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Abstract. We study complex networks of stochastic two-state units. Our aim is to model discrete stochastic
excitable dynamics with a rest and an excited state. Both states are assumed to possess different waiting
time distributions. The rest state is treated as an activation process with an exponentially distributed life
time, whereas the latter in the excited state shall have a constant mean which may originate from any
distribution. The activation rate of any single unit is determined by its neighbors according to a random
complex network structure. In order to treat this problem in an analytical way, we use a heterogeneous
mean-field approximation yielding a set of equations generally valid for uncorrelated random networks.
Based on this derivation we focus on random binary networks where the network is solely comprised of
nodes with either of two degrees. The ratio between the two degrees is shown to be a crucial parameter.
Dependent on the composition of the network the steady states show the usual transition from disorder to
homogeneously ordered bistability as well as new scenarios that include inhomogeneous ordered and disor-
dered bistability as well as tristability. The various steady states differ in their spiking activity expressed
by a state dependent spiking rate. Numerical simulations agree with analytic results of the heterogeneous
mean-field approximation.

1 Introduction

Discrete-state stochastic models can be used to describe
discrete processes such as the orientation of a spin or
the blinking of quantum dots [1]. Additionally, systems
with continuously changing dynamics can be mapped to
discrete-state descriptions via coarse-graining [2–4]. De-
spite the simplicity of the single units, the collective effects
of ensembles of coupled units can be highly non-trivial.

In earlier works discrete stochastic three-state models
have been used to investigate fluctuation driven spin nu-
cleation on complex networks [5]. Two- and three-state
models have been applied to neuronal systems [6,7] and
recently to language dynamics [8]. Synchronization behav-
ior, phase transitions and reaction to time delayed feed-
back [3,4,9–14] as well as excitability [15,16] are general
aspects that apply to a wide range of natural phenomena.

Most of the referenced works consider Markovian –
thereby memoryless – discrete-state models [9–11,17]. A
disordered environment [18] or the reduction of models
with a high number of discrete states to a model with fewer
states generically demands a non-Markovian description.
Therefore, in continuation of previous work [7,12,15] in
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this paper a semi-Markovian model [19] of stochastic two-
state units is considered. As a new point of interest these
units are embedded in an uncorrelated random network
whose nodes possess different but independent degrees, in
particular this excludes networks with high asortativity
or dissortativity. The structure of the network is given
by the node distribution p(k). A big number of nodes is
assumed, it is known that finite size effects [17] have a
strong effect on the dynamic of the stochastic process as
well as on the network influence. Complex networks are of
top interest in statistical physics because it allows devia-
tion from global coupling without specification of a spa-
tial structure as well as providing a framework to map
complex spatial structures to an abstract space. Further-
more, network structures are present in many situations
of everyday life, for example transport [20–22] and supply
networks [23] to mention just a few.

The paper is structured as follows. In Section 2 the
master equations for stochastic two-state units are de-
rived. In Section 2.3 the heterogeneous mean-field ap-
proximation is used to reduce the set of equations. Sec-
tion 3 applies the formalism to random binary networks
and consists of three subsections. In the first subsection
the implicit equations for the steady states are derived
and analyzed for saddle-node bifurcations. From this, the
scaling of the critical coupling strength due to the network
embedding is revealed. The second subsection addresses
the limit of vanishing noise. Finally, the last subsection
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Fig. 1. Sketch of the considered units and their topology. The
two-state units with the waiting-time distributions w0,i(t) and
w1(t) are embedded in a binary random network, as indicated
by the dashed lines. In this example are five nodes with degree
two and four nodes with degree four. The highlighted unit i is
one of the latter, hence its activation waiting-time distribution
w0,i(t) is affected by the activity of four neighbors, as indicated
by the dotted ellipse and the dotted arrow.

shows the results of the numerical solutions of the mean-
field equations in presence of finite noise. Apart from the
expected homogeneous ordered bistability that is known
from globally coupled units [7,12], inhomogeneous ordered
and disordered states as well as tristable states are uncov-
ered. These findings are confirmed via microscopic simu-
lations using the original network structure. In these sim-
ulations the network exhibits a variable firing activity by
approaching different steady states in dependence on the
initial conditions. But the firing of the populations is not
synchronized and thus the mean-field stays constant. The
firing differs in the spike generating rates for the two popu-
lations and whether these are in the rest or excited states.
The spike time statistics of individual units are discussed
separately. Given that the excited state possess an expo-
nentially distributed waiting time, the spike trains are al-
ways nearly Poissonian. For a sharp-peaked waiting time
density with no variance, the spike trains become highly
coherent.

2 Two-state processes on complex networks

2.1 Master equation of coupled two-state units

The stochastic two-state units considered in this work can
switch between the states 0 and 1. They do so in a stochas-
tic fashion, governed by the waiting time distributions
w0,i(t) and w1(t) in the corresponding states, as explained
in Figure 1. Focusing on excitable dynamics, state 0 will
be called the resting state and state 1 the excited state.
In this way, the transition from rest to excited, i.e. from
state 0 to state 1, will be assumed as an activation pro-
cess. The life time in state 0 is exponentially distributed
and the state will be left with the transition rate γ.

The backward transition (relaxation from excited to
rest) is governed by the waiting time density w1(t) to re-
main in state 1. So far this density is arbitrary except
that its mean value shall be τ and does not depend on

any other parameters such as the noise intensity, the size
and structure or possible dynamical states of the network.
In the simulations two specific choices are made. First, the
relaxation is treated as a Markovian rate process with a
exponential waiting time distribution

w1(t) =
1
τ

exp
(
− t

τ

)
. (1)

Oppositely, when modeling excitable dynamics, a sharply
peaked distribution is more suitable, e.g.

w1(t) = δ(t− τ) (2)

would yield a constant waiting time without any variance
in state 1 modeling a fixed delay [12,14,15]. As shown in
Appendix A, the bifurcations of the steady states are not
affected by the specific choice of w1. It depends on the
mean time τ spent in the excited state. Only, setups with
possible transition to a non-stationary behavior reflect on
the choice of w1.

The two-state units are located on the N nodes of
a complex network. Each stochastic element receives the
output from the units to which it is linked in the network
by edges. This coupling is mathematically realized by in-
troduction of the adjacency matrix A. The activation rate
γi from state 0 to state 1 of the ith node i ∈ {1, . . . , N}
is assumed to depend on a signal function fi(t)

γi = γ[fi(t)], (3)

which contains the adjacency matrix

fi(t) =
1
N

N∑
j=1

Aij sj(t). (4)

Therein, sj(t) is the output signal of node j depending
on its state. In this work, undirected and unweighted net-
works are considered, hence the adjacency matrix is sym-
metric with elements Aij = 1, if the units i and j are
connected, otherwise Aij = 0.

Typically, excitable systems stay in the resting state
where no output is produced. Upon sufficient excitation
they drastically change their intrinsic dynamics which is
emitted as a signal. Here such “spiking” is modeled by
a two-valued output function sj(t), which can take the
values 1 in the excited state and 0 otherwise. This setting
is motivated by neuronal activity or excitable lasers. A
symmetric choice would be more appropriate in order to
model magnetic spins.

Eventually, in accordance with previous assumptions,
the normalized waiting time distribution density of the
activation with the time dependent rate from (4) is given
by the exponential function

w0,i(t) = γ[fi(t)] exp
(
−

∫ t

0

γ[fi(t′)] dt′
)

. (5)

Let Pi(0, t) denote the occupation probability of unit i
to be in state si(t) = 0 at time t. Analogously Pi(1, t)
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for state si(t) = 1. Then the balance of probability flows
yields the generalized master equations

Ṗi(0, t) = −J0→1,i(t) + J1→0,i(t),

Ṗi(1, t) = −J1→0,i(t) + J0→1,i(t), (6)

for all i ∈ {1, . . . , N}, where J0→1,i(t) gives the probabil-
ity flow from state 0 to 1 of unit i at time t. Since the
transition 0 → 1 is a rate process, its probability flow is
simply given by

J0→1,i(t) = γ[fi(t)]Pi(0, t). (7)

The second probability flow is given by all the probability
that has flown into state 1 up to time t and stayed there
for a time, which is given by the waiting time distribution
w1(t). Thus it is the convolution of J0→1,i(t) and w1(t′),

J1→0,i(t) =
∫ ∞

0

γ[fi(t− t′)]Pi(0, t− t′)w1(t′)dt′. (8)

Using the normalization condition at a given node

Pi(0, t) = 1− Pi(1, t), (9)

the temporal evolution of the occupation probabilities
Pi(1, t) is then given by (cf. Eq. (6))

Ṗi(1, t) = γ[fi(t)](1 − Pi(1, t))

−
∫ ∞

0

γ[fi(t− t′)](1− Pi(1, t− t′))w1(t′)dt′,

i ∈ {1, . . . , N}. (10)

This is a set of N coupled linear integro-differential equa-
tions for the Pi(1, t). The complexity is given by the chosen
adjacency matrix Ai,j which links the almost N equations
by the the signal function (see Eq. (4)).

By applying a heterogeneous mean-field approxima-
tion as described in Section 2.3, the structure of this set
of equations is much simpler and the number of differen-
tial equations in the set reduces significantly. As conse-
quence of this approximation, the set will become analyt-
ically treatable for special cases in the stationary limit.

But before describing this approximation, an appro-
priate notation for the values describing the dynamical
behavior on a complex network will be introduced.

2.2 Master equation on complex networks

To include the network topology into the description, it
is assumed that the complex network structure can be
described as a random network. Central value in this de-
scription are the degrees ki of the N nodes. For a given
adjacency matrix Ai,j with values 0, 1 the degree ki of the
ith node is the number of existing links to other nodes of
the network. It becomes

ki =
N∑

j=1

Ai,j . (11)

Let kmin and kmax be the minimum and maximum de-
gree occurring in the network, respectively, while Nk is the
number of units with degree k ∈ [kmin, kmax]. In a random
network the degrees can be treated as random numbers.
Their occupation probability p(k) is defined by Nk. Then
the occupation probability reads

p(k) = lim
N→∞

Nk

N
. (12)

Mathematically, the limit make sense if Nk ∝ N . Af-
terwards, sorting the nodes with coinciding degrees k in
the network gives the joint probability that any node in
the network has this degree and is, respectively, in the
dynamical state s = (0, 1) at time t

P (s, k, t) =
N∑

i=1

δs,si δk,ki Pi(si, ki, t). (13)

Using Bayes’ theorem we split off the occupation proba-
bility p(k) as

P (s, k, t) = P (s, t|k)p(k). (14)

Normalization reads

P (0, k, t) + P (1, k, t) = p(k). (15)

Hence, for the conditioned probabilities the degree is fixed
and it becomes

P (0, t|k) + P (1, t|k) = 1. (16)

The chosen conditional probabilities P (1, t|k) neglect that
various nodes with the same degree k might be linked
to k nodes with different degrees. Therefore, without a
further approximation, they are so far not suitable for the
description of our situation.

To proceed, the signal function (4) which is coupling
the ith node to the other nodes will be considered now.
Replacing therein the number of the linked node j by the
specific degree kj of this node, it becomes

fi(t) =
1
N

N∑
j=1

Ai,jskj (t). (17)

Sorting different degrees gives

fi(t) =
kmax∑

k=kmin

Nk

N

1
Nk

N∑
j=1

δk,kj Ai,j skj (t). (18)

Every node receives its input depending on the specific
linked environment. Due to the disorder contained in the
adjacency matrix Ai,j , the summation is still in general
different for distinct nodes. The reduced description for
given degrees requires an additional approximation.
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Fig. 2. Representation of a random binary network with
k1 = 12, k2 = 6 and N = 25 before and after applying the
heterogeneous mean-field approximation.

2.3 Heterogeneous mean-field approximation

As proposed in references [24–26], the complex network
with the adjacency matrix Ai,j and with the given degree
distribution p(k) will be replaced by a fully connected net-
work with weighted edges. The latter with adjacency ma-
trix Ãi,j shall possess the same distribution of the degrees
at the nodes. In detail, it is required that the degree-values
of all nodes in the new network shall coincide with the cor-
responding ones in the original network. Accordingly, the
following shall hold

N∑
j=1

Ai,j = ki =
N∑

j=1

Ãi,j . i = 1, . . . , N. (19)

Whereas the sum at the l.h.s. is running over values 1
and 0 of Ai,j , at the r.h.s. the sum goes over rational
numbers. The assumption is made that the probability
to have an edge between the ith and jth node is propor-
tional to the product of the degrees of these nodes, i.e.,
to ki kj . This is strictly valid only for uncorrelated net-
works. Further on, taking into account the conservation
of degree as required in (19) the following replacing for a
fully connected network is defined

Ãij =
ki kj∑N
l=1 kl

. (20)

Figure 2 illustrates the replacement. As a result the single
nodes with given degree k couple uniquely to a mean-
field. Hence, in contrast to the original network, the fully
connected network will allow a mean-field representation
with respect to all edges with coinciding degrees k. In ref-
erence [25] the validity of this replacement procedure was
discussed and it was successfully applied to complex net-
works with continuous phase oscillators at the nodes. The
approach [24–26] is now generalized to discrete stochastic
two-state units.

As a result of the replacement, the signal function
in (18) is approximated as

f̃i(t) ≈ 1
N

N∑
j=1

Ãijsj(t) =
ki

N
∑N

l=1 kl

N∑
j=1

kjsj(t). (21)

It follows immediately, that the signal at the node with
degree ki coincides for all nodes with the same degree.
The node value itself enters only multiplicatively into this
expression. Hence, the denominator of the sum is equal
for all nodes.

Crossing from the summation over all nodes to sums
with the same degrees similar transformations as above
are made. The different degrees ki are again divided into
classes of units with the same degree k and with occupa-
tion number Nk. Obviously,

∑kmax
k=kmin

Nk = N has to be
satisfied. The denominator can be rewritten

N∑
j=1

kj =
kmax∑

k=kmin

Nkk. (22)

In the limit of large number of nodes N →∞ this expres-
sion becomes N〈k〉 where the symbol 〈·〉 =

∑
k · p(k)

assigns averaging over the degree distribution.
Hence, the signal function of the ith node becomes

fi(t) =
ki

N
r(t). (23)

Therein, the mean-field amplitude r(t) is defined by

r(t) =
1
〈k〉

kmax∑
k=kmin

Nk

N
k

1
Nk

N∑
j=1

δk,kj skj (t). (24)

It is assumed that, after forgetting initial conditions, units
with the same degree share stochastic pulse sequences
which are statistically identical. Therefore, the same pulse
sequence can be assigned to units of the same degree class
by taking the average over the corresponding class

sk(t) =
1

Nk

N∑
j=1

δk,kj skj (t). (25)

Therein, the sum runs over Nk items due to the action of
the δ-function. Since the number of nodes with degree k
scales as Nk ∝ N , application of the limit of large N yields

lim
N→∞

sk(t) = P (1, t|k), (26)

which was introduced in (14).
Thus, the mean-field r(t) introduced in (24) becomes

in this limit

r(t) =
1
〈k〉

kmax∑
k′=kmin

p(k′)k′P (1, t|k) =
〈k P1,k(t)〉
〈k〉 . (27)

Eventually, by inserting (23) and (24) via (27) into the
mean-field description (15) and (10) the following expres-
sion is obtained

P (0, t|k) = 1− P (1, t|k),

Ṗ (1, t|k) = γ

[
k

N
r(t)

]
(1− P (1, t|k))

−
∫ ∞

0

γ

[
k

N
r(t − t′)

]

× (1− P (1, t− t′|k))w1(t′)dt′. (28)
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This is now a set of coupled non-linear integro-differential
equations, since the mean-field r(t) depends on P (1.t|k)
via (27). Though the structure of the equations looks sim-
ilar to the previous Master equation (10) it is qualitatively
different. As the result of the replacement of the adjacency
matrix, the number of equations has reduced drastically
compared to the system (15) and (10). The index k in (28)
is only running over the different possible degrees in the
network k ∈ [kmin, kmax] whereas in (15) and (10) it runs
over all nodes N . In addition, the dependence of the ac-
tivation rate γ on the degree k appears uniquely in the
argument for all nodes as linear factor in the signal func-
tion (cf. Eq. (23)). In the master equation for nodes with
the degree k it reads

γ[f ] = γ

[
k

N
r(t)

]
. (29)

2.4 Stationary behavior of excitable units

Depending on the specific structure of γ this equation can
be highly non-linear. Here in this manuscript, the acti-
vation rate γ is assumed to follow Arrhenius’ law [27,28].
The two-state system shall mimic the behavior of stochas-
tic excitable dynamics [2] with state 0 being the rest state
and state 1 the excited one, respectively. Transitions to
the excited state 1 is achieved by overcoming a threshold
with barrier ΔU under the influence of noise with inten-
sity D. The corresponding Arrhenius’ law of the rate reads

γ = γ0 exp
(
−ΔU

D

)
, (30)

with a constant γ0 defining the time scale.
The coupling between units is assumed to be purely

excitatory and thus each coupled unit that is already in
the excited state will lower the potential barrier by an
amount proportional to the coupling strength σ, which is
the same for every unit throughout this paper. The fol-
lowing ansatz for the potential ΔU combines the above
information

ΔU = 1− σ
k

N
r(t). (31)

Setting p(k) = δk,N restores the globally connected net-
work with r(t) → P (1, t|N), which has been earlier stud-
ied in detail [14]. Alternatively, it is possible to consider a
discrete number of K degrees ki, i = 1, . . . , K. The corre-
sponding degree distribution follows as

p(k) =
K∑

i=1

νi δki,k. (32)

Insertion of the specific rate and degree distribution (28)
yields a set of K nonlinear master equations. A qualitative
discussion of the possible stationary solutions P ∗(1|ki)
which will be approached as t→∞ will be outlined. Since
the equations are nonlinear there might exist a different
number of stationary solutions with different stability. If
distributed by (32) and with the rate function (31) these

stationary states are defined by the set of K coupled non-
linear algebraic equations

P ∗(1|ki) =
τγ∗

i

1 + τγ∗
i

, (33)

with the stationary spiking rates of the elements with de-
gree ki

γ∗
i = γ

[
ki

N
r∗

]
(34)

and the stationary mean-field amplitude with (33) in-
serted and averaged over the discrete distribution (32)

r∗ =
1
〈k〉 〈k P ∗(1|k)〉 . (35)

The maximal number of possible stable solutions of this
set of equations can be estimated to be of the order O(2K).
The behavior is similar to a spin chain with K elements.
Every population is stable in the rest state si = 0. If
being coupled, every population with given degree reaches
a stationary probability to be in the excited state.

The precise number depends on the specific degree val-
ues, the noise intensity D and the coupling constant σ.
Generally for low coupling, respectively for high noise only
a single solution exists, which is the disordered state of
all populations. Lowering of noise, respectively increasing
coupling, enlarges the number with multiple stable states,
including inhomogeneous cases and the two homogeneous
situations where all populations are in the rest or in the
excited states. In general, it depends on the initial condi-
tions which state will be populated.

Corresponding to the selected steady-state-solution
the spiking rates differ. The spiking rate from rest to ex-
cited is determined by the stationary states of the pop-
ulation which the element belongs to. It is expressed by
the rate given in (34) where the specific solution has to be
inserted. Such state dependent dynamical behavior of neu-
ronal activity was recently discussed for phase oscillators
in reference [29].

In this simplified model no Hopf-bifurcation can take
place. All interactions have an aligning effect of the ele-
ments similar to a spin chain. Therefore, the existence of
stable oscillating, chimaera state, cluster synchronization
or chaotic solutions can be excluded. But adding delayed
feedback of the mean-field, mixtures of excitatory and in-
hibitory acting units of the network or systematic shifts
in the signal function might be a source for more complex
situations.

Special initial conditions (for example all units in the
excited state) cause damped oscillations of the mean-field.
Even in the case of a δ-function as waiting time density,
the assumed exponentially distributed activation times
scatter the individual spins with large dispersion. Hence
the coherence of special initial conditions is destroyed af-
ter a few excitations yielding a stationary mean-field.

Nevertheless, as will be seen in the next section, the
individual spins can fire with a small CV1 resembling

1 The coefficient of variation (CV) is given by the ratio of
the standard deviation to the mean of the distribution.
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oscillatory behavior. In the states with high mean-field val-
ues the activation time becomes negligible small. In these
situations the spiking is dominated by the recovery time
from the excited to the rest state. If this time does not
possess remarkable dispersion the CV become vanishingly
smalls.

In the next Section 3 further insight into the conse-
quences of several degrees will be given by dealing with
the simplest case of a network with two populations with
different degrees k1, k2, only.

3 Random binary networks

In the following, the properties of a binary random net-
work [26,30,31] will be studied. It allows a full sketch of
the possible bifurcation scenario appearing in these net-
works. These are randomly connected with two different
degrees k1 and k2.

In terms of the degree distribution for a binary network
it is supposed that

p(k) = νδk,k1 + (1− ν)δk,k2 , (36)

where ν ∈ ]0, 1[ is the fraction of nodes with degree k1.
In this paper k1 > k2 is set, but due to the symmetry
(k1, ν)←→ (k2, 1−ν) the alternative case is also included.

The set of two master equations for binary networks
read:

Ṗ (1, t|k1) = γk1(t) (1 − P (1, t|k1)

−
∫ ∞

0

γk1(t−t′)(1−P (1, t−t′|k1))w1(t′)dt′,

Ṗ (1, t|k2) = γk2(t) (1 − P (1, t|k2))

−
∫ ∞

0

γk2(t− t′)(1−P (1, t−t′|k2))w1(t′)dt′,

(37)

where we have denoted γk1(t) = γ[k1/Nr(t)] and γk2(t),
respectively. Equations (37) can be brought into the inte-
gral form [32]:

P (1, t|k1) =
∫ ∞

0

γk1(t− t′)(1− P (1, t− t′|k1))z1(t′)dt′,

P (1, t|k2) =
∫ ∞

0

γk2(t− t′)(1− P (1, t− t′|k2))z1(t′)dt′,

(38)

supplemented by initial conditions. Therein, z1(t) is the
survival probability of state 1,

z1(t) = 1−
∫ t

0

w1(t′)dt′. (39)

Equations (38) have to be supplemented by initial
conditions.

3.1 Qualitative discussion of steady states

Equations (38) are suitable for calculating the
steady states of this system. For a steady state
limt→∞ P (1, t|ki) = P ∗(1|ki) applies. Using (38) and
integration by parts gives the following coupled implicit
equations for the steady states

P ∗(1|k1) =
τγ∗

k1

1 + τγ∗
k1

, P ∗(1|k2) =
τγ∗

k2

1 + τγ∗
k2

. (40)

The values of P ∗(1|k1) and P ∗(1|k2) define the stationary
order in the two subpopulations. In equation (40) we in-
troduced the mean relaxation time of the excited state
τ =

∫ ∞
0 t w1(t)dt and the steady state activation rate

γ∗
ki

= γ[kir
∗] for i = 1, 2 depending on the steady state

mean-field r∗. Equation (27) defines the order parame-
ter of the full network. It becomes r∗ = 〈kP ∗(1|k)〉 /〈k〉.
Taken at steady state, this yields a transcendent equation
for the steady state value r∗ of the mean-field which yields

r∗ =
1
〈k〉

〈
k

1 + 1
τγ∗

k

〉
. (41)

This equation can possess several solutions which we will
discuss in detail, later on. In case of large noise D → ∞,
only the homogeneous disordered solution r∗ = 1/2 ex-
ists. In this limit the exponential function becomes unity
and since we will select γ0τ ≈ 1 the disordered state is
characterized by r∗ = 1/2. A constant value of r∗ does
not imply that the activity of the individual nodes has
ceased. It is rather the mean activity or flow that is con-
stant (cf. Fig. 8). Oscillating behavior of r∗ would corre-
spond to synchronization among the units. But without
further ingredients like delayed feedback or additional in-
hibitory coupled nodes such states cannot be reached.

The transition to the disordered state can be studied in
more detail. Demanding that the first derivatives of l.h.s.
and r.h.s. with respect to r coincide at r = r∗, provides a
condition for a saddle-node bifurcation. The homogeneous
disordered state becomes unstable and two new stable so-
lutions occur.

Execution of the derivatives in (41) results in

k1ν

〈k〉
τ

∂γ∗
k1

∂r∗

(1 + γ∗
k1

τ)2
+

k2(1− ν)
〈k〉

τ
∂γ∗

k2
∂r∗

(1 + γ∗
k2

τ)2
= 1. (42)

Using (40) this becomes

1 =
k1ν

〈k〉 (P
∗(1|k1)− (P ∗(1|k1))2)

∂ log(γ∗
k1

)
∂r∗

+
k2(1− ν)
〈k〉 (P ∗(1|k2)− (P ∗(1|k2))2)

∂ log(γ∗
k2

)
∂r∗

.

(43)

Changing the variables to xk1 := P ∗(1|k1)− 1
2 and xk2 :=

P ∗(1|k2)− 1
2 and rearranging the equation gives

x2
k1

a2
1

+
x2

k2

a2
2

= 1. (44)
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Fig. 3. Graphical representation of left- and right-hand side (LHS, RHS) of (41). D = 0.1, k1/N = 1/2, k2/N = 1/4, γ0 · τ = 1.
Left: ν = 0.6, σ ≈ 4.57, leads to three fix-points; two are stable and one is unstable. Right: ν = 0.37, σ ≈ 5.19 gives rise to five
fix-points; three stable ones and two unstable ones.

Equation (44) defines an ellipse with semi-axes

a1 =
1
2

√√√√
〈
k

∂ log(γ∗
k)

∂r∗
〉− 4〈k〉

k1ν
∂ log(γ∗

k1
)

∂r∗

(45)

and similarly a2 with the substitutions k1 → k2

and ν → (1 − ν). The ellipse reduces to a point
where the two bifurcations merge. It corresponds to
P ∗(1|k1) = P ∗(1|k2) = r∗ = 1

2 , at
〈

k
∂ log(γ∗

k)
∂r∗

〉
− 4〈k〉 = 0. (46)

For the γk given by (31), (46) results in

σcrit

4Dcrit

〈k2〉
N 〈k〉 = 1. (47)

Comparing this to the well known result of all-to-all cou-
pled stochastic two-state units [14]

σcrit

4Dcrit
= 1, (48)

it is visible that it differs only by a scaling factor given by
the ratio of the first two moments of the degree (density)
distribution. This is a typical network effect in mean-field
coupled oscillators [33–36]. The factor can be interpreted
as the mean of the degree distribution of the nearest neigh-
bors [37] assuming that the local structure of the network
is treelike. Therefore the effective coupling strength

σeff = σ
〈k2〉
〈k〉 = σ

νk2
1 + (1− ν)k2

2

νk1 + (1− ν)k2
(49)

will be introduced. Note that it is evident from (46) that
this scaling is only obtained if γ depends exponentially on
the mean-field r.

In case of low noise a more detailed picture with pos-
sibly multiple solutions and ordered states occur. These
solutions can be discussed solving (41) graphically and
plotting the r.h.s. versus the l.h.s as presented in Figure 3
for typical situations.

The l.h.s. of equation (41) is a straight line and un-
bounded whereas the r.h.s. grows monotonically and is

bounded between values of the interval [0, 1]. Hence so-
lutions r∗ are also in this interval. Solutions with one,
three or five intersections can be found. Bifurcations be-
tween these monostable, bistable of tristable behavior are
saddle-node bifurcations or, if these coincide, a pitchfork
bifurcation.

If the number of degrees would be increased, the num-
ber of steps will also increase in the same manner, giving
rise to even higher multistable states.

3.2 Solutions with vanishing noise

It is illustrative to look first in detail at the case of van-
ishing noise. Then the r.h.s. of equation (41) vanishes
∝exp(−1/D) as r → 0 and approaches unity for large
values of r. In between, the r.h.s. makes two jumps with
magnitude νk1/〈k〉 and (1− ν)k2/〈k〉, respectively. These
steps are located at r1 = 1/(σk1) and r2 = 1/(σk2). For
the r.h.s. to possess one intersection (monostability) with
the straight line r, we obtain the following conditions by
using that k1 > k2:

1
σk1

>
νk1

νk1 + (1− ν)k2
,

1
σk2

> 1. (50)

For vanishing noise the monostable state is always the
ordered one with r∗ = 0, i.e. neither of the two popula-
tions is excited. If one of these inequalities is violated,
the mean-field dynamics exhibit bistability. Given that
the first one does not hold, besides the ordered solution
with r∗ = 0, a second stable inhomogeneous state appears.
The higher degree population is in the excited state and
the lower degree population remains in the non-excited
one (cf. Fig. 4b). In contrast, if the second inequality
is violated bistability occurs between the homogeneous
non-excited states and the homogeneous excited ones (cf.
Fig. 4a). Finally, if both inequalities do not hold, the solu-
tion has five intersections according to a tristable solution
between the two homogeneous situations and the one non-
homogeneous one (cf. Fig. 4c).
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(a)

(b)

(c)

Fig. 4. Stable branches of (37) for σeff = 2, γ0 · τ = 1, ν = 0.34, k1/N = 1
2

and varying k2/N . (a) k2/N = 1
3
: the typical

bifurcation into two homogeneous states. This is also observed in networks with all-to-all topology. (b) k2/N = 1
8
: this bifurcation

is similar to Figure 4a but the lower degree population cannot be in the excited state anymore. (c) k2/N = 1
4
: in this bifurcation

diagram there is a monostable regime for large D, a bistable regime with a totally ordered and a partially ordered state for
intermediate D and the tristable state with three different ordered states for low D.

3.3 Solutions with finite noise and simulations

Examples of the qualitative behavior of the steady states
for various noise levels D are presented in Figures 4a–4c.
The graphs have been obtained by numerical solution
of (41) and (40). The main difference of these graphs is
the ratio α = k1/k2. In Figure 4a, α equals 3/2 and for
high noise the disordered state with mean-field r∗ = 1/2 is
stable. The latter bifurcates for lower noise to the known
bistability of ordered states [14] which approach (0, 0),
(1, 1) as D → 0. These have been written in terms of
the state vector P1(t) = (P (1, t|k1), P (1, t|k2))T. With
respect to the network these solutions are homogeneous
states since both populations of the network are ordered
in the same states.

Figure 4b presents the qualitative behavior with a
strong mismatch of the degrees of the two populations,
namely α = 4. The graph shows that in this parameter re-
gion bistability of the two ordered states occurs for lower

noise values. With vanishing D-values the states become
(0, 0) and (0, 1). In difference to the previous case, the sec-
ond solution (0, 1) is inhomogeneous with respect to the
two populations in the network. In the (0, 1) state one pop-
ulation is ordered in state 0 whereas the other approaches
an ordered state with mean activity 1. It is a result of the
strong mismatch α of the degrees and of the asymmetry
ν of the two populations. If, for example, the first smaller
population with a higher degree is ordered in the excited
state 1, it is not able to excite the second larger population
anymore. The latter remains in the ordered rest state 0.

Also the coexistence of both scenarios is possible and
give rise to a tristable parameter region as presented in
Figure 4c. Here a moderate value of α = 2 was selected.
Lowering the noise intensity, three different regions are
visible. First, for high noise D > 0.5 the monostable dis-
ordered solution exists which is apparent in all figures.
Lowering the noise this state becomes bistable between
the ordered homogeneous states where both populations

http://www.epj.org
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Fig. 5. Qualitative behavior of the dynamical regimes in the α − ν plane for D = 0.1, σeff = 2 and k1/N = 1/2. The graphic
beneath the legend is an excerpt of the region between tri- and monostability. The two regions will meet in a point which is
below resolution.

are in state 0 and an inhomogeneous network where the
population that is smaller and stronger connected is with
high probability in the ordered state 1 but the larger less
connected population is still disordered. This is another
type of bistability, this time between an homogeneous or-
dered state and an inhomogeneous disordered state. Fi-
nally, by decreasing the noise intensity D further, the third
region is entered and the solutions become tristable be-
tween (0, 0), (1, 0) and (1, 1) in case of vanishing noise.
Stability of the state (1, 0.5) as visible in the intermedi-
ate region of Figure 4c is an interesting event, because it
means that the population of the network with the higher
degree is in an ordered state whereas the population with
the lower degree is in a disordered state. Such partly or-
dered states have also been reported for the Ising model
on correlated scale-free networks [38]. These should not
be confused with a chimera state, because the units of
the subpopulations are not identical and the value of r
does not reflect the synchrony of the phases among the
units.

In Figure 5 the distribution of the different stability
regimes for varying degree mismatch α and relative con-
centration ν are shown for D = 0.1. The tristable re-
gion forms an island surrounded by the different types
of bistability and connected to the monostable shore by a
very narrow region. Going around the island in an anti-
clockwise manner one starts at the homogeneous ordered
configuration which gradually becomes more disordered
and inhomogeneous with maximal disorder in the middle

of the right hand side. After the turning point it gets or-
dered again but this time in the inhomogeneous regime.

The presented findings have been confirmed by mi-
croscopic simulations of the coupled network, see equa-
tions (6) with w0(t) from (5). Numerical investigation of
the random binary network is done by solving the Master
equations (37) in the Markovian case, namely w1(t) as
in (1). As shown in (42) and (40), the equations de-
pend on the first moment of the waiting time distribution
rather than the shape of the distribution, although higher
moments may play a role for other bifurcations (cf. Ap-
pendix A). In addition microscopic simulations of a ran-
dom binary network with 6000 nodes and full network
topology, which corresponds to (10), confirm the made
approximations.

Exemplary results are shown in Figures 6 and 7 which
reproduces Figure 4c with two different waiting time
distributions. The exponential waiting time distribution
which was also used in Figure 4c and a δ-distribution with
same mean but no variance.

Figure 8 shows the activity of arbitrary nodes in the
two populations in the three different regimes of stable
states. The spiking activity of the nodes is presented as
symbols versus running time accordingly to the noted de-
gree values k1, k2 at the r.h.s of the graph.

The firing activity in the two different states is dif-
ferent. As discussed already earlier in Section 2.4, units
fire seldom in the rest state, but rapidly in the ex-
cited state. This dynamical behavior survives also in the

http://www.epj.org
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Fig. 6. Black stars show the most probable states of the network in a microscopic simulation with k1 = 500, k2 = 250, N = 6000,
σeff = 2, γ0 ·τ = 1, ν = 0.34 and w1(t) from (1) after 20 000 simulation steps. The orange dots result from the numerical solution
of equation (37). There are small deviations from Figure 4c which are near the critical points where finite time effects are the
strongest. For each D-value 11 equally distributed starting conditions were chosen by preparing the network such that r ∈ [0, 1].

Fig. 7. Most probable states of the network in a microscopic
simulation in the region D ∈ [0, 0.5] with w1(t) from (2) and
other parameters as in Figure 6. But in this figure for each D-
value 121 equally distributed starting conditions were chosen
by setting P (1, 0|k1) ∈ [0, 1] and P (1, 0|k2) ∈ [0, 1] indepen-
dently. It shows that the existence of tri- and bistability does
not depend on the specific choice of w1(t).

inhomogeneous case. In Figure 8a we present the activity
of the units, with an exponential relaxation waiting time
distribution. High disorder of the spiking activity in the
excited states is the consequence. The CV of the simu-
lated activity is close to 1, which is the value for an inde-
pendent Poissonian spike train. Differently, in Figure 8b
spiking events from simulations with a δ-distribution are
shown. For states where a population i = 1, 2 is in the
excited states, i.e. if P (1|ki) ≈ 1, the measured CV pos-
sesses values close to zero. This corresponds to a perfectly
oscillatory behavior of the units. The period of this spik-
ing coincides with the time τ the unit stays in the excited
state. After this period the unit flips to the rest state. The
exponentially distributed time to flip back in the excited
state vanishes and also its variance. In consequence, the
units behave like oscillators.

It is important to stress that the constant mean-field
value does not correspond to synchronization of the indi-
vidual units in the excited states, even in case when they
practically oscillate. In the rest state the measured CV for
both choices of waiting time densities are close to 1.

4 Conclusion

In this paper, we have investigated semi-Markovian
stochastic two-state units embedded in a complex net-
work. A theoretical framework has been developed
through a heterogeneous mean-field approximation, which
is valid for random uncorrelated networks. Our work
thus represents an extension of previous studies on
globally coupled two-state systems (especially [14], but
also [6,13,17]) to two-state systems that have a complex
coupling structure.

As an example, we have focused on a random binary
network. Thereby we have discovered qualitative changes
in the behavior of the steady states. Specifically, struc-
turally new conformations have been found, including
tristable and partially ordered states. Additionally the in-
fluence of the network on the critical coupling strength
has been revealed. We have corroborated all our theoret-
ical results via numerical simulations. We found that the
“Markovianity” of the underlying process has no great
effect on the positions and the number of steady states
and their bifurcations in this simple setting, but still their
basins of attraction may be different. Instead the first mo-
ment of the waiting time distribution has the greatest im-
pact and higher moments occur only in bifurcations that
have at least co-dimension two. It remains for future stud-
ies to pursue our analysis explicitly in cases, where more
than two different degrees exist. It will be particularly
interesting to see how our findings regarding the multista-
bility will generalize.

Networks of stochastic two-state units can be seen as
a toy model for magnetic spins, neurons, blinking phe-
nomena or two valued opinions. The occurrence of trista-
bility is also reported in molecular switches [39,40] and
in systems of polaritons [41,42] giving hope to perform
ternary logical operations in the future. Hence, we expect
that our results are relevant for these real-world systems,
where the model considered here may serve as an idealized
version. The analytic tractability is a strength of our sys-
tem, but we believe that still many important extensions
await consideration, e.g. including network correlations,
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(a) (b)

Fig. 8. Activity of a randomly picked node of each degree of the networks simulated in Figures 6 and 7 at D = 0.1 in the
three different steady states. Homogeneously activated (1, 1), homogeneously at rest (0, 0) and inhomogeneously ordered (1, 0).
(a) Network with exponential w1 corresponding to Figure 6. (b) Network with δ-distributed w1 corresponding to Figure 7.

more sophisticated waiting time distributions or coupling
functions.

As underlined previously, the main assumption behind
the heterogeneous mean-field approximation is the lack of
degree correlations. Random binary networks tend to be
disassortative, i.e. nodes with different degrees are pref-
erentially connected as discussed in reference [31]. How-
ever, for the network examples considered here and for
the chosen parameters, these degree correlations become
negligible. Therefore, the key assumption is not violated
in our study which gave the reason for our analysis. Ex-
tending our theory towards correlated networks remains a
challenging open problem.
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Appendix A: Derivation of the characteristic
equation

To study the stability of steady states by a character-
istic equation, we introduce the vector P1(λ) which is
the Laplace transform of the time dependent deviations
δP1(t) = P1(t)−P∗

1 at a steady state. Then, the linearized
version of (37) reads in Laplace space

λP1(λ) − P1(t = 0) = J(λ)P1(λ), (A.1)

with the Jacobian J(λ). Its formal solution is

P1(λ) = (λ� − J(λ))−1P1(t = 0)

= M−1P1(t = 0). (A.2)

The final value theorem can be used to calculate the
steady states of this system

P∗
1 = lim

t→∞P1(t) = lim
λ→0

λP1(λ)

= lim
λ→0

λM−1P1(t = 0)

= lim
λ→0

λ

det(M)
adj(M)P1(t = 0), (A.3)

with

det(M) = λ2−λ(1−w1(λ))

(∑
k

1
1+γ∗

k〈t〉

(
∂γ∗

k

∂P ∗
1,k

−γ∗
k

))

+(1−w1(λ))2
(
γ∗

k1
γ∗

k2
−γ∗

k1

1
1+γ∗

k2
〈t〉

∂γ∗
k2

∂P ∗(1|k2)∗

− γ∗
k2

1
1 + γ∗

k1
〈t〉

∂γ∗
k1

∂P ∗(1|k1)∗

)
(A.4)

and

adj(M) =

(
m22 −m12

−m21 m11

)
,

m11 = (1− w1(λ))

(
1

1 + γ∗
k1
〈t〉

∂γ∗
k1

∂P ∗(1|k1)
− γ∗

k1

)
−λ,

m12 = (1− w1(λ))
1

1 + γ∗
k1
〈t〉

∂γ∗
k1

∂P ∗(1|k2)
,

m21 = (1− w1(λ))
1

1 + γ∗
k2
〈t〉

∂γ∗
k2

∂P ∗(1|k1)
,

m22 = (1− w1(λ))

(
1

1 + γ∗
k2
〈t〉

∂γ∗
k2

∂P ∗(1|k2)
− γ∗

k2

)
−λ.

(A.5)
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The final value theorem states that the limit
limλ→0 λP1(λ) is unique if and only if the denomi-
nator of P1(λ) has roots with negative real parts and
not more than one pole at the origin. Thus indicating
bifurcations when one (or several) roots of det(M) cross
the imaginary axis. Therefore det(M) = 0 is called the
characteristic equation.

The fact that w1(λ) is the moment generating function
of w1(t) means that

w1(λ) =
∞∑

k=0

〈tk〉
k!

λk

where 〈tk〉 is the kth moment of w1(t). Two typical exam-
ples are the pairs

w1(t) = δ(t− tw)←→ w1(λ) = e−λtw (A.6)

w1(t) = γ e−γ t ←→ w1(λ) =
1

1 + λ/γ
. (A.7)

Since 〈t0〉 = 1, the term

(1− w1(λ)) =
∞∑

k=1

〈tk〉
k!

λk

and thus adj(M) is of first order in λ. Given this informa-
tion it is clear that P1(λ) has only one pole of order one
at the origin.

Appendix B: Alternative derivation of (42)
using the characteristic equation

To look for saddle-node bifurcations the lowest terms in
λ of equation (A.4) will be collected. Identifying 〈t〉 = τ
results in

0 = 1− τ

(∑
k

(
1

1 + γ∗
kτ

∂γ∗
k

∂P ∗(1|k)
− γ∗

k

))

+ τ2

(
γ∗

k1
γ∗

k2
− γ∗

k1

1
1 + γ∗

k2
τ

∂γ∗
k2

∂P ∗(1|k2)

− γ∗
k2

1
1 + γ∗

k1
τ

∂γ∗
k1

∂P ∗(1|k1)

)
(B.1)

giving

1
τ

=
1

(1 + γ∗
k1

τ)2
∂γ∗

k1

∂P ∗(1|k1)
+

1
(1 + γ∗

k2
τ)2

∂γ∗
k2

∂P ∗(1|k2)
(B.2)

as the condition for a saddle-node bifurcation. Applica-
tion of the chain rule in the derivatives, i.e. ∂γ/∂P =
∂γ/∂r ∂r/∂P finally yields

1
τ

=
k1ν

〈k〉
1

(1 + γ∗
k1

τ)2
∂γ∗

k1

∂r∗
+

k2(1− ν)
〈k〉

1
(1 + γ∗

k2
τ)2

∂γ∗
k2

∂r∗
.

(B.3)

This is indeed the same equation as (42). This derivation
has the positive side effect that with the aid of the char-
acteristic equation all other bifurcation scenarios can be
investigated as well.
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