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Abstract In this paper we consider the Universe at the
late stage of its evolution and deep inside the cell of unifor-
mity. At these scales, the Universe is filled with inhomoge-
neously distributed discrete structures (galaxies, groups and
clusters of galaxies). Supposing that a small fraction of col-
ored objects escaped hadronization and survived up to now
in the form of quark–gluon nuggets (QNs), and also taking
into account radiation, we investigate scalar perturbations of
the FRW metrics due to inhomogeneities of dustlike matter
as well as fluctuations of QNs and radiation. In particular, we
demonstrate that the nonrelativistic gravitational potential is
defined by the distribution of inhomogeneities/fluctuations
of both dustlike matter and QNs. Consequently, QNs can be
distributed around the baryonic inhomogeneities (e.g., galax-
ies) in such a way that it can solve the problem of the flatness
of the rotation curves. We also show that the fluctuations
of radiation are caused by both the inhomogeneities in the
form of galaxies and the fluctuations of quark–gluon nuggets.
Therefore, if QNs exist, the CMB anisotropy should contain
also the contributions from QNs. Additionally, the spatial
distribution of the radiation fluctuations is defined by the
gravitational potential. All these results look physically rea-
sonable.

1 Introduction

It is well known that quark–gluon plasma can significantly
affect the early dynamics of the Universe. For example, over
two decades ago [1,2] (see also [3]) the accelerated expansion
of the early Universe was derived from a quark bag model
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with the proper equations of state. It was called tepid [1,2] or
little [3] inflation, in view of its moderate scales, compared
to the better known earlier inflation.

However, there is also the possibility that a small fraction
of colored objects—quarks and gluons—escaped hadroniza-
tion. They may survive as islands of colored particles, called
quark–gluon nuggets (for brevity sometimes also called
quark nuggets (QNs)). This possibility was first considered
by Witten [4] and scrutinized further in [5–7]. In his paper [4],
Witten discusses the possibility that QNs can survive even at
zero temperature and pressure. If so, the “hot” quark–gluon
phase in the form of QNs may affect the present expansion of
the Universe. Indeed, in our recent paper [8] we have shown
that nuggets can contribute to dark matter provided that their
interaction with ordinary matter is weak.

It is worth noting that the size distribution of QNs was
calculated in [9,10]. The authors found that a large num-
ber of stable QNs exist in the present Universe. They also
claimed that QNs could be a viable candidate for cosmolog-
ical dark matter. The survival probability of these QNs, i.e.
the question whether the primordial QNs can be stable on a
cosmological time scale is a key issue, and it was studied by
a number of our predecessors. In particular, the authors of
[11], using the chromoelectric flux tube model, have demon-
strated that QNs will survive against baryon evaporation if
the baryon number of the quark matter inside the nuggets is
larger than 1042 which is a rather conservative estimate. A
scenario where the Universe would be closed with QNs with
the baryon number density window 1039÷40 ≤ N ≤ 1049

or, in other words, the proverbial cosmological dark matter,
containing 90 % or more of all matter in the Universe, is
made of QNs, was considered in the paper [12]. The spe-
cial role of the strange quark matter in the phase transition,
both in the context of the early Universe and in compact
stars, was discussed in [13]. A relativistic model for strange
quark stars was proposed in [14] (see also [15] for a differ-
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ent approach to get compact quark objects). Quark matter is
believed to exist at the center of neutron stars [16], in strange
stars [17] and as small pieces of strange matter [18]. The
latter can result in ultra-high energy cosmic rays [19,20].
The search (in lunar soil and with an Earth orbiting mag-
netic spectrometer) for cosmic ray strangelets may be the
most direct way of testing the stable strange matter hypoth-
esis.

In the present paper, we continue the investigation of the
Universe filled with QNs. We consider the late stage of the
Universe evolution when inhomogeneities (such as galax-
ies and their groups) were already formed. Obviously, at this
late and highly nonlinear stage the hydrodynamic approach is
not adequate. Here, the mechanical approach [21,22] is more
appropriate. It works well inside the cell of uniformity [23]
and provides us a good tool to investigate scalar perturbations
for different cosmological models (see, e.g., [24]). Therefore,
it is of interest to study the compatibility of cosmological
models filled with nuggets with the mechanical approach.
This is the main aim of our paper. As a result, we show that
the considered models can be compatible with the theory
of scalar perturbations within the mechanical approach. It
is worth noting that different variants of our model (more
precisely, the quark nugget Model I and the quark–gluon
plasma Model I) were tested at cosmological scales using the
experimental data from type Ia Supernovae, Long Gamma-
Ray Bursts and direct observations of the Hubble parameter
in the recent paper [25]. The authors found that, in general,
these models do not contradict the experimental data. We also
demonstrate that the nonrelativistic gravitational potential is
determined by the distribution of both the baryonic inhomo-
geneities and the QNs. Consequently, QNs can be distributed
around the baryonic inhomogeneities (e.g., galaxies) in such
a way that it can solve the problem of the flatness of the
rotation curves.

The paper is structured as follows. In Sect. 2, we briefly
recall the background equations which describe the homo-
geneous and isotropic Friedmann cosmological model with
dustlike matter, radiation, quark–gluon nuggets and the cos-
mological constant. In Sect. 3, we investigate scalar pertur-
bations of the FRW metrics. Here, we demonstrate that QNs
can be compatible with the theory of scalar perturbations.
In Sect. 4, we find the QN distribution which allows the flat
rotation curves. The main results are briefly summarized in
concluding Sect. 5.

2 Background equations

In this section, we consider the homogeneous isotropic back-
ground cosmological model which satisfies Friedmann equa-
tions. As matter sources, we consider the averaged dust-

like matter (baryonic and dark matter1), radiation and quark
nuggets. For generality, we also include the cosmological
constant.

Quark–gluon nuggets

The equation of state for quark–gluon plasma is not unique.
There is a number of interesting modifications [1,2,26–30].
In our paper [8], we considered two possible forms of the
equation of state. The corresponding total background pres-
sure2 and energy density of all nuggets in the Universe, as
well as their temperature, read, respectively,

p̄QN = A1T + A4T 4

a3 , ε̄QN = 3A4T 4

a3 ,

T =
(

(C/a)3/4 − A1

A4

)1/3

(2.1)

for Model I and

p̄QN = A0 + A4T 4

a3 , ε̄QN = −A0 + 3A4T 4

a3 ,

T =
(

(C/a) − A0

A4

)1/4

(2.2)

for Model II. Here, a is the scale factor of the Universe, C
is the constant of integration and parameters A0, A1, A4 are
defined by the bag model constants and satisfy the relations
[8]

A1

A4
= −0.8114T 3

c ,
A0

A4
= −0.8114T 4

c , (2.3)

where Tc ≈ 200 MeV. It is also worth noting that A0, A1 < 0,
and A4 > 0.

Friedmann equations

For our models, the Friedmann equations read

3
(H2 + K)

a2 = κ
(

T
0
0 + εrad + εQN

)
+ Λ (2.4)

and

2H′ + H2 + K
a2 = −κ

(
prad + pQN

) + Λ, (2.5)

where H ≡ a′/a ≡ (da/dη)/a, κ ≡ 8πG N /c4 (c is the
speed of light and G N is Newton’s gravitational constant)
and K = −1, 0,+1 for open, flat, and closed Universes,
respectively. Conformal time η and synchronous time t are

connected as cdt = adη. Here, T
i
k is the energy-momentum

tensor of the average pressureless dustlike matter. For such

1 As we mentioned in the Introduction, QNs can play a role of dark
matter. However, there is a possibility of more than one type of dark
matter. Therefore, we take into account also dustlike dark matter in our
model.
2 This is the summarized pressure inside of all nuggets averaged over
the whole Universe.
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matter, the energy density T
0
0 = ρc2/a3 is the only nonzero

component. ρ = const is the comoving average rest mass
density [21]. As usual, for radiation we have the equation of
state: prad = (1/3)εrad. From Eqs. (2.4) and (2.5), we can
easily get the following auxiliary equation:

2

a2

(
H′ − H2 − K

)
= −κ

(
T

0
0 + εrad + εQN + prad + pQN

)
. (2.6)

3 Scalar perturbations

As we have written in Sect. 1, we consider the Universe
at late stages of its evolution when galaxies and clusters of
galaxies have already formed. At scales much larger than the
characteristic distance between these inhomogeneities, the
Universe is well described by the homogeneous and isotropic
FRW metrics. This is approximately 190 Mpc and larger [23].
At these scales, the matter fields (e.g., cold dark matter) are
well described by the hydrodynamical approach. However, at
smaller scales the Universe is highly inhomogeneous. Here,
the mechanical approach looks more adequate [21,23].

In the mechanical approach, galaxies, dwarf galaxies and
clusters of galaxies (composed of baryonic and dark matter)
can be considered as separate compact objects. Moreover, at
distances much greater than their characteristic sizes they can
be well described as point-like matter sources. This is a gener-
alization of the well-known astrophysical approach [31] (see
§106) to the case of a dynamical cosmological background.
Usually, the gravitational fields of these inhomogeneities are
weak and their peculiar velocities are much less than the
speed of light. Therefore, we can construct a theory of per-
turbations where the considered point-like inhomogeneities
perturb the FRW metrics. Quark–gluon nuggets and radiation
can also fluctuate. All these fluctuations result in scalar per-
turbations of the FRW metrics. In the conformal Newtonian
gauge, such a perturbed metric is [32,33]

ds2 ≈ a2
[
(1 + 2Φ)dη2 − (1 − 2Ψ )γαβdxαdxβ

]
, (3.1)

where scalar perturbations Φ,Ψ � 1. Following the stan-
dard argumentation, we can put Φ = Ψ . We consider the
Universe at the late stage of its evolution when the peculiar
velocities of inhomogeneities/fluctuations are much less than
the speed of light:

dxα

dη
= a

dxα

dt

1

c
≡ vα

c
� 1. (3.2)

We should stress that smallness of the nonrelativistic gravi-
tational potential Φ and smallness of peculiar velocities vα

are two independent conditions (e.g., for very light relativis-
tic masses the gravitational potential can still remain small).

Under these conditions, the gravitational potential Φ satisfies
the following system of equations (see [21,23] for details):

ΔΦ − 3H(Φ ′ + HΦ) + 3KΦ

= 1

2
κa2

(
δT 0

0 + δεQN + δεrad1 + δεrad2

)
, (3.3)

∂

∂xβ
(Φ ′ + HΦ) = 0, (3.4)

Φ ′′ + 3HΦ ′ + (2H′ + H2)Φ − KΦ

= 1

2
κa2 (

δpQN + δprad1 + δprad2
)
, (3.5)

where the Laplace operator � is defined with respect to the
metrics γαβ .

Following the reasoning of [21,23], we took into account
that peculiar velocities of inhomogeneities are nonrelativis-
tic, and under the corresponding condition (3.2) the contri-
bution of δT 0

β is negligible compared to that of δT 0
0 both

for dustlike matter and the considered quark–gluon nuggets
and radiation.3 In other words, account of δT 0

β is beyond
the accuracy of the model. This approach is completely con-
sistent with [31] where it is shown that the nonrelativistic
gravitational potential is defined by the positions of the inho-
mogeneities but not by their velocities (see Eq. (106.11) in
this book).

From Eq. (3.4) we get

Φ(η, r) = ϕ(r)
c2a(η)

, (3.6)

where ϕ(r) is a function of all spatial comoving coordinates
and we have introduced c2 in the denominator for conve-
nience. In the vicinity of an inhomogeneity, the comoving
potential ϕ(r) ∼ 1/r [21,23,24], and the nonrelativistic
gravitational potential Φ(η, r) ∼ 1/(ar) = 1/R, where
R = ar is the physical distance. Hence, Φ has the correct
Newtonian limit near the inhomogeneities.

In (3.3) δT 0
0 is related to the fluctuation of the energy

density of dustlike matter and has the form [21]:

δT 0
0 = δρc2

a3 + 3ρc2Φ

a3 , (3.7)

where δρ is the difference between the real and average rest
mass densities: δρ = ρ − ρ.

In Eqs. (3.3) and (3.5), we split the fluctuations of radiation
into two parts. Here, the part labeled by “rad1” is caused by
the inhomogeneities of dustlike matter (e.g., by galaxies and
their groups), and the part labeled by “rad2” is related to
fluctuations of quark–gluon nuggets. For both of them, we
have the same equations of state: δprad1 = (1/3)δεrad1 and

3 For all considered matter sources, the nondiagonal components of the
energy-momentum tensor δT 0

β are connected with the peculiar velocities
of their inhomogeneities/fluctuations (see the corresponding discussion
in [24]).
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δprad2 = (1/3)δεrad2. We have shown in [23] that δεrad1 has
the form

δεrad1 = −3ρϕ

a4 . (3.8)

Taking into account Eqs. (2.6), (3.6), (3.7), and (3.8), we
can rewrite Eqs. (3.5) and (3.3) as follows:

−(
εQN + pQN

) ϕ

c2a
= δpQN + 1

3
δεrad2, (3.9)

�ϕ + 3Kϕ = κc4

2
δρ + κc2a3

2
δεQN + κc2a3

2
δεrad2.

(3.10)

To get Eq. (3.9), we took into account that we consider
this equation up to terms O(1/a4) inclusive. The terms
εradΦ, pradΦ ∼ O(1/a5) and we dropped them. Let us
investigate the system of Eqs. (3.9) and (3.10) separately
for Model I and Model II.

Model I
We consider first Eq. (3.9). As noted above, we keep in this

equation terms up to O(1/a4). Therefore, the sum εQN+ pQN
should not include terms of the order of smallness higher
than 1/a3. It is useful to introduce an auxiliary quantity ξ ≡
(C/a)3/4. Then, using the formulas (2.1), this sum takes the
form

εQN + pQN = 1

a3 A1/3
4

{
3 [ξ − A1]4/3 + ξ [ξ − A1]1/3

}

= 3(−A1)
4/3

a3 A1/3
4

+ 5(−A1)
1/3

a3 A1/3
4

ξ + 1

a3 o(ξ)

≈ 3(−A1)
4/3

a3 A1/3
4

. (3.11)

Similarly, on the right hand side of (3.9) δpQN also should
not contain the terms of the order of smallness higher than
1/a4. Obviously, the same should hold for δεQN.

Now, we need to make the important remark. We suppose
that fluctuations of quark–gluon nuggets are caused by two
reasons. First, it is the fluctuation of the distribution of QNs
(i.e. the fluctuation of the number density of QNs). We will
define it by a new function f (r). Second, it is the fluctuations
of the temperature of QNs δT . Therefore, from formulas
(2.1), we have

δεQN = 3A4T 4

a3 f (r) + 12A4T 3

a3 δT, (3.12)

δpQN = A1T + A4T 4

a3 f (r) + A1 + 4A4T 3

a3 δT . (3.13)

Then we get

δεQN =
[

A1

a3

(
ξ − A1

A4

)1/3

+ A4

a3

(
ξ − A1

A4

)4/3
]

f (r)

+
[

A1

a3 + 4A4

a3

(
ξ − A1

A4

)]
δT

≈ 3A4

a3

[(−A1

A4

)4/3

f (r) − 4A1

A4
δT

]

+ 4

a3

[(−A1

A4

)1/3

f (r) + 3δT

] (
C

a

)3/4

(3.14)

and

δpQN ≈ −3A1

a3 δT

+ 1

a3

[(−A1

A4

)1/3

f (r) + 4δT

] (
C

a

)3/4

. (3.15)

Hence, Eq. (3.9) reads

−3(−A1)
4/3

a4 A1/3
4

ϕ

c2 = −3A1

a3 δT

+
[(−A1

A4

)1/3

f (r)+4δT

] (
C

a5

)3/4

+ 1

3
δεrad2. (3.16)

We can use this equation to determine the fluctuations of the
temperature of QNs:

δT ≈ 1

3A1

[
3(−A1)

4/3

A1/3
4

ϕ

ac2 + 1

3
a3δεrad2

+
(−A1

A4

)1/3 (
C

a

)3/4

f (r)

]
. (3.17)

Let us turn now to Eq. (3.10). Taking into account
Eqs. (3.14) and (3.17), we can write it as follows:

�ϕ + 3Kϕ ≈ κc4

2
δρ + κc2a3

2
δεrad2

+3κc2 A4

2

[(−A1

A4

)4/3

f (r) − 4A1

A4
δT

]

+2κc2

[(−A1

A4

)1/3

f (r) + 3δT

] (
C

a

)3/4

≈ κc4

2
δρ + 3κc2

2

(−A1)
4/3

(A4)1/3 f (r)

−6(−A1)
4/3κ

a A1/3
4

ϕ − κc2a3

6
δεrad2. (3.18)

Therefore, we arrive at the system of two equations:

�ϕ + 3Kϕ = κc4

2
δρ + 3κc2

2

(−A1)
4/3

(A4)1/3 f (r), (3.19)
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and

−6(−A1)
4/3κ

a A1/3
4

ϕ − κc2a3

6
δεrad2 = 0

⇒ δεrad2 = −36(−A1)
4/3

c2a4 A1/3
4

ϕ. (3.20)

Equation (3.19) demonstrates that the gravitational poten-
tial is defined by the functions of fluctuation distribution of
dustlike matter δρ(r) and quark–gluon nuggets f (r). Equa-
tion (3.20) shows that, similar to (3.8), δεrad2 ∼ 1/a4 which
is the physically reasonable result for fluctuations associ-
ated with radiation. Additionally, the spatial distribution of
these fluctuations is defined by the gravitational potential
ϕ(r) (similar to (3.8)), which is also reasonable.

Model II
Now, we consider Model II, which is defined by the back-

ground equations (2.2). The procedure is absolutely similar
to the calculations carried out for Model I. As a result, for
the QN temperature fluctuations we get

δT ≈ 1

A0

(−A0

A4

)1/4 [
− A0

ϕ

ac2

+ 1

12
a3δεrad2 + C

4a
f (r)

]
, (3.21)

and for the gravitational potential ϕ and the radiation fluctu-
ations δεrad2 we obtain the system of equations:

�ϕ + 3Kϕ = κc4

2
δρ − 2κc2 A0 f (r), (3.22)

δεrad2 = −12A0
ϕ

a4c2 . (3.23)

Similar to Model I, here we also get the same physically
reasonable results.

4 Flat rotation curves

It is well known that rotation curves of disc galaxies have
the flat shape starting from some distance. The real reason
of such shape is still unclear. To explain it, different mech-
anisms were proposed from Modified Newtonian Dynamics
and other modifications of gravity (see, e.g., [34]) to the pres-
ence of dark matter or other specific fields. For example, the
nonrelativistic gravitational potential in a galaxy may be pre-
sented as follows [35–37]:

ϕph(R) = −G N M

R
[1 + α exp(−R/R0)]

= −G N M

R
− G N M

R
α exp(−R/R0). (4.1)

Here, ϕph is the physical (not comoving) potential and R is
the physical distance from the center of a galaxy4. R0 is the
Yukawa interaction range, α is the coupling strength and M
is the total effective mass at infinity. To get the flat rotation
curves, the additional Yukawa term must result in a repulsive
force, i.e. α < 0.

Equations (3.19) and (3.22) clearly indicate that the QN
distribution affect the gravitational potential. Can we get the
potential of the form (4.1), which is motivated by the obser-
vational data, from these equations?5 In other words, what
kind of distribution function f (r) should be used to provide
(4.1)? To answer this question, we rewrite Eqs. (3.19) and
(3.22) in the astrophysical setting. This means that we put
K = 0, δρ = ρ and consider physical instead of comoving
values. Then Eq. (3.19) reads

�Rϕph = 4πG N ρph + 4πG N
3(−A1)

4/3

c2(A4)1/3 fph(R), (4.2)

where ϕph, ρph, and fph(R) are physical values and the
Laplace operator �R is defined with respect to the physi-
cal distance R. To get this equation, we divide both sides
of (3.19) by a3. For example, ϕph = ϕ/a, ρph = ρ/a3, and
fph(R) = f (r)/a3. As we wrote in the footnote 4, we neglect
the time dependence of the scale factor a in the astrophysical
setting.

Let ρph describe the rest mass density of the pure baryonic
matter. We simulate it in the delta-shape form ρph = mδ(R),
where m is the mass of the baryonic constituent. Then the
substitution of the potential (4.1) into Eq. (4.2) leads to the
following function fph(R):

fph(R) = − Mαc2

12π R R2
0

(A4)
1/3

(−A1)4/3 exp(−R/R0), (4.3)

which describes the QN distribution.
Similarly, in the case of Model II Eq. (3.22) reads

�Rϕph = 4πG N ρph − 16πG N
A0

c2 fph(R) (4.4)

and the required distribution of QNs has the form

4 We have mentioned in Sect. 3 that the physical distance R and the
comoving distance r are connected as follows: R = ar . Obviously,
there is no need to take into account the dynamics of the Universe in the
case of astrophysical problems, i.e. here the scale factor a is considered
as a constant value.
5 Clearly, we can consider other forms of the potential and find for
them corresponding QN distributions. The only restriction here is the
demand that such potentials provide the rotation curves in accordance
with observations.
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fph(R) = Mαc2

16π R R2
0

1

A0
exp(−R/R0). (4.5)

For both of these models the effective mass M and the bare
baryonic mass m are related as follows: M(1 + α) = m.

It makes sense to rewrite the distribution functions (4.3)
and (4.5) via the parameter γ which was estimated for some
cosmological models in [8] and was also restricted experi-
mentally in [25]. The most simple case corresponds to the
model where QNs are the only possible representatives of
dark matter (this is the β = 0 case in these papers). Here, we
have the pure ΛCDM model with clear origin of dark matter.
According to [8], the parameter γ is determined as follows:

8πG N

c2

(−A1)
4/3

(A4)1/3 = γ 4/3a3
0 H2

0 , (4.6)

−8πG N

c2 A0 = 3

4
γ a3

0 H2
0 (4.7)

for Models I and II, respectively. Here, a0 and H0 are the
scale factor and the Hubble parameter, respectively, at the
present moment. Then the QN distribution functions take the
form

fph(R) = −2

3

MαG N

γ 4/3a3
0 H2

0

1

R R2
0

e−R/R0 , Model I, (4.8)

and

fph(R) = −2

3

MαG N

γ a3
0 H2

0

1

R R2
0

e−R/R0 , Model II. (4.9)

Taking into account the inequalities γ > 0 and α < 0, we
see that these functions describe the overdensities. This is
the physically reasonable result. In addition, we would like to
stress that similar profile functions are really used in literature
for resolving the rotation curves flatness problem (see, e.g.,
the Prugniel–Simien model discussion in [38,39]). Besides,
it is worth mentioning that to solve this problem, in [40] the
authors also investigated (in a different manner) the quark–
gluon plasma as dark matter in the halos of galaxies.

5 Conclusion

In our paper, we have studied the Universe filled with the
dustlike matter (baryonic and dark), radiation and quark–
gluon nuggets. The Universe has been considered at late
stages of its evolution and at scales much less than the cell
of uniformity size which is approximately 190 Mpc [23]. At
such distances, our Universe is highly inhomogeneous and
the averaged Friedmann approach does not work here. We
need to take into account the inhomogeneities in the form of
galaxies, and groups and clusters of galaxies. It is natural to
assume also that radiation as well as quark–gluon nuggets
fluctuate around the average values. Therefore, these fluc-
tuations as well as inhomogeneities perturb the FRW met-
rics. To consider these perturbations inside the cell of unifor-

mity, we need to use the mechanical approach. This approach
was established in our papers [21–23]. An important feature
of this approach is that it provides an opportunity to study
self-consistency of different cosmological models (see, e.g.,
[24]). For example, there is a possibility that a small fraction
of colored objects escaped hadronization and survived in the
form of quark–gluon nuggets [4]. Therefore, it is of interest
to investigate the compatibility of such QNs with the scalar
perturbations theory. This was the main aim of our studies.

We have considered two models which have different
equations of state. For both of these models, we got similar
results which look physically reasonable. First, the nonrela-
tivistic gravitational potential is defined by the distribution
of inhomogeneities/fluctuations of both dustlike matter and
QNs (see the corresponding Eqs. (3.19) and (3.22)). To find
the exact form of the potential, we need to know the distri-
bution of dustlike inhomogeneities (i.e. the function δρ(r)
which is the difference between the real and averaged rest
mass densities) and the distribution of fluctuations of QNs
(i.e. the function f (r)). Therefore, the nonrelativistic grav-
itational potential is determined by the distribution of both
the baryonic inhomogeneities and the quark–gluon nuggets.
Consequently, we demonstrated that QNs can be distributed
around baryonic inhomogeneities (e.g., galaxies) in such a
way that it can solve the problem of the flatness of the rota-
tion curves. Therefore, flat rotation curves can be explained
with the help of particles from the standard model of high
energy physics, i.e. without involvement of exotic particles or
modification of gravity. This is an advantage of our approach.
Second, the fluctuations of radiation are caused by both the
inhomogeneities in the form of galaxies (see Eq. (3.8)) and
the fluctuations of quark–gluon nuggets (see Eqs. (3.20) and
(3.23)). Therefore, if QNs exist, the CMB anisotropy con-
tains also the contributions from QNs. Additionally, the spa-
tial distribution of the radiation fluctuations is defined by the
gravitational potential ϕ(r) that is also quite reasonable. On
the whole, our study showed that quark–gluon nuggets can
be compatible with the mechanical approach. The authors of
the paper [25] also found that our models can be in agreement
with the recent experimental data.
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