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Variational mode decomposition (VMD) is a newmethod of signal adaptive decomposition. In the VMD framework, the vibration
signal is decomposed intomultiplemode components byWiener filtering in Fourier domain, and the center frequency of eachmode
component is updated as the center of gravity of themode’s power spectrum.Therefore, each decomposedmode is compact around
a center pulsation and has a limited bandwidth. In view of the situation that the penalty parameter and the number of components
affect the decomposition effect inVMDalgorithm, a novelmethod of fault feature extraction based on the combination ofVMDand
particle swarm optimization (PSO) algorithm is proposed. In this paper, the numerical simulation and the measured fault signals
of the rolling bearing experiment system are analyzed by the proposed method. The results indicate that the proposed method is
muchmore robust to sampling and noise. Additionally, the proposedmethod has an advantage over the EMD in complicated signal
decomposition and can be utilized as a potential method in extracting the faint fault information of rolling bearings compared with
the common method of envelope spectrum analysis.

1. Introduction

Rolling bearing is one of the most commonly used parts in
rotating machinery to support rotating shafts. Due to the fact
that its health state is directly related to the safety and a stable
operation of the machine, the research of rolling bearing
fault diagnosis has a great significance in actual application
[1]. However, the early incipient fault feature is very faint
and interfered by the strong background noise [2]. When
the rolling bearing is in failure due to the influence of load,
friction, noise, and other factors, the measured vibration sig-
nal is a multicomponent amplitude-modulated-frequency-
modulated (AM-FM) signal using system’s natural frequency
as carrier frequency and the fault characteristic frequency as
modulation frequency, respectively.Thus, obtaining the AM-
FM signal by the original signal decomposition and reducing
the effect of noise are the emphasized research content in
extracting the early faint fault feature of the rolling bearing.

Currently, there aremanymethods used to fault diagnosis
for rolling bearings, but these methods have some inherent
limitations. For instance, wavelet transform (WT) [3, 4]
analysis is not adaptive, which is restricted by the selection of

wavelet basis function and the number of decomposition
levels; empirical mode decomposition (EMD) is lack of theo-
retical basis and there are some problems in its own algorithm
such as the phenomenon of model mixing and the end
effect [5–7], which has been used to detect the bearing fault
[8]. Although the ensemble empirical mode decomposition
(EEMD) [9] has some improvement in solving the problem
of model mixing, the actual effect is sensitive to the strong
background noise. Empirical wavelet transform (EWT) is
introduced by Gilles et al. aimed at extracting a series of AM-
FM signal from the original signal, which largely depends on
choosing the boundaries of Fourier spectrum appropriately
[10, 11]. The sparse decomposition theory [12] and manifold
learning method [13] are proposed recently. However, the
sparse decomposition relies on the design of the redundant
atom library and decomposition algorithm, which has an
obvious problemof the large amount of calculation.Theman-
ifold learning result is also restricted by the parameter selec-
tion of delay time and embedded dimension. From another
aspect, the spectroscopy and ferrography of used grease are
applied to condition monitoring for rolling element bearing
[14], which has a limited capacity in detecting the noniron
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particle in lubricating oil and largely depends on the human
experience.

Lately, Dragomiretskiy and Zosso proposed a new varia-
tionalmode decomposition (VMD) [15]method, whichwas a
new advancedmultiresolution technique. A series of iterative
updating process was used to minimize the constrained
variational model; therefore, the vibration signal was decom-
posed into variousmodes or intrinsicmode functions (IMFs)
using calculus of variation. It overcame the disadvantage
of lacking theoretical basis and noise sensitivity of EMD.
Moreover, the VMD method could adaptively determine the
relevant frequency band and estimated the corresponding
model. Based on the above-mentioned advantage, it was
applied to the early fault diagnosis of rolling bearing [16,
17] and economics field [18]. From the theory of VMD
algorithm, it can be known that the decomposed result of
VMD is restricted by the penalty parameter selection and
the number of components. In order to extract the faint
fault information of the bearing vibration signal effectively,
the parameters’ selection needs to be optimized. Taking into
account the characteristics of fast convergence speed, small
setting parameters and easy to implement particle swarm
optimization (PSO) algorithm [19, 20], the paper applies it
into the parameters optimization of VMD. The optimized
two parameters are obtained by the PSO algorithm, which
is used to the process of feature extraction for faint fault
signal. After the original signal is decomposed by improved
VMD method, the optimal component can be identified by
the principle of maximum correlated kurtosis [21]. The index
of correlated kurtosis has integrated the characteristics of the
kurtosis and correlation function, which can represent the
changes of shock signal and avoid the problem of overfitting.
The merits of the proposed method can be summarized that
the parameter selection and decomposition result of VMD
algorithm are less affected by human experience. Using this
method to analyze the simulated signal and the measured
vibration signal from rolling bearing experiment system, the
results indicate that the proposed method can accurately
extract the early characteristic frequency of faint fault signal
of the rolling bearing. The flowchart about the proposed
method is shown in Figure 1.

The rest of the paper is organized as follows. In Section 2,
the basic ideas of VMD and PSO are introduced. The
simulation signal analysis is described in Section 3. The
measured signal in rolling bearing experiment system was
analyzed in Section 4. The final conclusions are given in
Section 5.

2. Theories

2.1. Variational Mode Decomposition (VMD) Algorithm. Var-
iational mode decomposition (VMD) is a new method of
signal decomposition based onWiener filtering, one-dimen-
sional Hilbert transform, and heterodyne demodulation pro-
posed lately by Konstantin Dragomiretskiy. Different from
EMD, it defines the mode component as amplitude-modu-
lated-frequency-modulated (AM-FM) signals as follows:

𝑢𝑘 (𝑡) = 𝐴𝑘 (𝑡) cos (𝜙𝑘 (𝑡)) , (1)
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Figure 1: The flowchart about the proposed method.

where 𝜙𝑘(𝑡) is a nondecreasing function; thus 𝜙󸀠
𝑘
(𝑡) ≥ 0;

the envelope is nonnegative 𝐴𝑘(𝑡) ≥ 0. Additionally, the
change of envelope 𝐴𝑘(𝑡) and instantaneous frequency 𝜙󸀠

𝑘
(𝑡)

are much slower than 𝜙𝑘(𝑡). Therefore, the mode component
𝑢𝑘(𝑡) can be regarded as a pure harmonic signal with
amplitude 𝐴𝑘(𝑡) and instantaneous frequency 𝜙󸀠

𝑘
(𝑡).

The input signal is decomposed by VMD method into
the mode component of a specified scale according to the
subjective setting scale assuming that each mode is a finite
bandwidth signal with a pulse as the center. In order to
evaluate the bandwidth of each mode and construct the
constraintmodel of the variational problem,VMDfirstly uses
the Hilbert transform to obtain the single spectrum of each
mode and then transfers them to the fundamental frequency
by exponential correction. The bandwidth of each mode is
obtained through Gauss smooth demodulation signal finally,
which is called as 𝐿2 norm squared of the gradient. Thereby,
the constrained variational problem is given as follows:

min
𝑢𝑘,𝜔𝑘
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} (2)

Subject to ∑

𝑘

𝑢𝑘 = 𝑓, (3)

where 𝑓 is the original signal, 𝛿 is the Dirac distribution, 𝑘
is number of modes, {𝑢𝑘} fl {𝑢1, 𝑢2, . . . , 𝑢𝑘} denotes each
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mode function, {𝜔𝑘} fl {𝜔1, . . . , 𝜔𝑘} indicates each center
frequency, ∑

𝑘
fl ∑

𝑘

𝑘=1
represents the sum of all mode

function, and ∗ denotes convolution. Due to the difficulty of
solving the constrained problem, the penalty parameter𝛼 and
the Lagrange multiplication operator 𝜆(𝑡) are introduced to
convert the above constrained problem to the nonconstraint
problem. Thereby obtaining a new solution expression:

𝐿 ({𝑢𝑘} , {𝜔𝑘} , 𝜆)
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(4)

Therefore, the Lagrangemultipliers,modal functions, and
their corresponding central frequency are iteratively updated
by using alternating directionmultipliermethod (ADMM) to
obtain the saddle point in the expression. Specific algorithm
of classical VMD is given as the flowing expression.

Step 1. Initialize {𝑢̂1
𝑘
}, {𝜔
1

𝑘
}, 𝜆
1
, 𝑛 ← 0.

Step 2. The value of 𝑢𝑘, 𝜔𝑘, and 𝜆 is updated according to the
following formula:
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Step 3. Repeat the iterative process of (2) until the function
converges, which is to satisfy the condition of ∑

𝑘
‖𝑢̂
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𝑘
−
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2
< 𝑒, where 𝑒 is a given accuracy requirement.

2.2. Particle Swarm Optimization (PSO) Algorithm. Particle
swarm optimization (PSO) is an intelligent algorithm to imi-
tate birds’ foraging behavior proposed by Kennedy, through
referring to the characteristics of all the individual bird in the
process of feeding, which is widely used in solving nonlinear
problems.

Each particle in the PSO algorithm is used as the solution
of the optimization problem, which has a position and the
corresponding speed determined by the optimization func-
tion.The algorithm evaluates the pros and cons of all particles
by setting the appropriate fitness function. In each iteration,
the particles constantly update their speed and position
according to the fitness value of individual and the group.

The updated particles continue to search the optimal value
in the search space.

Specific configuration steps of PSO are as follows.

Step 1. Establish the appropriate fitness function according
to the actual problem.The iteration calculation is carried out
by setting the number of iterations, population number, the
initial position, and velocity of the particles.

Step 2. Calculate the optimal values 𝑃 and 𝐺, respectively,
compared with the optimal solution of the current popula-
tion and retain the better results, where 𝑃 represents local
extremum of individual particles and 𝐺 indicates global
extremum of group particles.

Step 3. Update the position and speed of all particles in the
population according to the formula 𝜐𝑘+1

𝑖𝑑
= 𝜔𝜐
𝑘
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+ 𝑐1𝜂(𝑝
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, where 𝜔 is the inertia

weight, 𝑐1, 𝑐2 are the learning factor, 𝜂 is the random number
between 0∼1, and 𝜐𝑘

𝑖𝑑
, 𝑥𝑘
𝑖𝑑
are the speed and position of the

particle in the 𝑘th iteration of the 𝑑 dimension.

Step 4. Repeat Steps 2 and 3 until meeting the maximum
number of iterations.

2.3. VariationalModeDecomposition Based on Particle Swarm
Optimization Algorithm. In the traditional algorithm of
variational mode decomposition, the user needs to set the
penalty parameter and the number of the components before
processing the signal because of the theory limitation. From
the theoretical study of VMD, it can be known that the
larger penalty parameter indicates the smaller bandwidth
of each component decomposed by source signal and vice
versa. Similarly, inappropriate setting number of components
will also result in some unacceptable mode compositions.
Therefore, selecting the appropriate parameter group of the
component number and the penalty parameter is the key to
accurately extract the fault information.

PSO algorithm is a widely used intelligent optimization
algorithmcomparedwith other optimization algorithms such
as genetic algorithm and artificial fish algorithm. It is suitable
for the optimal selection of parameters in consideration of
its simple principle and mechanism, fast convergence speed,
and, meanwhile, the good performance of global search.
The key part of the PSO algorithm based on the variable
mode decomposition is the selection of fitness function.
Because of the incorrect settings of the penalty parameter and
the number of components, some artifact components will
generate, which are independent with the source signal. It is
acceptable that the artifact components have less similarity
with the source signal. Therefore, the cross-correlation coef-
ficient between the decomposed mode component and the
original signal is regarded as an evaluation index, which is
defined in the following formula:

𝐶 =

∑
𝑇

𝑛=1
(𝑟 (𝑛) − 𝑟) (𝑦 (𝑛) − 𝑦)

[∑
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𝑛=1
(𝑟 (𝑛) − 𝑟)

2
∑
𝑇

𝑛=1
(𝑦 (𝑛) − 𝑦)

2
]

1/2
, (6)
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where 𝑟(𝑛), 𝑦(𝑛) represent the original signal and the mode
component, respectively; 𝑇 is the data length; 𝐶 represents
the cross-correlation coefficient.

From the above analysis, it can be seen that the cross-
correlation coefficient 𝐶 may fluctuate under the condition
of different parameters selection. The largest mean value of
cross-correlation coefficient does not imply the best result of
mode decomposition. The globally optimal value is achieved
by considering the mean value and the variance of cross-
correlation coefficient.The smaller value of variance indicates
the less deviation from themean value.Therefore, the optimal
penalty parameters and the number of components can be
well obtained by regarding the maximum ratio between
the mean value of 𝐶 and the variance as fitness function.
The detailed fitness function is expressed in the following
formula:

fit fun = mean (𝐶)
var (𝐶)

. (7)

On the basis of the above theory analysis, VMD based on
PSO algorithm is applied to the analysis of simulated signal
and the fault feature extraction of rolling bearing experiment
system to verify the validity of the method in fault diagnosis.

3. The Analysis of Simulated Signal

The measured rolling bearing vibration signal is always
consisted of the amplitude-modulated-frequency-modulated
(AM-FM) signals, harmonic signal, and noisy signal in actual
application. In order to verify the validity of the VMD based
on PSO, the fault signal model is built by the following
simulated signal:

𝑥1 = sin (2𝜋𝑓1𝑡) ,

𝑥2 = cos (2𝜋𝑓2𝑡) ,

𝑥3 = sin (2𝜋𝑓3𝑡 + cos (2𝜋𝑓4𝑡))

(8)

and then

𝑠 = 𝑥1 + 𝑥2 + 𝑥3, (9)

where the frequencies of 𝑓1, 𝑓2, 𝑓3, and 𝑓4 are chosen as
90Hz, 150Hz, 500Hz, and 270Hz, respectively.The synthetic
signal 𝑠 is composed by sinusoidal signal 𝑥1, cosine signal
𝑥2, and frequency-modulated (FM) signal 𝑥3. The sampling
frequency is set as 1000Hz and the sampling point is 1000.The
time-domain graph of simulated signal 𝑠 is shown in Figure 2.

The VMD based on particle swarm optimization algo-
rithm is applied to decompose the above simulated signal.
The number of iterations and the particles is 20, the inertia
weight linear decrease in the iterative process of the initial
value is 0.9, and the final value is 0.4. The penalty parameter
and the number of components optimized and selected by
particle swarm optimization (PSO) search algorithm are a
collection of (2064, 3), and the results of the decomposition
are shown in Figure 3.

In the three decomposed components shown in Figures
3(b), 3(c), and 3(d), the blue line is on behalf of the original
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Figure 2: The simulated signal 𝑠.

Table 1: The cross-correlation coefficient of reconstruction signal.

Sinusoidal signal Cosine signal FM signal
Cross-correlation
coefficient 0.9962 0.9985 0.9974

Table 2: The result of EMDmethod.

Sinusoidal signal Cosine signal FM signal
IMF1 0.2021 0.6132 0.5921
IMF2 0.7983 0.2180 0.0032
IMF3 0.0276 0.0014 0

signal and the red line represents the signal after the decom-
position. In order to more directly express the result of
decomposition, the similarity analysis is carried out between
the decomposed component and the original signal by the
index of cross-correlation coefficient. Table 1 demonstrates
that the proposedmethod has a perfect ability of complicated
signal decomposition.

Empiricalmode decomposition (EMD) is used to decom-
pose the above simulated signals, and the results of EMD
decomposition are shown in Figure 4. There are eight IMFs
decomposed by EMD.

Similarly, the decomposition result also carried out simi-
larity analysis with the original component. Since the similar-
ity of the three signal components (sinusoidal signal, cosine
signal, and FM signal) compared with mode components
after IMF3 is basically close to zero, so there is only a list of
the previous three components shown in Table 2.

From the decomposition results of EMD, it can be known
that sine, cosine, and FM signal are partly mixed in IMF1 and
IMF2, which cannot be separated well. Compared with the
proposed method in this paper, the decomposition effect of
VMD is obviously better than EMD, which can well separate
the components from the original signal.

The above experimental results show that the proposed
method can almost completely separate the components
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Figure 3: The result of VMD decomposition.

from the simulation signal free of noisy signal. However,
the actual measured bearing vibration signal in the runtime
is often affected by the strong noise background. Thus, the
fault feature information is usually submerged in the noise
environment. In order to prove the validity of the method,
we discuss the feature extraction effect of this method under
the different noise level. In the simulation signal, the Gauss
white noise with standard variance being 0.1, 0.2, 0.4, 0.3,
0.5, 0.7, and 0.9 is added in turn. The cross-correlation
coefficient between the decomposed mode components and
the original components in different noise conditions is
calculated. Results of signal reconstruction by the proposed
method are shown in Figure 5.

The noise of different intensity is added in the simulation
signal, and then the signal is processed by using the proposed
method. From Figure 5, it is obvious that the VMD algorithm
based on PSO has a good performance of denoising.

4. Analysis of Measured Signal in
Rolling Bearing Experiment System

In order to verify that the proposed method is effective in the
experiment, the vibration data of rolling bearing experiment
system is used to be analyzed. The experimental system is
shown in Figure 6. The whole experimental device is driven

by a 550W (220V∼50Hz) AC motor. The yellow arrow
points the position of the replaceable bearing in Figure 5.
In this experiment, the electric spark machining method
is used to carry out pitting treatment on the outer ring
of replaceable bearing to simulate the faults of the outer
ring of bearing. The acceleration signal of the experiment
is collected in the vertical direction of the bearing on the
right side of the experimental platform using the CSI2130
data analyzer of America. The parameter failure frequencies
of fault simulation test-bed are shown in Table 3. It is worth
mentioning that the rotating frequency 𝑓𝑐 and outer fault
frequency 𝑓𝑜 are 24.17Hz and 87.01Hz, respectively.

The time-domain graph of measured bearing fault signal
is shown in Figure 7(a). The result of envelope spectrum
analysis demonstrates that it is difficult to extract the fault
feature due to the interference of noisy signal, which is
presented in Figure 7(b).

From Figure 7(b), it is a fact that the 1 to 3multiplications’
frequency of bearing outer fault is interfered by other irrel-
evant signals such as noisy signal. Particularly, the rotating
frequency 𝑓𝑐 can hard be identification by the means of
envelope spectrum analysis. The proposed method in this
paper is introduced to optimize and analyze the bearing fault
data. In the PSO algorithm, the number of iterations is set
as 50 and the population size is selected as 20. The fitness
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Figure 4: The result of EMD decomposition.

Table 3: The experimental parameters and fault frequency.

Rotating speed 𝑟/min Rotating frequency/Hz Sampling frequency/Hz Sampling time/s Outer fault frequency/Hz
1450 24.17 16384 1 87.01

value during the iteration process is shown in Figure 8. The
optimized parameters of the penalty parameter and the num-
ber of the components about VMD method are selected as a
collection (1800, 10). By using the optimized parameters, the
bearing fault data are decomposed into ten-mode component
and the selection of optimal mode component is carried
out. Subsequently, the best representative decomposition
component of eighth decomposed component was employed
to verify the validity of themethod, which was determined by
the criterion of maximum correlated kurtosis. The correlated
kurtosis of different component was shown in Figure 9
and we can draw a conclusion that the eighth decomposed
component has a lager correlated kurtosis value. Figure 10
indicates the result of envelope spectrum analysis for the
eighth decomposed component.

It can be seen from the decomposition results of opti-
mized VMD algorithm that the identification accuracy of
fault feature frequency is improved compared with the

traditional envelope spectrum analysis shown in Figure 7(b).
Only 3 multiplications’ frequency of the outer ring fault
frequency can be found in the envelope spectrum of the
original signal, while after optimization, it can find more
than 10 multiplications of the fault frequency and detect the
rotating frequency𝑓𝑐. Additionally, the characteristic spectral
line was obvious and less inferred by other spectral lines,
which confirms the validity of the proposed method to the
fault feature extraction of rolling bearing. The contrastive
analysis of the EMD and the proposed method is also carried
out, which indicates that the optimized VMD algorithm has a
better ability in fault feature identification shown in Figure 11.

5. Conclusions

Anovelmethod of particle swarm optimization in variational
mode decomposition method was introduced in faint fault
feature extraction of rolling bearing.Themain conclusions of
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(a) The similarity of sinusoidal component with different noise level
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Figure 5: The results of VMD decomposition with varied noise level.

Figure 6: The rolling bearing experiment system.

this paper include the following. (1) The particle swarm opti-
mization algorithm was applied to the parameter selection
of the optimal penalty parameter and the number of com-
ponents, which largely depends on the suitable fitness func-
tion determined by the maximum ratio between the mean

value and the variance of cross-correlation coefficient. More-
over, the maximum correlated kurtosis is used to select
the optimal component. It is significant that the proposed
method can avoid the interference of human experience and
the diagnostic results are more reasonable. (2) Simulated
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(b) Envelope spectrum graph of the measured signal

Figure 7: The time-frequency diagram of the measured signal.
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Figure 10: The envelope spectrum analysis of the eighth decom-
posed component.
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Figure 11: The decomposition results of EMD.

signal and measured fault bearing signal measured from the
rolling bearing experiment system were used to verify the
validity of the method. The result demonstrated that the
proposedmethod has an advantage over the traditional EMD
method and envelope spectrum analysis in faint fault signal
processing for rolling bearings, whichmake it possible for the
proposedmethod to be a powerful tool in solving the problem
of signal channel bind source separation.
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