown that the third homotopy group of Gd(m,h) is equal
to the third homotopy group of Gh. This motivates studying
the self–antiself dual solutions of such theories in detail. The
third option, that m is a double extension, takes us back to
the starting point.

One would also like to include matter fields in the analysis.
Their coupling to an h � h∗ gauge field requires additional
matter fields components, which introduce additional field
equations that may lead to new nontrivial configurations.
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Appendix

The ’t Hooft symbols, defined in Eq. (5.7), satisfy the alge-
braic identities [27]

η̄iμν η̄i γ τ = δμγ δντ − δμτ δνγ − εμνγ τ , (A.1)

η̄iμν η̄ j
μτ = δi j δντ + εi jk η̄kντ , (A.2)

εμνστ η̄i τσ = η̄iμν δσγ + η̄i νσ δμγ + η̄i σμ δνσ , (A.3)

εi jk η̄ j
μν η̄kγ τ =δμγ η̄i ντ −δμτ η̄i νγ −δνγ η̄iμτ + δντ η̄iμγ .

(A.4)

These have been widely used in the computations of Sect. 5.
The one-forms

χ̄ i = 1

r2
a

η̄iμν (x − a)νdxμ (A.5)

are Maurer–Cartan forms for SU (2) ∼= S3. Letting the radius
ra vary, one obtains the frame F̄ = {ē i = raχ̄ i , ē 4 =−dra},
which has the same orientation as {dxμ}. We could have

worked in regular gauge, in which the BPST connection reads

α i
s,reg = 2

r2
a + ρ2 ηiμν (x − a)ν dxμ, (A.6)

with the ’t Hooft symbols ηiμν given in terms of η̄iμν by

ηi j4 = −η̄i j4 = δi j , ηi jk = η̄i jk = εi jk . (A.7)

Maurer–Cartan one-forms can also be defined now,

χ i = 1

r2
a

ηiμν (x − a)νdxμ. (A.8)

Together with dra , they form a frame F = {e i = raχ i , e 4 =
dra} with the same orientation as {dxμ}. All the calculations
in Sect. 5 can be analogously performed in this gauge.
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