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Abstract In this paper, we study the leading-twist distri-
bution amplitude (DA) of the heavy pseudoscalars (HPs),
such as ηc, ηb, and Bc, within the QCD theory in the back-
ground fields. New sum rules up to dimension-six conden-
sates for both the HP decay constants and their leading-
twist DA moments are presented. From the sum rules for
the HP decay constants, we obtain fηc = 453 ± 4 MeV,
fBc = 498 ± 14 MeV, and fηb = 811 ± 34 MeV. Based
on the sum rules for the HPs’ leading-twist DA moments,
we construct a new model for the ηc, ηb, and Bc leading-
twist DAs. Our present HP DA model is also adaptable for
the light pseudoscalar DAs, such as the pion and kaon DAs.
Thus, it shall be applicable for a wide range of QCD exclusive
processes. As an application, we apply the ηc leading-twist
DA to calculate the Bc → ηc transition form factor
f Bc→ηc+ (q2). At the maximum recoil region, we obtain

f Bc→ηc+ (0) = 0.612+0.053
−0.052. Furthermore we predict the

branching ratio for the semi-leptonic decay Bc → ηclν and

obtain B(Bc → ηclν) =
(

7.70+1.65
−1.48

)
× 10−3 for massless

leptons, which is consistent with the light-cone sum rules
estimation obtained in the literature.

1 Introduction

The hard exclusive processes involving the heavy pseu-
doscalars (HPs), such as ηc, ηb, and Bc, have been stud-
ied within several approaches, such as the perturbative QCD
(pQCD) factorization approach [1–6], the non-relativistic
QCD (NRQCD) factorization approach [7–9], and the QCD
light-cone sum rules (LCSRs) approach [10–12]. The HP
leading-twist distribution amplitude (DA) is always an
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important input for those analysis, and a more precise DA
shall lead to more precise prediction.

The HP leading-twist DA at the scale μ can be expanded
in Gegenbauer polynomials as [13]

φHP(μ, x) = 6x(1 − x)

[
1 +

∞∑
n=1

aHP
n (μ)C3/2

n (2x − 1)

]
,

(1)

where aHP
n (μ) stands for the nth-order Gegenbauer moment,

and the odd moments should be zero for theηc andηb mesons.
When the scale μ tends to infinity, the DA φHP(μ, x) shall
evolve into its asymptotic form 6x(1 − x) [14]. Since the
typical energy scale of a specific process is always finite,
it is interesting to know the φHP behavior at any finite
scale.

It is reasonable to assume that the ηc and ηb DAs have
similar behaviors. As for the ηc leading-twist DA, several
models have been suggested in the literature [10,15–21,29,
30]. For example, Bondar and Chernyak [15] proposed a
phenomenological model for the ηc leading-twist DA (the
BC model) as an attempt to resolve the disagreement between
the experimental observations and the NRQCD prediction on
the production cross section of e+e− → J/�+ηc; Braguta
et al. [16] proposed a model for the ηc leading-twist DA
(the BLL model) based on the moments calculated under
the QCD Shifman–Vainshtein–Zakharov (SVZ) sum rules
up to dimension-four condensates. As for the Bc meson, one
usually adopts a naive δ-like model for its leading-twist DA
φBc [22].

In this paper, we study the HP leading-twist DAs within
the SVZ sum rules [23] under the background field theory
(BFT) [24–26]. As the basic assumption of the SVZ sum
rules, the quark condensate 〈q̄q〉, the gluon condensate

〈
G2
〉

and etc., reflect the nonperturbative property in QCD. It is
noted that the BFT provides a self-consistent description for

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/192655045?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


45 Page 2 of 14 Eur. Phys. J. C (2015) 75 :45

those vacuum condensates and provides a systematic way to
achieve the goal of the SVZ sum rules [24–26]. The HP DAs
are more involved than the light pseudoscalar DAs, since we
have to take the quark mass effect in the calculation. Recently,
within the framework of BFT, we have for the first time calcu-

lated the quark propagator and vertex operator (z · ↔
D)n with

full mass dependence up to dimension-six operators [27].
Thus we are facing the opportunity of deriving a more pre-
cise sum rule for the HP DA moments and a precise HP DA
behavior. For convenience, based on the BHL-prescription
for constructing the meson wavefunctions [28–30], we sug-
gest a general model for the HP leading-twist wavefunctions
and their DAs.

As an application of the suggested DA model, we apply
the ηc leading-twist DA to calculate the Bc → ηc transi-
tion form factor (TFF) f Bc→ηc+ (q2) within the LCSRs. It is
the key component for the semi-leptonic decay Bc → ηclν.
It is also the only TFF for the decay if the generated lep-
tons are massless. By adopting the conventional correla-
tor for the LCSRs, similar to the B → π TFFs [31],
the TFF f Bc→ηc+ (q2) shall be formulated as the function
involving the ηc leading-twist DA, twist-3 DA, and other
higher-twist DAs. The higher-twist DAs follow the power
suppression rule in large scale region; however, they may
have sizable contributions to the TFF in the intermediate
energy regions, similar to the pionic cases of the B → π

TFFs and the pion TFFs [32,33]. At present, the ηc higher-
twist DAs are still with great uncertainty, thus the possible
LCSRs with ηc various twist DAs shall inversely greatly
dilute our understanding of the leading-twist DA behaviors.
To cure the problem, we adopt the chiral correlator sug-
gested in Ref. [11] to do our calculation, and we find that
the most uncertain twist-3 DAs can be eliminated, then we
can see more clearly on how the leading-twist DA affects
f Bc→ηc+ (q2).

The remaining parts of the paper are organized as follows.
In Sect. 2, the QCD SVZ sum rules for the HP decay constants
and the HP leading-twist DA moments are given within the
framework of BFT. A new model for the HP leading-twist
DAs are also suggested here. Numerical results are presented
in Sect. 3. Section 4 is reserved for a summary.

2 Calculation technology

2.1 SVZ sum rules for the HP decay constants

To obtain the SVZ sum rules for the HP decay constants, we
take the following correlation function:

�(q2) = i
∫

d4xeiq·x 〈0
∣∣∣T
{

J5(x)J
†
5 (0)

}∣∣∣ 0
〉
. (2)

Here the pseudoscalar current

J5(x) = Q̄1(x)iγ5 Q2(x), (3)

where Q1 = b and Q2 = c for Bc, Q1 = Q2 = c (Q1 =
Q2 = b) for ηc (ηb), respectively. The HP decay constant
fHP is defined as

〈0 |J5| H P〉 = fHP
m2

HP

m1 + m2
, (4)

where mHP stands for the HP mass and m1(2) is the mass of
Q1(2) quark.

Following the standard sum rules procedures, into the cor-
relation function (2) can be inserted a complete set of inter-
mediate hadronic states in the physical region. It can also be
treated in the framework of the operator product expansion
(OPE) in the deep Euclidean region simultaneously. Those
two results can be related by the dispersion relation

�QCD(q
2) = 1

π

∫ ∞

tmin

ds
Im�had(s)

s − q2 + subtractions, (5)

where tmin = (m1+m2)
2. Then the sum rules can be obtained

by applying the Borel transform for both sides of Eq. (5).
More explicitly, on the one hand, we do the OPE for the

correlator (2),�QCD(q2), within the framework of BFT. For
the purpose, we first apply the following replacement for the
quark fields:

Q1(2) → Q1(2) + η1(2) (6)

in Eq. (2), where Q1 and Q2 in the right-hand-side of Eq.
(6) stand for the quark background fields, η1 and η2 are
the corresponding quantum fluctuations (quantum fields) on
the background field. The quantum fields interact with each
other according to the Feynman rule of BFT [24–26], for
example, the quantum quark–anti-quark pair can be con-
tracted as a propagator, while the remaining background
fields shall be kept to form the various vacuum matrix ele-
ments. Figure 1 shows the Feynman diagrams for determin-
ing the HP decay constant up to dimension-six operators,
in which the newly derived quark propagator with up to
dimension-six operators has been adopted [27]. In Fig. 1,
the big dot stands for the vertex operators iγ5 in the cur-
rent (3), the cross symbol attached to the gluon line indi-
cates the tensor of the local gluon background field, and “n”
indicates the nth-order covariant derivative. Figure 1a1 pro-
vides the perturbative contribution, Fig. 1b1, b2, c2 provide
the contributions proportional to the dimension-four con-
densate

〈
αs G2

〉
, and the remaining 13 diagrams, Fig. 1d1–

f1, provide the contributions proportional to the dimension-
six condensate

〈
gs

3 f G3
〉
. Here,

〈
αs G2

〉
and

〈
gs

3 f G3
〉

are
abbreviations for the condensates

〈
0
∣∣αs G A

μνG Aμν
∣∣ 0〉 and〈

0
∣∣∣g3

s f ABC G AμνG Bρ
ν GC

ρμ

∣∣∣ 0
〉
, respectively, where the color
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Fig. 1 Feynman diagrams for the HP decay constant. The big dot stands for the vertex operators iγ5 in the current (3), the cross symbol attached
to the gluon line indicates the tensor of the local gluon background field, and “n” indicates the nth-order covariant derivative

indices A, B,C = (1, 2, . . . , 8). Then we can directly
derive the explicit expression for �QCD(q2) from Fig. 1,
which is rather lengthy and shall not be presented here for
simplicity.

On the other hand, with the help of the definition (4), the
hadronic spectrum representation of the correlator (2) can be
written as

Im�had(q
2) = πδ(q2 − m2

HP)
f 2
HPm4

HP

(m1 + m2)2

+πρcont(q2)θ(q2 − sHP), (7)

where sHP is the continuous threshold parameter, θ is the
usual step function, and ρcont stands for the hadron spectrum
density from the continuous states. Due to the quark–hadron
duality, ρcont can be written as

ρcont(s) = 1

π
Im�pert(s). (8)

As a combination of Eqs. (5), (7), and (8), we are ready to
derive the SVZ sum rules for the HP decay constant. After
further applying the Borel transformation to suppress both
the unknown continuous states’ contributions and the higher
dimensional condensates’ contributions, the final SVZ sum
rules for the HP decay constant reads

f 2
HPm4

HP

M2(m1 + m2)2
e−[m2

HP/M2
]

= 1

π

1

M2

∫ sHP

tmin

dse−s/M2 × Im�pert(s)

+ L̂ M�〈G2〉(Q2)+ L̂ M�〈G3〉(Q2), (9)

where M is the Borel parameter, the operator L̂ M =
lim−q2,n→∞;(−q2/n)=M2

(−q2)n

(n−1)!
(

d
dq2

)n
stands for the usual

Borel transformation operator. The perturbative part have
been studied up to one-loop level by Ref. [34], and we have

Im�pert(s)

= 3

8π

s̄2

s
v

{
1 + 4αs(μ)

3πv

[
(1 + v2)

×
(
π2

6
+ ln

(
1 + v

1 − v

)
ln

(
1 + v

2

)
+ 2Li2

(
1 − v

1 + v

)

+ Li2

(
1 + v

2

)
− Li2

(
1 − v

2

)
+ 1

2

∑
i

[
− 4Li2(vi )

+ Li2(v
2
i )+ Li2

(
1 + vi

2

)
− Li2

(
1 − vi

2

)])

+
(

19

16
− 3v + 1

8
v2 + 3

16
v4
)

ln

(
1 + v

1 − v

)
+ 29

8
v
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− 3

8
v2 + 6v ln

(
1 + v

2

)
− 4v ln v + 1

2
(1 + v2)

×
∑

i

ln

(
1 + vi

1 − vi

)
ln
(vi

v

)
+ 1

2
v
∑

i

(
1

vi
− 1

v

)

× ln

(
1 + vi

1 − vi

)
+ v ln

( s

s̄

)
+ 3

2
v ln

(
m1

m2

)

+ v

[
(m1−m2)

2

s
v ln

(
1+v
1−v

)
− m2

2−m2
1

s
ln

(
m2

m1

)]]}
,

(10)

where s̄ = s − (m1 − m2)
2, v2 = 1 − 4m1m2/s̄, v1(2) =

s̄v/s1(2) with s1 = s − m2
1 + m2

2 and s2 = s + m2
1 − m2

2,
Li2(x) = − ∫ x

0 dt ln(1−t)
t is the Spence function. More-

over, for the parts proportional to the dimension-four and
dimension-six condensates, we have

L̂ M�〈G2〉(q2)

=
〈
αs G2

〉

48π

∫ 1

0
dx exp

[
−m2

1x + m2
2(1 − x)

M2x(1 − x)

]

×
{[

−6m1m2−2
m2

1x3+m2
2(1−x)3

x(1−x)

]
1

M4x2(1−x)2

+ [m1x + m2(1 − x)]2 m2
1x3 + m2

2(1 − x)3

M6x4(1 − x)4

}
, (11)

L̂ M�〈G3〉(q2)

=
〈
g3

s f G3
〉

32(4π)2

∫ 1

0
dx exp

[
−m2

1x + m2
2(1 − x)

M2x(1 − x)

]

×
([

64 − 416

3
x(1 − x)− 45

x3 + (1 − x)3

x(1 − x)

]

× 1

M4x2(1−x)2
+
{(

45
[m1x+m2(1−x)]2

x(1−x)
− 2

3
m1m2

)

×[x3 + (1 − x)3] − 6
m2

1x4 + m2
2(1 − x)4

x(1 − x)

−12
[
m2

1x3 + m2
2(1 − x)3

]
− 478

9
m1m2x(1 − x)

+287

9
[m1x + m2(1 − x)]2 − 320

9
x(1 − x)

×
[
m2

1x + m2
2(1 − x)

] } 1

2M6x3(1 − x)3

+
{(

6
[m1x + m2(1 − x)]2

x(1 − x)
+ 28m1m2

)

×
[
m2

1x4 + m2
2(1 − x)4

]
− 4

[
m4

1x4 + m4
2(1 − x)4

]

+16

5

m4
1x5 + m4

2(1 − x)5

x(1 − x)
+
(

30[m1x + m2(1 − x)]2

+88m1m2x(1 − x))×
[
m2

1x2 + m2
2(1 − x)2

]

−112

3
[m1x + m2(1 − x)]4 + 64

3
m1m2x(1 − x)

×[m1x + m2(1 − x)]2 + 128m2
1m2

2x2(1 − x)2
}

× 1

6M8x4(1 − x)4
− 2

15
[m1x + m2(1 − x)]2

× m4
1x5 + m4

2(1 − x)5

M10x6(1 − x)6

)
. (12)

In deriving these sum rules, we have adopted the M S-scheme
to deal with the infrared divergences. During the calculation,
we have to deal with the following vacuum matrix elements
in D-dimensional space (D = 4 − 2ε):

〈
0
∣∣G A

μνG B
ρσ

∣∣ 0〉,〈
0
∣∣G A

μνG B
ρσGC

λτ

∣∣ 0〉,
〈
0
∣∣∣G A

μν;λG B
ρσ ;τ

∣∣∣ 0
〉
,
〈
0
∣∣∣G A

μν;λτG B
ρσ

∣∣∣ 0
〉
,

and
〈
0
∣∣∣G A

μνG B
ρσ ;λτ

∣∣∣ 0
〉
. The formulas for relating these

matrix elements with the conventional condensates under
the D-dimensional space have been given in Appendix B
of Ref. [27]. For simplicity, we do not present them here, and
the interesting readers may turn to this reference for detailed
technology.

2.2 SVZ sum rules for the moments of the HP leading-twist
DA

The HP leading-twist DA φHP is defined as

〈
0
∣∣Q̄1(z) � zγ5 Q2(−z)

∣∣HP(q)
〉

= i(z · q) fHP

∫ 1

0
dueiξ(z·q)φHP(u), (13)

where ξ = 2u − 1. Expanding the left-hand-side of Eq. (13)
near z = 0 and writing the exponent in right-hand-side of
Eq. (13) as a power series, we obtain the definition of the DA
moments:

〈
0
∣∣∣Q̄1(0) � zγ5(i z · ↔

D)n Q2(0)
∣∣∣HP(q)

〉

= i(z · q)n+1 fHP
〈
ξn 〉

HP , (14)

where

〈
ξn 〉

HP =
∫ 1

0
du(2u − 1)nφHP(u) (15)

is the nth-order moment of φHP. The 0th-order moment

〈
ξ0
〉
HP

=
∫ 1

0
duφHP(u) = 1 (16)
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Fig. 2 Feynman diagrams for the moments of the HP leading-twist
DA. The left big dot and the right big dot stand for the vertex operators

� zγ5(z · ↔
D)n and � zγ5 in the currents Jn(x) and J †

0 (0), respectively.

The cross symbol attached to the gluon line indicates the tensor of the
local gluon background field, and “n” indicates nth-order covariant
derivative

gives the normalization condition for φHP. Setting n = 0 in
Eq. (14), one can get
〈
0
∣∣Q̄1(0) � zγ5 Q2(0)

∣∣HP(q)
〉 = i(z · q) fHP. (17)

To derive sum rules for the φHP moments, we consider the
following correlation function:

(z · q)n+2 I (q2)

= i
∫

d4xeiq·x 〈0
∣∣∣T
{

Jn(x)J
†
0 (0)

}∣∣∣ 0
〉
, (18)

where z2 = 0, and the two currents

Jn(x) = Q̄1(x) � zγ5(i z · ↔
D)n Q2(x),

J †
0 (0) = Q̄2(0) � zγ5 Q1(0).

Similar to Sect. 2.1, we can deduce the SVZ sum rules for
the moments 〈ξn〉HP.

Figure 2 shows the corresponding Feynman diagrams for
deriving the moments 〈ξn〉HP. In Fig. 2, the left big dot and

the right big dot stand for the vertex operators � zγ5(z · ↔
D)n

and � zγ5 in the currents Jn(x) and J †
0 (0), respectively; the

cross symbol attached to the gluon line indicates the ten-
sor of the local gluon background field, and “n” indicates
nth-order covariant derivative. Different from Fig. 1, there
are seven Feynman diagrams that have not been shown in
Fig. 2, because they have no contribution for the moments
〈ξn〉HP due to their quark loops explicitly lead to Tr[· · · ] = 0.
Fig. 2a1 provides the perturbative contribution, Fig. 2b1–d1
provide the double-gluon condensate contribution and the
remaining 23 diagrams provide the triple-gluon condensate
contribution. Furthermore, compared with Fig. 1, we have
some extra diagrams for the present case, i.e. Fig. 2d1, f1–

h4, which are due to the new vertex operator (z · ↔
D)n .

Following the standard SVZ procedures of the sum rules,
the final sum rules for the moments of the HP leading-twist
DA can be written as

f 2
HP 〈ξn〉HP

M2 exp
[
m2

HP/M2
] = 1

π

1

M2

∫ sHP

tmin

dse−s/M2

×ImIpert(s)+ L̂ M I〈G2〉(Q2)

+L̂ M I〈G3〉(Q2), (19)
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where

ImIpert(s)

= 3

8π(n + 1)(n + 3)

{(
s1 + s̄v

s
− 1

)n+1

×
[
(n + 1)

(s1 + s̄v)(−s2 + s̄v)

2s2 − 1

]
− (v → −v)

}
,

(20)

L̂ M I〈G2〉(Q2)

=
〈
αs G2

〉

6π

∫ 1

0
dx exp

[
−m2

1x + m2
2(1 − x)

M2x(1 − x)

]

×
{[

1

2
(2x − 1)n x2(1 − x)2 + n(n − 1)(2x − 1)n−2

× x3(1 − x)3
]

1

M4x2(1 − x)2
− (2x − 1)n x(1 − x)

m2
1x3 + m2

2(1 − x)3

2M6x3(1 − x)3

}
, (21)

L̂ M I〈G3〉(Q2)

=
〈
g3

s f G3
〉

(4π)2

∫ 1

0
dx exp

[
−m2

1x + m2
2(1 − x)

M2x(1 − x)

]

×
{[

−45

8
(2x − 1)n x(1 − x)(x3 + (1 − x)3)

−(2x − 1)n x2(1 − x)2
(

16n

9
x(1 − x)+ 22n + 69

72

)

−n(n − 1)

9
(2x − 1)n−2x3(1 − x)3

× ((n + 1)x(1 − x)+ 16x2 + 16(1 − x)2)
]

× 1

2M6x3(1 − x)3
+
[
−3

4
(2x − 1)n x(1 − x)

×(m2
1x4 + m2

2(1 − x)4)+ 11n

6
(2x − 1)n−1x2(1 − x)2

×(m2
1x3 − m2

2(1 − x)3)− n(n − 1)

3
(2x − 1)n−2

×x4(1 − x)4(m2
1x + m2

2(1 − x))+ (2x − 1)n x2(1 − x)2

×
(

−23

12

(
m2

1x2+m2
2(1−x)2

)+ 1

3

(
m1m2−6m2

1−6m2
2

)

× x(1 − x)+ 2
(
m2

1x + m2
2(1 − x)

) )− 8n

3
(2x − 1)n

×x3(1 − x)3
(
m2

1x + m2
2(1 − x)

) ]× 1

6M8x4(1 − x)4

+2

5
(2x − 1)n × x(1 − x)

m4
1x5 + m4

2(1 − x)5

24M10x5(1 − x)5

}
. (22)

Up to 6th order, the moments 〈ξn〉HP and the Gegenbauer
moments aHP

n at the same scale μ can be related via the
following equations:

〈
ξ1
〉
HP

|μ = 3

5
aHP

1 (μ), (23)
〈
ξ2
〉
HP

|μ = 1

5
+ 12

35
aHP

2 (μ), (24)
〈
ξ3
〉
HP

|μ = 9

35
aHP

1 (μ)+ 4

21
aHP

3 (μ), (25)
〈
ξ4
〉
HP

|μ = 3

35
+ 8

35
aHP

2 (μ)+ 8

77
aHP

4 (μ), (26)
〈
ξ5
〉
HP

|μ = 1

7
aHP

1 (μ)+ 40

231
aHP

3 (μ)+ 8

143
aHP

5 (μ), (27)
〈
ξ6
〉
HP

|μ = 1

21
+ 12

77
aHP

2 (μ)+ 120

1001
aHP

4 (μ)

+ 64

2145
aHP

6 (μ). (28)

Thus, inversely, we can derive the Gegenbauer moments aHP
n

from the above sum rules for 〈ξn〉HP. Usually, the Gegen-
bauer moments aHP

n are known for an initial scale μ0 around
�QCD, which can be evolved from any scale μ via the equa-
tion

aHP
n (μ) =

(
αs(μ)

αs(μ0)

) εn
4πb0

aHP
n (μ0), (29)

where

εn = 4

3

⎛
⎝1 − 2

(n + 1)(n + 2)
+ 4

n+1∑
j=2

1

j

⎞
⎠ .

For the running coupling, we adopt [35]

αs(μ) = 1

b0t

[
1 − b1

b2
0

ln t

t

+b2
1(ln

2 t − ln t − 1)+ b0b2

b4
0t2

]
(30)

with t = ln μ2

�2
QCD

,

b0 = 33 − 2n f

12π
,

b1 = 153 − 19n f

24π2 ,

b2 = 2857 − 5033
9 n f + 325

27 n2
f

128π2 .

2.3 A model for the HP leading-twist DAs

The meson DA can be derived from its light-cone wavefunc-
tion by integrating out its transverse components.1 Thus,
it is helpful to construct a HP leading-twist wavefunction
and then get its DA. For the purpose, one may assume that

1 The relation between the light-cone wavefunction and distribution
amplitude could be more complicated, and a recent discussion of this
point can be found in Refs. [36,37].
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the HP wavefunctions have a similar form to those of the
pseudoscalars kaon with SU f (3)-breaking effect [38] and
the D meson or B meson [11,39]. Based on the BHL-
prescription [28–30], the HP wavefunction can be con-
structed as

�HP(x,k⊥) = χHP(x,k⊥)�R
HP(x,k⊥), (31)

where k⊥ is the transverse momentum, χHP(x,k⊥) is the
spin-space wavefunction and�R

HP(x,k⊥) stands for the spa-
tial wavefunction. The spin-space wavefunction χHP(x,k⊥)
takes the form [40]

χHP(x,k⊥) = m̂1(1 − x)+ m̂2x√
k2⊥ + [m̂1(1 − x)+ m̂2x]2

, (32)

where m̂1,2 are the constituent quark masses for the HP. m̂1 =
m̂b and m̂2 = m̂c for the case of Bc meson, m̂1 = m̂2 = m̂c

(m̂b) for the case of ηc (ηb). We take m̂c = 1.8 GeV and
m̂b = 4.7 GeV to do our numerical calculations. It is noted
that different choices of m̂c or m̂b will lead to quite small
differences to the HP DA. Because m̂b, m̂c >> �QCD, the
spin-space wavefunctionχHP tends to 1 for the heavy scalars,
thus, one may omit such factor as a simplified model. The
spatial wavefunction �R

HP(x,k⊥) takes the form

�HP
R(x,k⊥)

= AHPϕHP(x)×exp

[
−1

8β2
HP

(
k⊥2 +m̂2

1

x
+ k⊥2 + m̂2

2

1−x

)]
,

(33)

where AHP is normalization constant. The parameter βHP

is a harmonious parameter that dominantly determines the
wavefunction transverse distributions. The function ϕHP(x)
dominantly dominates the wavefunction’s longitudinal dis-
tribution, whose behavior is further dominated by its first
several Gegenbauer polynomials. By keeping up to 6th-order
Gegenbauer moments, it can be expansion as

ϕHP(x) = 1 +
6∑

n=1

Bn
HP × C3/2

n (2x − 1), (34)

in which BHP
1,3,5 should be 0 for the case of ηc or ηb DA, due

to the fact that the ηc or ηb DA should be unchanged over the
transformation x ↔ (1 − x).

Using the relationship between the HP leading-twist DA
and the HP wavefunction,

φHP(x, μ) = 2
√

6

fHP

∫

|k⊥|2≤μ2
0

d2k⊥
16π3�HP(x,k⊥), (35)

we can obtain the required leading-twist DA for the HP. That
is, after integrating over the transverse momentum for the
wavefunction (31), we obtain

φHP(x, μ0) =
√

3AHPm̃βHP

2π3/2 fHP

√
x(1 − x)ϕHP(x)

× exp

[
− m̂2

1(1 − x)+ m̂2
2x − m̃2

8β2
HPx(1 − x)

]

×
{

Erf

[√
m̃2 + μ2

0

8β2
HPx(1 − x)

]

− Erf

[√
m̃2

8β2
HPx(1 − x)

]}
, (36)

where m̃ = m̂1(1 − x)+ m̂2x , μ0 ∼ �QC D is the factoriza-

tion scale, and the error function Erf(x) = 2√
π

∫ x
0 e−t2

dt .

The wavefunction parameters AHP, BHP
n , and βHP can be

determined by the following constraints:

• The normalization condition,

∫ 1

0
dx
∫

|k⊥|2≤μ2
0

d2k⊥
16π3�HP(x,k⊥) = fHP

2
√

6
. (37)

The decay constant fHP can be determined by the sum
rules (9).

• The probability of finding the leading Fock state
∣∣Q1 Q̄2

〉
in the HP Fock state expansion,

PHP =
∫ 1

0
dx
∫

d2k⊥
16π3

∣∣∣�R
HP(x,k⊥)

∣∣∣
2
. (38)

Equivalently, one can replace the constraint (38) by
the average value of the squared transverse momentum〈
k2⊥
〉
HP, which is measurable and is defined as

〈
k2⊥
〉
HP

=
∫ 1

0
dx
∫

d2k⊥
16π3 |k⊥|2

∣∣�R
HP(x,k⊥)

∣∣2
PHP

.

The experimental measurements on
〈
k2⊥
〉
HP are not avail-

able at the present. We adopt the constraint (38) and take
Pηc � 0.8 [19,40] and PBc ∼ Pηb � 1 [39] to do the
calculation. The choice of Pηb ∼ PBc > Pηc is rea-
sonable, since with the increase of the constituent quark
masses, the valence Fock state occupies a bigger frac-
tion in hadron and the probability of finding the valence
Fock state will be close to unity in the non-relativistic
limit. We have checked that all the wavefunction param-
eters change very slightly by varying PBc from 1.0 to
0.9, which indicates that the Bc meson already reaches
the non-relativistic limit.

• The Gegenbauer moments can also be derived from the
following definition:
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aHP
n (μ0) =

∫ 1
0 dxφHP(x, μ0)C

3/2
n (2x − 1)

∫ 1
0 dx6x(1 − x)

[
C3/2

n (2x − 1)
]2 . (39)

They should be equal to the Gegenbauer moments deter-
mined from the values of 〈ξn〉HP, which can be deter-
mined from the sum rules (19).

Using these constraints, one can strictly determine the
wavefunction parameters AHP, BHP

n , and βHP at an initial
scale μ0. These parameters are scale dependent; one can
obtain their values at any scale μ via the following evolu-
tion equation [14]:

x1x2μ
2 ∂φ̃HP(xi , μ)

∂μ2 = CF
αs(μ

2)

4π

{∫ 1

0
[dy]V (xi , yi )φ̃HP

× (yi , μ)− x1x2φ̃HP(xi , μ)

}
,

(40)

where CF = 4/3,

[dy] = dy1dy2δ(1 − y1 − y2),

V (xi , yi ) = 2

[
x1 y2θ(y1 − x1)

×
(
δh1h̄2

+ �

(y1 − x1)

)
+ (1 ↔ 2)

]
,

φHP(xi , μ) = x1x2φ̃HP(xi , μ),

�φ̃HP(yi , μ) = φ̃HP(yi , μ)− φ̃HP(xi , μ),

δh1h̄2
= 1 when the Q1 and Q̄2 have opposite helicities and

δh1h̄2
= 0 for other cases.

3 Numerical analysis

3.1 Input parameters

To determine the HP decay constants and the first several
moments of the HP leading-twist DA, we take [35]

mηc = (2.9837 ± 0.0007)GeV,

m Bc = (6.2745 ± 0.0018)GeV,

mηb = (9.3980 ± 0.0032)GeV,

m̄c(m̄c) = (1.275 ± 0.025)GeV,

m̄b(m̄b) = (4.18 ± 0.03)GeV. (41)

The M S c- and b-quark masses at any other scale can be
derived from the evolution [35]

m̄c(μ) = m̄c(m̄c)

[
αs(μ)

αs(m̄c)

] 12
25

,

m̄b(μ) = m̄b(m̄b)

[
αs(μ)

αs(m̄b)

] 12
23

. (42)

Table 1 The HP decay constants for sηc = 18 GeV2, sBc = 45 GeV2,
and sηb = 90 GeV2 under the allowable Borel windows, where all the
other input parameters are taken to be their central values

HP ηc Bc ηb

sHP (GeV2) 18 45 90

M2 (GeV2) [2, 11] [9, 13] [16, 20]
fHP (MeV) 453 ± 3 498 ± 9 811 ± 9

From αs(m Z ) = 0.1184 ± 0.0007 with m Z = (91.1876 ±
0.0021)GeV [35], we predict �QCD � 270, 257, and
204 MeV for the flavor n f = 3, 4, and 5, respectively. We
take the scale-independence dimension-four gluon conden-
sate

〈
αs G2

〉 = (0.038 ± 0.011)GeV4 [41] and
〈
g3

s f G3
〉 =

(0.013 ± 0.007)GeV6 [27].

3.2 The HP decay constants

To set the threshold parameter sHP and the allowable Borel
window for the sum rules (9), we require that the continuum
contribution to be less than 30 %, and the values for fHP are
stable in the Borel window. We obtain sηc = 18 GeV2, sBc =
45 GeV2, and sηb = 90 GeV2. Our predictions for the HP
decay constants fHP under the allowable Borel windows are
put in Table 1, where all other input parameters are taken as
their central values. We put the curves for the decay constants
fηc , fBc , and fηb versus the Borel parameter M2 in Fig. 3,
where the shaded bands indicate the uncertainties from the
input parameters mHP, mc,b,

〈
αs G2

〉
, and

〈
g3

s f G3
〉
. By taking

all uncertainty errors into consideration and adding them in
quadrature, our final predictions on fHP are put in Table 2.
As a comparison, some typical estimations on the HP decay
constants derived under various approaches [42–57] are also
presented. Table 2 shows that our present estimations on HP
decay constants agree with those derived under the Lattice
QCD [57], especially for fBc and fηb .

3.3 The HP leading-twist DAs

First, we calculate the HP leading-twist DA moments 〈ξn〉HP
with the SVZ sum rules (19). As suggested by Braguta et
al. [16], we set the continue threshold to be infinity. We adopt
the ratio f 2

HP 〈ξn〉HP /( f 2
HP

〈
ξ0
〉
HP) to derive the nth-moment

〈ξn〉HP instead of directly calculating 〈ξn〉HP. Due to the the-
oretical uncertainty sources for fHP and 〈ξn〉HP are mutually
correlated with each other, such a treatment result in a much
smaller theoretical uncertainty. Our results are presented in
Table 3, in which the HP leading-twist DA moments 〈ξn〉HP
up to 6th order are presented. We take the Borel window
M2 ∈ [1, 2] (GeV2) for 〈ξn〉ηc

, M2 ∈ [15, 20] (GeV2) for
〈ξn〉Bc

and 〈ξn〉ηb
, respectively. Figure 4 shows the stabil-

ity of the moments within those allowable Borel windows.
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Fig. 3 The HP decay constants versus the Borel parameter M2. The shaded band indicates the uncertainty

Table 2 A comparison of our present HP decay constants (in unit MeV)
with those obtained under various approaches [42–57]

fηc fBc fηb Ref.

453 ± 4 498 ± 14 811 ± 34 This work

/ 510 ± 50 / [42]

/ 400 ± 20 / [43]

/ 375 ± 40 / [44]

/ 570 ± 60 / [45]

/ 300 / [46]

320 ± 40 360 ± 60 500 ± 100 [47]

/ 570 ± 60 / [48]

/ 383 ± 27 / [49]

/ 300 ± 65 / [50]

/ 385 ± 25 / [51]

420 ± 52 / 705 ± 27 [52]

/ 400 ± 45 / [53]

/ 395 ± 15 / [54]

484 399 / [55]

490 / / [56]

438 ± 8 489 ± 5 801 ± 9 [57]

Table 3 The HP leading-twist DA moments 〈ξn〉HP up to 6th-order. The
errors are squared average of those from all the input parameters, such
as the Borel parameter, the condensates, and the bound state parameters.
The scale μ is set to be m̄c(m̄c) for ηc and m̄b(m̄b) for Bc and ηb

ηc (μ = m̄c(m̄c)) Bc (μ = m̄b(m̄b)) ηb (μ = m̄b(m̄b))

〈
ξ1
〉

0 0.279 ± 0.023 0〈
ξ2
〉

0.073 ± 0.009 0.182 ± 0.005 0.067 ± 0.007〈
ξ3
〉

0 0.100 ± 0.006 0〈
ξ4
〉

0.014 ± 0.003 0.071 ± 0.003 0.011 ± 0.002〈
ξ5
〉

0 0.047 ± 0.002 0〈
ξ6
〉

0.004 ± 0.001 0.036 ± 0.001 0.003 ± 0.001

In doing the calculation, all the uncertainty sources, such as
the Borel parameter, the dimension-four condensate

〈
αs G2

〉
,

the dimension-six condensate
〈
g3

s f G3
〉
, and the bound state

parameters, have been taken into consideration. The errors
listed in Table 3 are dominated by varying M2 within the
Borel window. The scaleμ is set to be m̄c(m̄c) = 1.275 GeV
for ηc and m̄b(m̄b) = 4.18 GeV for Bc and ηb.

Second, we adopt the relationship between the moments
〈ξn〉HP and the Gegenbauer moments aHP

n , i.e. Eqs. (23)–
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Fig. 4 The first several moments 〈ξn〉HP versus the Borel parameter M2. Here the input parameters are taken as the central values

Table 4 The HP leading-twist DA Gegenbauer moments aHP
n up to 6th

order, which are derived from 〈ξn〉HP via the relations (23)–(28). The
scale μ is set to be m̄c(m̄c) for ηc and m̄b(m̄b) for Bc and ηb

ηc (μ = m̄c(m̄c)) Bc (μ = m̄b(m̄b)) ηb (μ = m̄b(m̄b))

a1 0 0.466 ± 0.038 0

a2 −0.372 ± 0.027 −0.053 ± 0.016 −0.387 ± 0.019

a3 0 −0.106 ± 0.018 0

a4 0.124 ± 0.029 −0.028 ± 0.010 0.136 ± 0.022

a5 0 −0.017 ± 0.002 0

a6 −0.025 ± 0.017 −0.014 ± 0.001 −0.028 ± 0.013

(28), to derive the Gegenbauer moments aHP
n from Table 3.

The results for the Gegenbauer moments aHP
n are shown in

Table 4.
Third, we determine all the input parameters AHP, BHP

n ,
and βHP for the HP leading-twist DA model (36). Using the
central values for the Gegenbauer moments aHP

n listed in
Table 4, we obtain, at the scale μ = m̄b(m̄b),

Aηc = 2.401 GeV−1,

Bηc
2 = −0.306,

Bηc
4 = 0.092,

Bηc
6 = −0.019,

βηc = 5.386 GeV, (43)

for the ηc leading-twist DA; and

ABc = 1.894 GeV−1,

B Bc
1 = 0.400,

B Bc
2 = −0.150,

B Bc
3 = −0.152,

B Bc
4 = −0.014,

B Bc
5 = 0.009,

B Bc
6 = −0.001,

βBc = 7.538 GeV, (44)

for the Bc leading-twist DA; and

Aηb = 7.432 GeV−1,

Bηb
2 = −0.383,

Bηb
4 = 0.129,

Bηb
6 = −0.028,

βηb = 3.811 GeV, (45)
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Fig. 5 The HP leading-twist DAs. The solid, the dotted and the dashed
lines are for ηc DA, Bc DA and ηb DA at the scale m̄b(m̄b), respectively
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Fig. 6 A comparison of the ηc leading-twist DA. The dashed, the solid,
and the dash-dot lines are for our present model (36), the BC model [15]
and the BLL model [16], respectively. μ = m̄c(m̄c)

for the ηb leading-twist DA. All those three HPs’ leading-
twist DAs are presented in Fig. 5. The φηc (x, μ) is broader
than φηb (x, μ), and both of them are symmetric, while the
φBc (x, μ) is non-symmetrical, which is consistent with the
fact that its constituent c- and b-quarks are different.

Finally, we take the ηc leading-twist DA as an explicit
example to show the HP DA properties in detail. Figure 6
presents a comparison of our ηc leading-twist DA model (36)
with those of the BC model [15] and the BLL model [16]. Our
DA model is broader in shape than that of the BLL model,
but narrower than that of the BC model. Figure 7 shows how
φηc (x, μ) changes with the scale, in which four typical val-
ues, i.e. μ = 1.275, 4.18, 10, and 100 GeV, are adopted.
From Fig. 7, one may observe that with increment of the
scale μ, the φηc (x, μ) becomes broader and broader, which
finally tends to the asymptotic form for the μ = ∞ limit.
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Fig. 7 The running of the ηc leading-twist DA. The dashed, the dash-
dot, the solid and the dotted lines are for μ = 1.275, 4.18, 10, and
100 GeV, respectively

3.4 An application of the leading-twist DA φηc

As an application, in this subsection, we calculate the Bc →
ηc TFF f Bc→ηc+ (q2) by using our present ηc DA model (36).

As has been discussed in the Introduction, it is helpful to
apply the LCSRs approach with chiral current correlator to
calculate f Bc→ηc+ (q2) [11]. Thus the most uncertain twist-
3 DAs’ contributions are eliminated, and we can see more
clearly the properties of the leading-twist DA. Following the
standard way as programmed in Ref. [11], we obtain

f Bc→ηc+ (q2) = m̂b(m̂b + m̂c) fηc

m2
Bc

fBc

em2
Bc
/M2

∫ 1

�

du
φηc (u)

u

× exp

[
− m̂2

b − ū(q2 − um2
ηc
)

uM2

]

+ twist-4 and higher-twist terms, (46)

where ū = 1 − u, and

� =
[√(

s0 − q2 − m2
ηc

)2 + 4m2
ηc

(
m̂2

b − q2
)

−(s0 − q2 − m2
ηc
)

]
/
(

2m2
ηc

)
. (47)

We take the ηc leading-twist DA φηc (u) at the scale μ �
m̄b(m̄b) to do the calculation. We adopt the same criteria
as those of Ref. [11] to determine the Borel window of the
process and we take the continuum threshold to be s0 =
42 GeV2. The determined Borel window is M2 = (20–35)
GeV2, in which the TFF also has a good stability as shown
by Fig. 8.
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Fig. 8 The TFF f Bc→ηc+ (q2) versus the Borel parameter M2 at several
typical q2. All the input parameters are taken to be their central values
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Fig. 9 The TFF f Bc→ηc+ (q2) versus q2, in which the shaded hand
indicates its uncertainties

We present the TFF f Bc→ηc+ (q2) versus q2 in Fig. 9, in
which the shaded hand indicates its uncertainties. At the max-
imum recoil region with q2 = 0, we obtain

f Bc→ηc+ (0) = 0.612+0.053
−0.052, (48)

where all uncertainties have been added up in quadrature.
For the semi-leptonic decay Bc → ηclν, the energy region
[0, (m Bc − mηc )

2] is considered, and being different from

the TFF f Bc→ηc+ (q2) by pQCD,2 the LCSRs is supposed to
be valid in 0 < q2 < m2

b − 2mb�QCD � 15 GeV2 for b-

quark decays [11], then our TFF f Bc→ηc+ (q2) from (46) can

2 The pQCD is valid in low-energy region, thus its prediction for the
TFF f Bc→ηc+ (q2) needs to be extrapolated from the lower q2 region to
larger q2 region via proper extrapolations, cf. Refs. [58–61].
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Fig. 10 The differential decay rate for Bc → ηclν versus q2, where
the shaded hand indicates the uncertainty from the TFF f Bc→ηc+ (q2)

only

be directly used in the exclusive process Bc → ηclν. The
semi-leptonic differential decay rate of Bc → ηclν reads

d�

dq2 (Bc → ηclν)

= G2
F |Vcb|2

192π3m3
Bc

λ(q2)3/2
[

f Bc→ηc+ (q2)
]2
, (49)

where λ(q2) = (m2
Bc

+ m2
ηc

− q2)2 − 4m2
Bc

m2
ηc

, the Fermi

constant G F = 1.1663787(6) × 10−5 GeV−2, and the
CKM matrix element |Vcb| = 0.0412+0.0011

−0.0005 [35]. Figure
10 shows the differential decay rate of Bc → ηclν ver-
sus q2, where the shaded hand indicates the uncertainty
from the TFF f Bc→ηc+ (q2) only. After doing integrating over
q2 ∈ [0, (m Bc − mηc )

2], we obtain the central decay width
�(Bc → ηclν) = 1.12 × 10−14 GeV. By further using the
lifetime of the Bc meson τBc = (0.452 ± 0.032) × 10−12 s
[35], we predict the branching ratio of Bc → ηclν as

Br(Bc → ηclν) =
(

7.70+1.65
−1.48

)
× 10−3. (50)

It is noted that the TFF f Bc→ηc+ (q2), the CKM matrix element
|Vcb| and the Bc meson lifetime τBc provide the dominant
error sources for the branching ratio.

We put our prediction of the branching ratio together with
the typical prediction under various approaches in Table 5.
It shows that our result agrees with the previous LCSRs esti-
mation [62] and also in agreement with the quark model
prediction [55,58].3

3 A larger branching ratio for Bc → ηc(J/ψ)lν is helpful for solving
the puzzle for the parameter �(J/ψ�+ν). A recent discussion of this
point can be found in Ref. [9].
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Table 5 The branching ratio of Bc → ηclν (in unit %). As a com-
parison, we also present those derived by the LCSRs, the quark model
(QM), the pQCD, the QCD relativistic potential model (RPM) and the
NRQCD approaches

Approach Br(Bc → ηclν) Ref.

LCSRs 0.770+0.165
−0.148 This work

0.75 [62]

QM 0.81 [55]

0.48+0.02 [56]

0.67+0.11
−0.13 [58]

0.42 [63]

pQCD 0.441+0.122
−0.109 [5]

QCD RPM 0.15 [64]

NRQCD 2.1+0.7
−0.3 [8]

4 Summary

The meson DA is an important component for the QCD exclu-
sive processes that are studied within the framework of the
QCD sum rules, the QCD LCSRs, and the pQCD factoriza-
tion approaches. The QCD SVZ sum rules provides one of
the most effective approaches for exclusive processes, which
separates the short- and long-distance quark-gluon interac-
tion, and parameterizes the latter as a series of nonpertur-
bative vacuum condensates. The BFT provides a systematic
method for achieving the goal of SVZ sum rules and also
provides a physical picture for the vacuum condensates. As
a sequential work of Ref. [27], in this paper, we have made
a detailed study on the HP leading-twist DAs together with
the HP decay constants under the framework of BFT up to
dimension-six condensates.

Using the sum rules (9), we obtain fηc = 453 ± 4 MeV,
fBc = 498 ± 14 MeV and fηb = 811 ± 34 MeV. These
values are in agreement with those derived by the Lat-
tice QCD [57]. Using the sum rules (19), we calculate the
first several moments for the HP leading-twist DA, which
are presented in Table 3. Using the relations (23–27, and
28), we further obtain the Gegenbauer moments up to 6th
order. More explicitly, the non-zero Gegenbauer moments
for φηc are: a2(m̄c(m̄c)) = −0.372 ± 0.027, a4(m̄c(m̄c)) =
0.124 ± 0.029, and a6(m̄c(m̄c)) = −0.025 ± 0.017; the
non-zero Gegenbauer moments for φηb are: a2(m̄b(m̄b)) =
−0.387 ± 0.019, a4(m̄b(m̄b)) = 0.136 ± 0.022, and
a6(m̄b(m̄b)) = −0.028 ± 0.013; the non-zero Gegen-
bauer moments for φBc are: a1(m̄b(m̄b)) = 0.466 ± 0.038,
a2(m̄b(m̄b)) = −0.053 ± 0.016, a3(m̄b(m̄b)) = −0.106 ±
0.018, a4(m̄b(m̄b)) = −0.028 ± 0.010, a5(m̄b(m̄b)) =
−0.017 ± 0.002, a6(m̄b(m̄b)) = −0.014 ± 0.001. Here, the
errors are squared average of those from the uncertainties
of the Borel parameter, the condensates, and the bound state

parameters. The Gegenbauer moments at any other scale can
be obtained via evolution.

The meson DA is of nonperturbative nature, thus, it is help-
ful to have a general model for all the related HPs. Based on
the BHL-prescription [28–30], we have suggested the model
(36) for the HP leading-twist DAs. The model parameters of
φHP(x, μ) are determined with three reasonable constraints
together with the newly obtained HP decay constants and
Gegenbauer moments. The behaviors of the ηc, Bc, and ηb

leading-twist DAs are presented in Fig. 5. It is shown that the
φηc and φηb are symmetric and are close in shape, while the
φBc is non-symmetrical and quite different from the naive δ-
model, i.e. φBc(x) ∝ δ(x −m̂b/m Bc ), suggested in Ref. [22].
Our present HP DA model may also be adaptable for the light
pseudoscalar DAs, such as pion and kaon DAs. Thus, it shall
be applicable for a wide range of QCD exclusive processes.
With more and more data available, we may get more definite
conclusions on the behaviors of the pseudoscalar DAs, and
then we may achieve a more accurate theoretical prediction
on those processes.

As an application for the ηc leading-twist DA φηc , we

study the TFF f Bc→ηc+ (q2) within the LCSRs. It is noted
that the branching ratio Br(Bc → ηclν) strongly depends on
the TFF f Bc→ηc+ (q2), thus a more accurate TFF shall result
in a more accurate branching ratio. At the maximum recoil
point, we obtain f Bc→ηc+ (0) = 0.612+0.053

−0.052. Furthermore,
we predict the branching ratio of the semi-leptonic decay
Bc → ηclν, i.e., Br(Bc → ηclν) = 7.70+1.65

−1.48 ×10−3, which
is consistent with previous LCSRs prediction [62] and the
quark model result [55,58].
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