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Abstract We propose the gravity’s rainbow scenario as a
possible alternative of the inflation paradigm to account for
the flatness and horizon problems. We focus on studying the
cosmological scalar perturbations which are seeded by the
quantum fluctuations in the very early universe. The scalar
power spectrum is expected to be nearly scale-invariant. We
estimate the rainbow index λ and energy scale M in the
gravity’s rainbow scenario by analyzing the Planck temper-
ature and WMAP polarization datasets. The constraints on
them are given by λ = 2.933 ± 0.012 and ln(105M/Mp) =
−0.401+0.457

−0.451 at the 68 % confidence level.

1 Introduction

The inflation model [1–3] has been the leading paradigm
for the very early universe in the last three decades. In the
inflation paradigm, the scale factor a(t) of the universe has
undergone a stage of exponential expansion in a very short
time. This leads to a universe flat enough to account for the
flatness problem, since |�K | ∝ a−2. On the other hand,
this reveals that the cosmological scales observed today were
deep inside the Hubble scale, which accounts for the horizon
problem. Moreover, the cosmological scalar perturbations
can be seeded by the primordial quantum fluctuations which
are stretched outside of the horizon (see [4] for reviews). The
scalar power spectrum is predicted to be adiabatic, Gaussian,
and nearly scale-invariant. This is well consistent with the
present astronomical observations on the anisotropy of cos-
mic microwave background and the formation of large-scale
structures. Although the inflation fits the observational data
well, it still suffers several significant issues, such as the fine-
tuning slow-roll potential [5], the initial conditions [6,7], and
the trans-Planckian problem [8], etc. In addition, one requires
an inflaton field to drive the exponential expansion of the
very early universe. However, the astronomical observations
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have not yet discovered such a fundamental scalar field until
recently.

It is interesting to study possible alternatives for the infla-
tion paradigm. In an alternative scenario, actually, one just
needs to require that the observed universe were inside the
particle horizon in the very early universe to account for the
problems of big-bang cosmology. In this paper, we propose
that the gravity’s rainbow scenario shall meet this require-
ment. The gravity’s rainbow scenario [9] has arisen from
the phenomenological studies of the quantum gravity which
should play a significant role in the very early universe.
Recently, it has been utilized to study the very early uni-
verse [10–20]. The spacetime metric felt by a free particle
would be dependent on the energy (or momentum, equiva-
lently) of the particle in the gravity’s rainbow scenario. Thus
the dispersion relation can be significantly modified for a
ultra-relativistic particle. This leads to an effective speed of
light. The varying speed of light cosmology has been pro-
posed [21–23], and the observable universe was assumed to
be only a part of the causal area if the effective speed of light
is large enough in the very early universe. Thus, the gravity’s
rainbow scenario shall have potential to resolve the flatness
and horizon problems.

In the gravity’s rainbow scenario, the evolution of the very
early universe would be driven by the thermally fluid sub-
stance instead of a fundamental scalar field. We will study
the thermodynamics of the system of ultra-relativistic par-
ticles with the modified dispersion relation. Then the back-
ground evolution of the universe is determined by the mod-
ified Friedmann equation. The solution of the Friedmann
equation will be showed to resolve the flatness and horizon
problems. We shall focus on studying the cosmological linear
perturbations and their quantization in this paper. The issue
of gauge choices will be studied in detail, and then the per-
turbed Einstein’s field equations will be calculated in the lon-
gitudinal gauge. We will construct the comoving curvature
perturbation which is gauge-invariant and conserved outside
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the Hubble horizon. In this model, the quantum fluctuations
are expected to dominate above the rainbow energy scale.
Furthermore, we will set constraints on the parameters of the
gravity’s rainbow effects by a joint analysis of the Planck
temperature [24] and WMAP polarization [25] datasets.

The rest of the paper is arranged as follows. In Sect. 2, we
study the evolution of the background spacetime in the grav-
ity’s rainbow scenario. In Sect. 3, the equations of motion are
derived for the scalar perturbations. We quantize the scalar
perturbations in the longitudinal gauge in Sect. 4. In Sect. 5,
we calculate the power spectrum of the primordial scalar per-
turbations and then set constraints on the parameters of the
gravity’s rainbow effects. The conclusions and discussions
are given in Sect. 6.

2 Evolution of background

The gravity’s rainbow scenario was originally studied by
Magueijo and Smolin [9]. The spacetime metric felt by a free
particle depends on the energy or momentum of the particle.
In the study of cosmology, we are interested in the spatially
flat Friedmann–Robertson–Walker (FRW) metric which is
homogeneous and isotropic. In this paper, we will study the
evolution of the very early universe with the modified FRW
metric of the form [26]

dτ 2 = c2(p)dt2 − a2(t)δi jdx
idx j , (1)

where a(t) is the scale factor of the universe, the rainbow
function c(p) is explicitly parameterized as a power-law
form, namely,

c(p) = 1 + (p/M)λ . (2)

Here M is an energy scale related to the quantum gravity,
and λ is called the rainbow index which is positive. The rain-
bow function c(p) takes the limit lim p/M→0 c(p) = 1. In
the tangent space, the metric (1) would lead to the modified
dispersion relation for a free ultra-relativistic particle. This
could be given as

E = c(p)p = p + M−λ pλ+1, (3)

where we have neglected the mass term for the particle, since
the particle’s mass is tiny compared to the ultra-relativistic
energy.

In an early enough era of the universe, the particle could
have an extremely high energy scale, i.e., p � M . Then the
rainbow function becomes

c(p) � (p/M)λ . (4)

Thus the second term at the right hand side in (3) will domi-
nate, namely,

E � M−λ pλ+1. (5)

Consider a system of such ultra-relativistic particles in ther-
mal equilibrium. It should meet the Maxwell–Boltzmann dis-
tribution. We can obtain the energy density ρ(T ) of the sys-
tem with the temperature T , namely,

ρ(T ) =
∫ ∞

0
4πp2Ee−E/T dp

= 4π

λ + 1
M

3λ
λ+1

∫ ∞

0
E

3
λ+1 e−E/T dE

= σ(λ, M)T
λ+4
λ+1 ∝ T

λ+4
λ+1 , (6)

where the constant coefficient σ(λ, M) is given as

σ(λ, M) = 4π

λ + 1
	

(
λ + 4

λ + 1

)
M

3λ
λ+1 . (7)

In the second equality of (6), we used the relation (5). The
pressure P(T ) of the system could be obtained by resolving
the ordinary differential equation

T
dP

dT
− P = ρ. (8)

Thus, it is given by

P(T ) = λ + 1

3
σT

λ+4
λ+1 = ωρ(T ), (9)

where we neglected an integral constant, and the state param-
eter is given by

ω = λ + 1

3
. (10)

The relation (9) is just the so-called equation of state. In
addition, the speed of sound could be obtained as c2

s := ∂P
∂ρ

=
λ+1

3 , which is also a constant. When λ = 0, the above results
on ρ, P , w, and cs would return back to the conventional form
for the massless particles (such as the photons) in special
relativity.

The conservation of energy–momentum tensor gives the
equation of continuity for the thermodynamic system. For
a system of an ideal fluid, the energy–momentum tensor is
given by

Tμ
ν = (ρ + P) uμuν − Pδμ

ν , (11)

where uμuμ = 1. Its conservation implies the equation
Tμ

0;μ = 0. Implicitly, this equation can be written as the
equation of continuity,

dρ

dt
+ 3H (ρ + P) = 0, (12)
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where the Hubble parameter H = ȧ/a and ȧ = da/dt . By
combining (9) with (12), we obtain

ρ = ρe

(
a

ae

)−3(1+ω)

∝ a−(λ+4). (13)

Hereafter the subscript “e” denotes physical quantities at the
moment when the gravity’s rainbow effect no longer dom-
inates, i.e., pe � M . By comparing (13)–(6), we obtain a
useful relation, i.e.,

a ∝ T− 1
λ+1 , (14)

or, equivalently, a = ae (T/Te)
− 1

λ+1 = ae (T/M)−
1

λ+1 . Here
ae can be roughly estimated at the temperature Te = M by
the CDM model.

The evolution of the scale factor a(t) is determined by
the Friedmann equation, which is deduced from the Einstein
field equation [27]. In this paper, we assume the modified
Einstein’s equation as follows:

Gμ
ν = 1

c4 T
μ
ν , (15)

whereGμν is the Einstein tensor. In this paper, we set M−2
p =

8πG = 1. The rainbow function c appears as the effective
speed of light in the above equation. Then the 00-component
of Einstein’s equation gives the Friedmann equation,

H2 = 1

3c2 ρ. (16)

In the Friedmann equation, one takes the ultra-relativistic par-
ticles as an ensemble rather than picking out a specific parti-
cle randomly [26]. One should take into account the average
effects of the ensemble on the evolution of the very early uni-

verse. By using (4) and (5), we obtain c(E) = (E/M)
λ

λ+1 .
As an ensemble, the thermodynamic system in thermal equi-
librium has a typical energy scale, namely, the temperature T
takes a statistical mean value. Thus, one could take T as the
energy appearing in the gravity’s rainbow metric, namely,

c ≡ c(T ) = (T/M)
λ

λ+1 . (17)

Then we could resolve the Friedmann equation (16), and the
solution is

a(t) ∝ t
2

4−λ , (18)

where we used (14) and (17). We set λ < 4 to obtain an
expanding universe, while λ > 4 is related to a contract-
ing universe. If λ = 4, the exponent 2/(4 − λ) would be
divergent. This case is not well defined.

The flatness and horizon problems can be demonstrated
as follows. The spatial curvature term |�k | = c2

a2H2 is pro-

portional to T
3λ−2
λ+1 . With the decrease of temperature in the

expanding universe, |�k | should also decrease across more
than 24 orders of magnitude to resolve the flatness prob-
lem. Then we require λ > 2/3 and a high energy scale
Ti � Te. Hereafter the subscript “i” denotes the start time of
the rainbow universe. On the other hand, the particle horizon

dH = ∫ te
ti

cdt
a = ∫ ae

ai
cda
a2H

is proportional to T
3λ−2

2(λ+1) . Simi-
larly to resolving the flatness issue, it also requires λ > 2/3
to resolve the horizon problem. If λ > 4, however, the tem-
perature would increase with the increase of the time based
on (14) and (18). This makes even worse the flatness and
horizon problems. Thus, the above discussions show that the
rainbow index λ should satisfy the condition 2/3 < λ < 4.

3 Scalar perturbations

In the following, we shall focus on studying the cosmological
linear perturbations and their quantization, while disregard-
ing the statistically thermal fluctuations 1. The rainbow func-
tion c(T ) could be formally viewed as a smooth background
function of the temperature. Consider the scalar perturba-
tions. The perturbed rainbow metric takes the form

dτ 2 = a2[(1 + 2φ)c2dη2 + 2cB,idx
idη

−((1 − 2ψ)δi j − 2E,i j )dx
idx j ], (19)

where we have used the conformal time dη = dt/a. We con-
sider the coordinate transformation xμ → x̃μ = xμ + ζμ.
Here ζμ = (ζ 0, ζ i ) denotes the infinitesimal functions
of the spacetime coordinates, and ζ i = ζ i⊥ + ς,i where
ζ i⊥,i = 0 and ς denotes a scalar function. The Lie deriva-
tive of the metric perturbations δgμν(x) = gμν(x) − ḡμν(x)
gives the gauge transformation law, i.e., δgμν → δg̃μν =
δgμν − ḡμν,σ ζ σ − ḡσνζ

σ
,μ − ḡμσ ζ σ

,ν , where ḡμν denotes the
unperturbed background metric. Thus, we can obtain

φ → φ̃ = φ − 1

ac

(
acζ 0

)′
, (20)

ψ → ψ̃ = ψ + a′

a
ζ 0, (21)

B → B̃ = B + 1

c
ς ′ − cζ 0, (22)

E → Ẽ = E + ς. (23)

Hereafter, the primes denotes the derivative with respect to
the conformal time η. The Bardeen potentials are the sim-
plest gauge-invariant linear combinations of the above scalar
perturbations. They are given by

1 The power spectrum for the statistical thermal fluctuations is propor-

tional to T
3(2−−3λ)

2(1+λ) in the gravity’s rainbow scenario. When λ � 3, it
will decrease rapidly with the increase of the background temperature.
Thus, the thermal fluctuations would be suppressed in this scenario.
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� = φ − 1

ac

[
a

(
B − 1

c
E ′

)]′
, (24)

� = ψ + a′

ac

(
B − 1

c
E ′

)
. (25)

In the longitudinal gauge, we choose the system of coordi-
nates with B = E = 0. Thus, the perturbed rainbow metric
(19) can be rewritten as

dτ 2 = a2
[
(1 + 2�)c2dη2 − (1 − 2�)δi jdx

idx j
]
. (26)

If the anisotropic stresses are not considered, we can obtain
the relation � = �, as will be demonstrated later.

To derive the equations for the linear cosmological per-
turbations, we can linearize the Einstein field equations

δGμ
ν = 1

c4 δTμ
ν , (27)

where δGμ
ν and δTμ

ν denote the gauge-invariant perturba-
tions. In general, the perturbed energy–momentum tensor is
given by

δT 0
0 = δρ, δT 0

i = ρ(1 + ω)v,i , δT i
j = −c2

s δρδij , (28)

where we have neglected the anisotropic stress. Only the
adiabatic perturbations are considered in this paper. Thus,
the spatial components of the Einstein field equations can be
explicitly given by

[
� ′′ + H (2� + �)′ + (2H ′ + H 2)� + c2

2
�(� − �)

]
δij

−H
d ln c

d ln a

(
� ′ + 2H �

)
δij − c2

2
(� − �)

,i
, j =− 1

2c2 a
2δT i

j .

(29)

Here H = a′/a denotes the comoving Hubble parameter.
For i 
= j , we have δT i

j = 0, and then (29) is reduced to
(� − �),i j = 0. The only solution is � = �, which is sim-
ilar to the result in the standard model [27]. By considering
this result, we obtain the following equations for the scalar
perturbations:

c2�� − 3H (�′ + H �) = 1

2c2 a
2δρ, (30)

(�′ + H �),i = 1

2c3 a
2ρ(1 + ω)v,i , (31)

[�′′+3H �′+(2H ′+H 2)�]−H
d ln c

d ln a

(
�′+2H �

)

= 1

2c2 a
2c2

s δρ. (32)

By combining (30) and (32), we obtain an equation for the
gravitational potential �, namely,

�′′ + 3H

(
1 + c2

s − 1

3

d ln c

d ln a

)
�′ − c2

s c
2��

+
[

2H ′ + H 2
(

1 + 3c2
s − 2

d ln c

d ln a

)]
� = 0. (33)

Before resolving (33), we shall discuss the comoving cur-
vature perturbation. This is a gauge-invariant quantity which
is conserved outside the Hubble horizon. In general, it is
defined by

R = −� − 1

c
H v. (34)

Outside the Hubble horizon, one can disregard the terms pro-
portional to ��. By combining (30) and (31), thus, one gets
the equation cδρ+3H (ρ+P)v = 0. Therefore, the comov-
ing curvature perturbation can be rewritten as

R = −� − δρ

3(ρ + P)
. (35)

Its derivative with respect to time is given by

R ′ = ρ′δP − P ′δρ
3(ρ + P)2 , (36)

where we have used the equations for the energy–momentum
conservation, i.e., ρ′ +3H (ρ + P) = 0 and δρ′ +3H (δρ +
δP) − 3(ρ + P)�′ = 0. Noting P = ωρ and ω is a con-
stant, the right-handed term must vanish in (36). Thus, R is
conserved outside the Hubble horizon.

4 Quantizing perturbations

Equation (33) for the gravitational potential � can be reduced
into a simpler form. In this paper, we just consider the case
of λ > 2, for which the reason will become clear later. By

noting a ∝ (−η)
2

2−λ , c2
s = 1+λ

3 , and c ∝ a−λ, we obtain the
equation

�′′ + 2qη−1�′ + (−mη−�� + n̄η−2)� = 0, (37)

where q = 2(2+λ)
2−λ

, � = 4λ
2−λ

, m̄ = λ+1
3 η�

e , and n̄ = 16λ
(2−λ)2 .

Here we have chosen the end moment of the gravity’s rainbow
effects as the original point of time. Hereafter, the subscript
“e” denotes the quantity at the moment when the gravity’s
rainbow effects no longer dominate. One can introduce a new
variable to eliminate the term proportional to �′. The new
variable is given by u = (−η/ηe)

q�. Then Eq. (37) becomes

u′′ − (mη̄−�� + nη̄−2)u = 0, (38)

where η̄ = −η/ηe, m = λ+1
3 η2

e , and n = q(q − 1) − n̄ =
2(4 + 3λ2)/(2 − λ)2. Hereafter the prime denotes the deriva-
tives with respect to η̄. To quantize the new perturbation u,
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Eq. (38) can be put in correspondence to the action of the
form

S =
∫

L dη̄dx3 =
∫

1

2
(u′2+mη̄−�u�u+nη̄−2u2) dη̄dx3,

(39)

which is very different from the one in the inflation paradigm.
The canonical momentum conjugate to u is defined as π =
∂L /∂u′ = u′.

In the quantization process, the field variable u and its
canonical momentum π become operators û and π̂ , respec-
tively. The operator û obeys the equation

û′′ − (mη̄−�� + nη̄−2)û = 0, (40)

which is the same as (38). In general, the solution of the
above equation can be given by

û(η̄, x)=
∫

d3k
(2π)3/2

1√
2

(
u∗
k(η̄)eikxâ−

k + uk(η̄)e−ikxâ+
k

)
,

(41)

where uk(η̄) satisfies

u′′
k + (mη̄−�k2 − nη̄−2)uk = 0, (42)

and the bosonic commutation relations are given for the cre-
ation and annihilation operators as follows:

[â−
k , â−

k′ ] = [â+
k , â+

k′ ] = 0, [â−
k , â+

k′ ] = δ(3)(k − k′). (43)

The vacuum |0〉 is defined as the state which is annihilated
by a−

k , i.e., a−
k |0〉 = 0. One requires uk(η) to satisfy the

normalization condition

u′
ku

∗
k − uku

∗′
k = 2i, (44)

of which the left-hand-side term is the Wronskian of (38).
At any given time, thus, the operators û and π̂ satisfy the
commutation relations, i.e.,[
û(η̄, x), û(η̄, y)

] = [π̂(η̄, x), π̂(η̄, y)] = 0, (45)[
û(η̄, x), π̂(η̄, y)

] = iδ(3)(x − y). (46)

Equation (38) has two independent solutions which are rep-
resented in terms of the Bessel functions, namely,

u(1)
k (η̄) = η̄

1
2 J√

1+4n
2−�

(
2
√
mk

� − 2
η̄

2−�
2

)
, (47)

u(2)
k (η̄) = η̄

1
2 Y√

1+4n
2−�

(
2
√
mk

� − 2
η̄

2−�
2

)
, (48)

where we denote k2 = k2. Thus, its general solution can be
expressed as

uk(η̄) = c1u
(1)
k (η̄) + c2u

(2)
k (η̄). (49)

Note the Abel identity Jα(x) dYα(x)
dx − dJα(x)

dx Yα(x) = 2
πx

for the Bessel functions. We could formally give the coeffi-
cients c1 and c2 as follows:

c1 =
√

πηe

2 − �
, c2 = −ic1. (50)

Here we have disregarded a common complex-number fac-
tor, which is unitary. In the UV regime, if λ = 0, the
above solution coincides with the standard formula uk ∼

1√
csk

e−icskη in the Minkowski spacetime. The reason is that

Jα(x) − iYα(x) has the asymptotic expression which is pro-

portional to
√

2
πx e

−i x when x � 0. By substituting (50) into
(49), we obtain the general representation for uk(η̄).

5 Primordial power spectrum

We are particularly interested in the long-wavelength per-
turbations. At the initial moment, these modes are deep
inside the Hubble horizon because of the large value for the
effective speed of light. With the decrease of the temper-
ature, the effective speed of light decreases rapidly. Thus,
these modes would exit from the Hubble horizon. After the
dominating era of the gravity’s rainbow effects, they reen-
tered the Hubble horizon with the expansion of the uni-
verse. In the IR regime, the Bessel function with α > 0
has the asymptotic expressions Jα(x) → 1

	(α+1)

( x
2

)α and

Yα(x) → −	(α)
π

( 2
x

)α
. Thus, the term in Yα(x) will dom-

inate for the long-wavelength perturbations. Therefore, the
power spectrum for the gravitational potential � is given by

P�(k) = k3

2π2 〈�∗
k�k〉 ∝ k3η−2q〈u∗

kuk〉

∝ k3−2
√

1+4n
�−2 η1−2q−√

1+4n

∝ k
4(λ−3)
3λ−2 , (51)

where we have used u ∝ (−η)q�, and in the last step

the relation k = H /c ∝ a
3λ−2

2 ∝ (−η)
3λ−2
2−λ for the

horizon-crossing modes. A more detailed calculation can
give the amplitude for the above power spectrum of grav-
itational potential. In fact, the amplitude A� is given by

3	2(α)

2π3(λ+1)

(
λ−2

2

)−2(λ+4)
3λ−2 k

4(λ−3)
3λ−2

pivot M
2(λ+4)
3λ−2

(
3(3λ−2)

λ+1

)2α−1
, where

α =
√

25λ2−4λ+36
2(3λ−2)

and kpivot denotes a pivot scale. The ampli-

tude A� is proportional to M2 for the scale-invariant spec-
trum. To roughly estimate the magnitude of quantities for
the energy scale M , one could approximate the amplitude as

A� � M
2(λ+4)
3λ−2 . Under the limit λ = 0, the universe becomes

radiation-dominated in our model. The cosmological pertur-
bations will be mainly determined by the fluctuations of radi-
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ations, whose amplitude ζ is scaled as 1/
√
V . HereV denotes

a volume related to Hubble horizon. On the other hand, the
volume V is proportional to k−3 for the horizon-crossing
modes. Here k denotes the wavenumber of a horizon-crossing
mode. As a convention, the power spectrum of cosmological
perturbations is usually defined as P(k) = k3

2π2 |ζ |2 in cos-
mology. Therefore, we can obtain the power spectrum, which
is given by P(k) ∼ k3(1/

√
V )2 ∼ k6 in the limit λ = 0.

Once the power spectrum for the gravitational potential
is obtained, we can immediately obtain the power spectrum
for the comoving curvature perturbation. By using (31) and
(34) and transforming to the momentum space, we can rep-
resent the comoving curvature perturbation (35) in terms of
the gravitational potential �k, namely,

Rk = −�k

[
1 + 2

3(1 + ω)

(
1 + �′

k/�k

a′/a

)]
, (52)

where we have used the Friedmann equation. The term
in the square bracket is a constant in the above rep-
resentation. We denote it by A. Thus, the power spec-
trum of Rk could be given by PR(k) = (A∗A) P�(k).
Here we can calculate A by using � ∝ η−qu and the
asymptotic IR expression of uk(η), and the result is A =

1
2(λ+4)

[√
25λ2 − 4λ + 36 − 3(λ − 2)

]
. Once λ is deter-

mined, one can calculate A and then obtain the power spec-
trum for the scalar perturbations. Finally, thus, the power
spectrum of scalar perturbations can be parameterized as

PR(k) = AR

(
k

kpivot

) 4(λ−3)
3λ−2

, (53)

where the amplitude is given by AR = |A|2A� and kpivot

denotes the pivot scale. The scale-invariant power spectrum
is given by λ = 3. This result is different from that of λ = 2 in
other work [15–18]. Actually, this issue can be demonstrated
by the terms proportional to d ln c

d ln a in Eq. (33). These terms
show that the effective speed of light can be decreased with
the expansion of the universe. They lead to the equation of
motion (42) for the scalar perturbations. In this equation, the
term proportional to uk is different from the one in other
work. Thus, we get different results.

The astronomical observations can give certain constraints
on the parameters of the gravity’s rainbow scenario. In this
paper, we use the Planck TT [24] and WMAP polarization
[25] datasets to set constraints on the rainbow index λ and
the energy scale M for the gravity’s rainbow effects via the
CosmoMC [28]. The constraints on λ and M are given by

λ = 2.931 ± 0.012, ln(105M) = −0.401+0.457
−0.451, (54)

at the 68 % CL, respectively. Here the pivot scale is chosen
as kpivot = 0.05 Mpc−1. Thus, the gravity’s rainbow effects

Fig. 1 The marginalized contour plot and the likelihood distributions
of the rainbow index λ and energy scale ln(105M) in the gravity’s
rainbow scenario

would become significant above the energy scale ∼1014GeV.
In addition, the marginalized contour plot and the likelihood
distributions of λ and ln(105M) are illustrated in Fig. 1.

6 Conclusions and discussions

In this paper, we have proposed that the gravity’s rainbow
scenario could be an alternative for the inflation paradigm
of the very early universe. The rainbow function in the met-
ric induces an effective speed of light which depends on the
energy of moving particles. We studied the thermodynamics
of the system of ultra-relativistic particles with the modified
dispersion relation induced by the quantum gravity effects.
Then the evolution of the very early universe is determined
by the modified Friedmann equation, of which the solution
was resolved. Furthermore, we have studied the cosmologi-
cal linear perturbations and their quantization. The equations
for the cosmological perturbations have been derived and
the issue of gauge choices was discussed. In the longitudinal
gauge, we studied the quantum cosmological perturbations,
and then obtained the power spectrum for the primordial
comoving curvature perturbations. Furthermore, we set con-
straints on the rainbow index λ and the energy scale M of the
gravity’s rainbow scenario by jointly analyzing the Planck
TT and WMAP polarization datasets. Note that the nearly
scale-invariant power spectrum for the scalar perturbations
required λ � 3, which satisfies the condition 2/3 < λ < 4
to account for the flatness and horizon problems.

Though it shed light on the study of the very early universe,
our phenomenological scenario still suffers certain puzzling
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issues. First, the large value for the rainbow function is related
with a very high energy scale at the start time of the rainbow
universe. At such a high energy scale, the quantum gravity
effects are unclear. Second, the Einstein equation should be
modified to account for the quantum gravity effects. How-
ever, we used the modified Einstein’s equation with the speed
of light replaced by the effective speed of light. Even though
this equation could be reduced back to the conventional one
in general relativity, it should be demonstrated by a consis-
tent theory of quantum gravity in principle. Third, the rain-
bow metric belongs to the Riemann–Finsler geometry [29],
whose dynamics has not been clearly studied so far. In con-
clusion, one still requires a complete and consistent theory of
quantum gravity to study the very early universe in the future.
Even though there were problems for the gravity’s rainbow
scenario, our studies still show some interesting results for
the research of the very early universe.
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