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This paper derives a multiresolution time-domain (MRTD) scheme for the two-conductor lossless transmission line equations
based on Daubechies’ scaling functions. And a method is proposed to generate the scheme at the terminal and near the terminal
of the lines. The stability and numerical dispersion of this scheme are studied, and the proposed scheme shows a better dispersion
property than the conventional FDTD method. Then the MRTD scheme is extended to the two-conductor lossy transmission
line equations. The MRTD scheme is implemented with different basis functions for both lossless and lossy transmission lines.
Numerical results show that theMRTD schemes which use the scaling functions with high vanishingmoment obtainmore accurate
results.

1. Introduction

Themultiresolution time-domain (MRTD) scheme proposed
by [1] provides an efficient algorithm for electromagnetic field
computation and shows excellent capability to approximate
exact solution with low sampling rates. However, the Battle-
Lemarie wavelet function used in [1] is not compact sup-
ported, which means the iterative equations contain infinite
terms. We must cut off the iterative equations in the actual
computation and this may introduce truncation errors. So
different wavelet bases, which are compact supported with
some numbers of vanishing moments, have been used to
improve this method [2–5]. This makes a great development
for MRTD schemes. As a kind of numerical method, the
MRTD schemes show great advantages in numerical dis-
persion properties [6–9]; meanwhile, these schemes need
a more rigorous stable condition than the conventional
FDTD method [10]. For containing more terms in the
iterative equations, the terminal conditions or absorbing
boundary conditions are more complicated to process in
MRTD schemes; this disadvantage has limited the application
of the MRTD scheme. To overcome this limitation, some
works on the perfect match layer have been made [11–13];
however, other terminal conditions also need to be analyzed
specifically. For the transmission lines equations, the resistive

terminal conditions could be equivalent as a generalThevenin
circuit; this paper will solve this kind of terminal condition in
the MRTD scheme.

Since the appearance of the telegraph equations, studies
on transmission lines have had a considerable development.
Several equivalent forms of transmission line theory have
been proposed to describe the influence of the incident
electromagnetic field to the transmission lines [14–16]. In [17],
the classical theory of the transmission line has been summa-
rized and the theory on the high frequency radiation effects
to the transmission lines is introduced. In the monograph
[18], the multiconductor transmission lines (MTL) theory
has been comprehensively studied in detail. For the two-
conductor lossless transmission lines, there are several meth-
ods, which contain the series solution, the SPICE solution, the
time-domain to frequency-domain (TDFD) transformation
method, and the FDTD method [18]. However, the MRTD
scheme has not been used to calculate the terminal response
of transmission lines. In this paper we will derive a MRTD
scheme for this problem.

In this paper, we focus on the calculation of the terminal
response of two-conductor transmission lines equations by
using MRTD scheme. In Section 2, the MRTD scheme is
derived based on Daubechies’ scaling functions for the
two-conductor lossless transmission line equations, and, for
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the resistive terminations, the iterative equations for the
terminal voltages are derived, a method is proposed to
update the iterative equations which contain some terms
whose indices exceed the index range in the MRTD scheme,
and then the stability and the numerical dispersion are
studied. In Section 3, the MRTD scheme is extended to
the two-conductor lossy transmission line. In Section 4, the
numerical results are presented on the terminal response of
both lossless and lossy transmission lines using the MRTD
scheme and compared to the FDTDmethod at different space
discretization numbers and different Courant numbers.

2. MRTD Scheme for Two-Conductor Lossless
Transmission Lines

2.1. MRTD Formulation. In this section, the MRTD scheme
is applied to the following scalar transmission lines equations
for two-conductor lossless lines [18]:

𝜕𝑉 (𝑧, 𝑡)

𝜕𝑧
+ 𝑙

𝜕𝐼 (𝑧, 𝑡)

𝜕𝑡
= 0 (1a)

𝜕𝐼 (𝑧, 𝑡)

𝜕𝑧
+ 𝑐

𝜕𝑉 (𝑧, 𝑡)

𝜕𝑡
= 0, (1b)

where 𝑙 and 𝑐 are the per-unit-length inductance and capaci-
tance, respectively.

Based on the method outlined in [1], the voltage and
current can be expanded as follows:

𝑉 (𝑧, 𝑡) =

+∞

∑

𝑘,𝑛=−∞

𝑉
𝑛

𝑘
𝜙
𝑘
(𝑧) ℎ
𝑛
(𝑡) (2a)

𝐼 (𝑧, 𝑡) =

+∞

∑

𝑘,𝑛=−∞

𝐼
𝑛+1/2

𝑘+1/2
𝜙
𝑘+1/2

(𝑧) ℎ
𝑛+1/2

(𝑡) , (2b)

where 𝑉
𝑛

𝑘
and 𝐼

𝑛+1/2

𝑘+1/2
are the coefficients for the voltages

and currents in terms of scaling functions, respectively. The
indices 𝑛 and 𝑘 are the discrete spatial and temporal indices
related to space and time coordinates via 𝑧 = 𝑘Δ𝑧 and
𝑡 = 𝑛Δ𝑡, where Δ𝑧 and Δ𝑡 represent the spatial and temporal
discretization intervals in 𝑧 and 𝑡 direction. The function
ℎ
𝑛
(𝑡) is defined as

ℎ
𝑛
(𝑡) = ℎ (

𝑡

Δ𝑡
− 𝑛) (3)

with the rectangular pulse function

ℎ (𝑡) =

{{{{{{

{{{{{{

{

1 for |𝑡| <
1

2
1

2
for |𝑡| =

1

2

0 for |𝑡| >
1

2
.

(4)

The function 𝜙
𝑘
(𝑧) is defined as

𝜙
𝑘
(𝑧) = 𝜙 (

𝑧

Δ𝑧
− 𝑘) , (5)
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Figure 1: Daubechies’ scaling function with two vanishing
moments.

where 𝜙(𝑧) represents Daubechies’ scaling function. Figure 1
shows Daubechies’ scaling function with two vanishing
moments.

For deriving theMRTD scheme for (1a) and (1b), we need
the following integrals:

∫

+∞

−∞

ℎ
𝑛
(𝑡) ℎ
𝑛
 (𝑡) 𝑑𝑡 = 𝛿

𝑛,𝑛
Δ𝑡

∫

+∞

−∞

ℎ
𝑛
(𝑡)

𝜕ℎ
𝑛

+1/2

(𝑡)

𝜕𝑡
𝑑𝑡 = 𝛿

𝑛,𝑛
 − 𝛿
𝑛,𝑛

+1

,

(6)

where 𝛿
𝑛,𝑛
 represents the Kronecker symbol. Consider

∫

+∞

−∞

𝜙
𝑘
(𝑧) 𝜙
𝑘
 (𝑧) 𝑑𝑧 = 𝛿

𝑘,𝑘
Δ𝑧 (7)

∫

+∞

−∞

𝜙
𝑛
(𝑧)

𝜕𝜙
𝑛

+1/2

(𝑧)

𝜕𝑧
𝑑𝑧 =

𝐿
𝑆
−1

∑

𝑖=−𝐿
𝑆

𝑎 (𝑖) 𝛿
𝑛+𝑖,𝑛
 , (8)

where 𝐿
𝑆
denotes the effective support size of the basis func-

tions. The coefficients 𝑎(𝑖) are called connection coefficients
and can be calculated by (9). Taking Daubechies’ scaling
functions as the basis functions, Table 1 shows 𝑎(𝑖) for 0 ≤

𝑖 ≤ 𝐿
𝑆
− 1, which are zeros for 𝑖 > 𝐿

𝑆
− 1, and for 𝑖 < 0 it can

be obtained by the symmetry relation 𝑎(−1 − 𝑖) = −𝑎(𝑖),

𝑎 (𝑖) =
1

𝜋
∫

∞

0


�̂� (𝜆)



2

𝜆 sin 𝜆 (𝑖 +
1

2
) 𝑑𝜆, (9)

where �̂�(𝜆) represents the Fourier transform of 𝜙(𝑧).
Daubechies’ scaling functions satisfy the shifted interpo-

lation property [19]

𝜙 (𝑖 + 𝑀
1
) = 𝛿
𝑖,0

(10)

for 𝑖 integer, where𝑀
1
= ∫
+∞

−∞
𝑧𝜙(𝑧)𝑑𝑧 is the first moment of

the scaling functions and the values of𝑀
1
are listed in Table 1.

Following the theory in [3] and making use of (10), (5) is
modified to

𝜙
𝑘
(𝑧) = 𝜙 (

𝑧

Δ𝑧
− 𝑘 + 𝑀

1
) . (11)
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Table 1: Connection coefficients 𝑎(𝑖) and the first-order moments
𝑀
1
of Daubechies’ scaling functions.

𝑖 𝐷
2

𝐷
3

𝐷
4

0 1.2291666667 1.2918129281 1.3110340773
1 −0.0937500000 −0.1371343465 −0.1560100110
2 0.0104166667 0.0287617728 0.0419957460
3 −0.0034701413 −0.0086543236
4 0.0000080265 0.0008308695
5 0.0000108999
6 0.0000000041
𝑀
1

0.6339743121 0.8174005815 1.0053923835
𝑞max 0.7500 0.6844 0.6585

In spite of the support of the scaling functions [20], single-
point sampling of the total voltages and currents can be
taken at integer points with negligible error. Taking voltage
at spatial point 𝑘Δ𝑧 and at time 𝑛Δ𝑡, we obtain

𝑉 (𝑘Δ𝑧, 𝑛Δ𝑡)

= ∬

+∞

−∞

𝑉 (𝑧, 𝑡) 𝛿 (
𝑧

Δ𝑧
− 𝑘) 𝛿 (

𝑡

Δ𝑡
− 𝑛) 𝑑𝑧 𝑑𝑡

= 𝑉
𝑛

𝑘
,

(12)

where 𝛿 is the Dirac delta function. Equation (12) means the
voltage value at each integer point is equal to the coefficient.
The current values have the same character at each half
integer point. Therefore, we will use 𝑉

𝑛

𝑘
and 𝐼
𝑛+1/2

𝑘+1/2
directly to

represent the voltage at the point (𝑘Δ𝑧, 𝑛Δ𝑡) and the current
at the point ((𝑘 + 1/2)Δ𝑧, (𝑛 + 1/2)Δ𝑡) in this paper.

The modified 𝜙
𝑘
(𝑧) in (11) also satisfy integrals (7) and

(8). Applying the Galerkin technique to (1a) and (1b), we can
obtain the following iterative equations for the voltages and
currents:

𝑉
𝑛+1

𝑘
= 𝑉
𝑛

𝑘
−

Δ𝑡

Δ𝑧
𝑐
−1

𝐿
𝑆
−1

∑

𝑖=0

𝑎 (𝑖) (𝐼
𝑛+1/2

𝑘+𝑖+1/2
− 𝐼
𝑛+1/2

𝑘−𝑖−1/2
) (13a)

𝐼
𝑛+1/2

𝑘+1/2
= 𝐼
𝑛−1/2

𝑘+1/2
−

Δ𝑡

Δ𝑧
𝑙
−1

𝐿
𝑆
−1

∑

𝑖=0

𝑎 (𝑖) (𝑉
𝑛

𝑘+𝑖+1
− 𝑉
𝑛

𝑘−𝑖
) . (13b)

2.2. Terminal Iterative Equations for Resistive Load in MRTD
Scheme. We will consider the terminal conditions for the
two-conductor lossless transmission lines equations in this
section. Equations (1a) and (1b) are homogeneous linear
equations; we need to add the terminal conditions to obtain
the unique solution.

Considering the two-conductor lines shown in Figure 2,
we assume the length of the total line is 𝐿 and the resistive
loads are 𝑅

𝑆
and 𝑅

𝐿
. The line is divided uniformly into

NDZ segments with the space interval Δ𝑧 and the total
solution time is divided into NDT steps with the uniform
time interval Δ𝑡. Similar to the conventional FDTD, we
will calculate the interlace voltages, 𝑉

𝑛

0
, 𝑉
𝑛

1
, . . . , 𝑉

𝑛

NDZ, and
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Figure 2: A two-conductor line in time-domain.

and time-domain as shown in (13a) and (13b), for 𝑛 =

1, 2, . . . ,NDT.
For the resistive terminations, we note the voltage at the

source (𝑧 = 0) as 𝑉
𝑆
(𝑡) and the current at the source as 𝐼

𝑆
(𝑡),

the external voltage at the load (𝑧 = 𝐿) as 𝑉
𝐿
(𝑡), and the

current at the load as 𝐼
𝐿
(𝑡). The discrete voltages and currents

at the source are denoted as 𝑉𝑛
𝑆

≡ 𝑉
𝑆
(𝑛Δ𝑡) and 𝐼

𝑛

𝑆
≡ 𝐼
𝑆
(𝑛Δ𝑡),

and the discrete voltages and currents at the load are denoted
as 𝑉
𝑛

𝐿
≡ 𝑉
𝐿
(𝑛Δ𝑡), and 𝐼

𝑛

𝐿
≡ 𝐼
𝐿
(𝑛Δ𝑡), then the terminal

characterizations could be written in terms of a generalized
Thevenin equivalent as

𝑉
𝑛

0
= 𝑉
𝑛

𝑆
− 𝑅
𝑆
𝐼
𝑛

𝑆
(14a)

𝑉
𝑛

NDZ = 𝑉
𝑛

𝐿
+ 𝑅
𝐿
𝐼
𝑛

𝐿
. (14b)

Equations (14a) and (14b) denote the discretization terminal
conditions for the case of resistive terminations, so we need
to introduce these conditions to the iterative equations (13a)
and (13b) to obtain the numerical solution.

Notice that, in the iterative equations (13a) and (13b), not
only the iterative equations of the terminal voltages𝑉𝑛+1

0
and

𝑉
𝑛+1

NDZ should be derived and the iterative equations of voltages
and currents “near” the terminals also need to be updated.
The voltages and currents “near” the terminals we mean are
the voltages 𝑉

𝑛+1

𝑖
and 𝑉

𝑛

NDZ−𝑖 for 𝑖 = 1, 2, . . . , 𝐿
𝑆
− 1,and

the currents 𝐼
𝑛+1/2

𝑖+1/2
and 𝐼

𝑛+1/2

NDZ−𝑖+1/2 for 𝑖 = 0, 1, . . . , 𝐿
𝑆
− 2.

All of these voltages and currents contain some terms that
exceed the index range in iterative equations (13a) and (13b).
Figure 3 shows the discretization of the terminal voltages and
the voltages and currents near the terminal.

We will derive the MRTD scheme at the terminal firstly.
For updating the iterative equations for the terminal voltages,
we need to decompose iterative equations ((13a), (13b)). Since
the coefficients 𝑎(𝑖) satisfy the following relation [4]

𝐿
𝑆
−1

∑

𝑖=0

(2𝑖 + 1) 𝑎 (𝑖) = 1 (15)

substituting (15) into (13a), we can obtain
𝐿
𝑆
−1

∑

𝑖=0

𝑎 (𝑖) (2𝑖 + 1)𝑉
𝑛+1

𝑘
=

𝐿
𝑆
−1

∑

𝑖=0

𝑎 (𝑖) (2𝑖 + 1)𝑉
𝑛

𝑘

−

𝐿
𝑆
−1

∑

𝑖=0

Δ𝑡

(2𝑖 + 1) Δ𝑧
𝑐
−1

[𝑎 (𝑖) (2𝑖 + 1)

⋅ (𝐼
𝑛+1/2

𝑘+𝑖+1/2
− 𝐼
𝑛+1/2

𝑘−𝑖−1/2
)] .

(16)



4 Mathematical Problems in Engineering

I−1/2 V0 I1/2 V1

−
Δz

2

Δz

2

+

−

+

−

z = 0 Δz

VNDZ−1 INDZ−1/2 VNDZ INDZ+1/2

IL

(NDZ − 1)Δz NDZΔz z

(NDZ −
1
2
)Δz (NDZ +

1
2
)Δz

IS

Figure 3: Discretizing the terminal voltages and currents.

Considering the corresponding terms with 𝑖, we can
decompose (13a) as [21]

𝑎 (𝑖) (2𝑖 + 1)𝑉
𝑛+1

𝑘

= 𝑎 (𝑖) (2𝑖 + 1) 𝑉
𝑛

𝑘

− 𝑎 (𝑖) (2𝑖 + 1)
Δ𝑡

(2𝑖 + 1) Δ𝑧
𝑐
−1

(𝐼
𝑛+1/2

𝑘+𝑖+1/2
− 𝐼
𝑛+1/2

𝑘−𝑖−1/2
)

(17)

for 𝑖 = 0, 1, . . . , 𝐿
𝑆

− 1. Equation (13b) could make the
analogous decomposition.We could view theMRTD scheme
for two-conductor transmission lines as the weighted mean
of the conventional FDTDmethod with spatial discretization
step (2𝑖 + 1)Δ𝑧 for 𝑖 = 0, 1, . . . , 𝐿

𝑆
− 1, and the weighting

coefficient for each term is (2𝑖+1)𝑎(𝑖). Besides, for theMRTD
scheme whose coefficients 𝑎(𝑖) satisfy relationship (15), the
analogous decomposition could be made. This relationship
between the MRTD scheme and the conventional FDTD
method is useful for us to update the iterative equations.

Taking 𝑉
𝑛+1

0
as an example to derive the iterative equa-

tions at the terminal,

𝑉
𝑛+1

0
= 𝑉
𝑛

0
−

Δ𝑡

Δ𝑧
𝑐
−1

𝐿
𝑆
−1

∑

𝑖=0

𝑎 (𝑖) (𝐼
𝑛+1/2

𝑖+1/2
− 𝐼
𝑛+1/2

−𝑖−1/2
) . (18)

Following steps of (16) and (17), we can decompose (18)
as

𝑎 (0) 𝑉
𝑛+1

0
= 𝑎 (0) 𝑉

𝑛

0
− 𝑎 (0)

Δ𝑡

Δ𝑧
𝑐
−1

(𝐼
𝑛+1/2

1/2
− 𝐼
𝑛+1/2

−1/2
) (19a)

3𝑎 (1) 𝑉
𝑛+1

0
= 3𝑎 (1) 𝑉

𝑛

0
− 3𝑎 (1)

Δ𝑡

3Δ𝑧
𝑐
−1

(𝐼
𝑛+1/2

3/2
− 𝐼
𝑛+1/2

−3/2
) (19b)

.

.

.

(2𝐿
𝑆
− 1) 𝑎 (𝐿

𝑆
− 1)𝑉

𝑛+1

0
= (2𝐿

𝑆
− 1) 𝑎 (𝐿

𝑆
− 1)𝑉

𝑛

0

− (2𝐿
𝑆
− 1) 𝑎 (𝐿

𝑆
− 1)

Δ𝑡

(2𝐿
𝑆
− 1) Δ𝑧

⋅ 𝑐
−1

(𝐼
𝑛+1/2

𝐿
𝑆
−1/2

− 𝐼
𝑛+1/2

−𝐿
𝑆
+1/2

) .

(19c)

Here, we could view each equation in (19a), (19b), and
(19c) as a central difference scheme, (19a) is the central
difference scheme related to points 𝑧 = −Δ𝑧/2 and 𝑧 =

Δ𝑧/2, (19b) is the central difference scheme related to points
𝑧 = −3Δ𝑧/2 and 𝑧 = 3Δ𝑧/2, and so on, but the terms
𝐼
𝑛+1/2

−1/2
, 𝐼
𝑛+1/2

−3/2
, . . . , 𝐼

𝑛+1/2

−𝐿
𝑆
+1/2

, whose subscripts exceed the index
range, make (19a), (19b), and (19c) out of work. So we need
to make some update for the iterative equations. Using the
forward difference scheme to replace the central difference
scheme, we change the difference points in (19a) to become
𝑧 = 0 and 𝑧 = Δ𝑧/2 and change the difference points in
(19b) to become 𝑧 = 0 and 𝑧 = 3Δ𝑧/2; the others follow
the same step. Keeping the weighting coefficient unchanged
in each equation, we can obtain

𝑎 (0) 𝑉
𝑛+1

0
= 𝑎 (0) 𝑉

𝑛

0
− 𝑎 (0)

Δ𝑡

Δ𝑧/2
𝑐
−1

(𝐼
𝑛+1/2

1/2
− 𝐼
𝑛+1/2

𝑆
) (20a)

3𝑎 (1) 𝑉
𝑛+1

0
= 3𝑎 (1) 𝑉

𝑛

0
− 3𝑎 (1)

Δ𝑡

(3Δ𝑧) /2
𝑐
−1

(𝐼
𝑛+1/2

3/2
− 𝐼
𝑛+1/2

𝑆
) (20b)

.

.

.

(2𝐿
𝑆
− 1) 𝑎 (𝐿

𝑆
− 1)𝑉

𝑛+1

0
= (2𝐿

𝑆
− 1) 𝑎 (𝐿

𝑆
− 1)𝑉

𝑛

0

− (2𝐿
𝑆
− 1) 𝑎 (𝐿

𝑆
− 1)

Δ𝑡

(2𝐿
𝑆
− 1) Δ𝑧/2

⋅ 𝑐
−1

(𝐼
𝑛+1/2

𝐿
𝑆
−1/2

− 𝐼
𝑛+1/2

𝑆
) ,

(20c)

where the terminal current 𝐼𝑛+1/2
𝑆

= (𝐼
𝑛

𝑆
+ 𝐼
𝑛+1

𝑆
)/2 and 𝐼

𝑛

𝑆
can

be derived from (14a)

𝐼
𝑛

𝑆
=

(𝑉
𝑛

𝑆
− 𝑉
𝑛

0
)

𝑅
𝑆

. (21)

Summing up all the equations in (20a), (20b), and (20c),

𝑉
𝑛+1

0
= 𝑉
𝑛

0
−

Δ𝑡

Δ𝑧
𝑐
−1

𝐿
𝑆
−1

∑

𝑖=0

2𝑎 (𝑖) (𝐼
𝑛+1/2

𝑖+1/2
− 𝐼
𝑛+1/2

𝑆
) . (22)
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Substituting (21) into (22), we can obtain the iterative
equation at the source

𝑉
𝑛+1

0
= (

𝐿
𝑆
−1

∑

𝑖=0

𝑎 (𝑖) +
Δ𝑧

Δ𝑡
𝑐𝑅
𝑆
)

−1

⋅ [(
Δ𝑧

Δ𝑡
𝑐𝑅
𝑆
−

𝐿
𝑆
−1

∑

𝑖=0

𝑎 (𝑖))𝑉
𝑛

0
− 2𝑅
𝑆

𝐿
𝑆
−1

∑

𝑖=0

𝑎 (𝑖) 𝐼
𝑛+1/2

𝑖+1/2

+

𝐿
𝑆
−1

∑

𝑖=0

𝑎 (𝑖) (𝑉
𝑛+1

𝑆
+ 𝑉
𝑛

𝑆
)] .

(23)

With the same steps, we can obtain the iterative equation
at the load

𝑉
𝑛+1

NDZ = (

𝐿
𝑆
−1

∑

𝑖=0

𝑎 (𝑖) +
Δ𝑧

Δ𝑡
𝑐𝑅
𝐿
)

−1

⋅ [(
Δ𝑧

Δ𝑡
𝑐𝑅
𝐿
−

𝐿
𝑆
−1

∑

𝑖=0

𝑎 (𝑖))𝑉
𝑛

NDZ

+ 2𝑅
𝐿

𝐿
𝑆
−1

∑

𝑖=0

𝑎 (𝑖) 𝐼
𝑛+1/2

NDZ−𝑖+1/2 +

𝐿
𝑆
−1

∑

𝑖=0

𝑎 (𝑖) (𝑉
𝑛+1

𝐿
+ 𝑉
𝑛

𝐿
)] .

(24)

After deriving the iterative equations at the terminal, we
will put forward a truncation method to update iterative
equations which contain some terms whose indices exceed
the index range in the MRTD scheme.

Taking 𝑉
𝑛+1

𝑘
as an example, for 𝑘 = 1, 2, . . . , 𝐿

𝑆
− 1,

decomposing (13a),

𝑎 (0) 𝑉
𝑛+1

𝑘
= 𝑎 (0) 𝑉

𝑛

𝑘
− 𝑎 (0)

Δ𝑡

Δ𝑧
𝑐
−1

(𝐼
𝑛+1/2

𝑘+1/2
− 𝐼
𝑛+1/2

𝑘−1/2
) (25a)

3𝑎 (1) 𝑉
𝑛+1

𝑘
= 3𝑎 (1) 𝑉

𝑛

𝑘
− 3𝑎 (1)

Δ𝑡

3Δ𝑧
𝑐
−1

(𝐼
𝑛+1/2

𝑘+3/2
− 𝐼
𝑛+1/2

𝑘−3/2
) (25b)

.

.

.

(2𝑘 − 1) 𝑎 (𝑘 − 1)𝑉
𝑛+1

𝑘−1
= (2𝑘 − 1) 𝑎 (𝑘 − 1)𝑉

𝑛

𝑘−1

− (2𝑘 − 1) 𝑎 (𝑘 − 1)
Δ𝑡

(2𝑘 − 1) Δ𝑧
𝑐
−1

(𝐼
𝑛+1/2

2𝑘−1/2
− 𝐼
𝑛+1/2

1/2
)

(25c)

(2𝑘 + 1) 𝑎 (𝑘) 𝑉
𝑛+1

𝑘
= (2𝑘 + 1) 𝑎 (𝑘) 𝑉

𝑛

𝑘
− (2𝑘 + 1) 𝑎 (𝑘)

⋅
Δ𝑡

(2𝑘 + 1) Δ𝑧
𝑐
−1

(𝐼
𝑛+1/2

2𝑘+1/2
− 𝐼
𝑛+1/2

−1/2
)

(25d)

.

.

.

(2𝐿
𝑆
− 1) 𝑎 (𝐿

𝑆
− 1)𝑉

𝑛+1

𝐿
𝑆
−1

= (2𝐿
𝑆
− 1) 𝑎 (𝐿

𝑆
− 1)𝑉

𝑛

𝐿
𝑆
−1

− (2𝐿
𝑆
− 1) 𝑎 (𝐿

𝑆
− 1)

Δ𝑡

(2𝐿
𝑆
− 1) Δ𝑧

⋅ 𝑐
−1

(𝐼
𝑛+1/2

𝑘+𝐿
𝑆
−3/2

− 𝐼
𝑛+1/2

𝑘−𝐿
𝑆
+1/2

) .

(25e)

Noticing the first 𝑘 terms in (25a), (25b), (25c), (25d),
and (25e), there is no term exceeding the index range in

each equation. Meanwhile, the equations which contain the
exceeding indices terms are all appearing in the rest of 𝐿

𝑆
− 𝑘

terms. As mentioned before, we can view the MRTD scheme
as the weightedmean of the conventional FDTDmethod, but
(25a), (25b), (25c), (25d), and (25e) show that the last 𝐿

𝑆
− 𝑘

equations are unavailable for forming the iterative equations
inMRTD scheme. To solve this problem, wemake truncation
here. We update the iterative equation of 𝑉𝑛+1

𝑘
by using the

summation of the first 𝑘 terms in (25a), (25b), (25c), (25d),
and (25e) that means we use the weighted mean of the first 𝑘
to approximate the summation of all the 𝐿

𝑆
terms.

Summing up the first 𝑘 terms in (25a), (25b), (25c), (25d),
and (25e), we can obtain the modified iterative equations

𝑉
𝑛+1

𝑘
= 𝑉
𝑛

𝑘
− (

𝑘−1

∑

𝑖=0

(2𝑖 + 1) 𝑎 (𝑖))

−1

Δ𝑡

Δ𝑧

⋅ 𝑐
−1

𝑘−1

∑

𝑖=0

𝑎 (𝑖) (𝐼
𝑛+1/2

𝑘+𝑖+1/2
− 𝐼
𝑛+1/2

𝑘−𝑖−1/2
)

(26)

for 𝑘 = 1, 2, . . . , 𝐿
𝑆
− 1.

Using the same method, we can obtain the modified
iterative equations near the load

𝑉
𝑛+1

𝑘
= 𝑉
𝑛

𝑘
− (

NDZ−𝑘−1
∑

𝑖=0

(2𝑖 + 1) 𝑎 (𝑖))

−1

Δ𝑡

Δ𝑧

⋅ 𝑐
−1

NDZ−𝑘−1
∑

𝑖=0

𝑎 (𝑖) (𝐼
𝑛+1/2

𝑘+𝑖+1/2
− 𝐼
𝑛+1/2

𝑘−𝑖−1/2
)

(27)

for 𝑘 = NDZ − 𝐿
𝑆
+ 1,NDZ − 𝐿

𝑆
+ 2, . . . ,NDZ − 1.

The voltages at the interior points are determined from
(13a)

𝑉
𝑛+1

𝑘
= 𝑉
𝑛

𝑘
−

Δ𝑡

Δ𝑧
𝑐
−1

𝐿
𝑆
−1

∑

𝑖=0

𝑎 (𝑖) (𝐼
𝑛+1/2

𝑘+𝑖+1/2
− 𝐼
𝑛+1/2

𝑘−𝑖−1/2
) (28)

for 𝑘 = 𝐿
𝑆
, 𝐿
𝑆
+ 1, . . . ,NDZ − 𝐿

𝑆
.

For the iterative equation of the current, there is a little
difference from the voltage’s. As shown in Figure 3, the
interlace currents appear at the half integer points which
means all the currents are located at the interior points. So
we only need to modify the currents near the terminals.
Following the same steps of the derivation of voltages iterative
equations near the terminal, we could obtain the current
iterative equations near the terminals.

For the current iterative equations near the source

𝐼
𝑛+1/2

𝑘+1/2
= 𝐼
𝑛−1/2

𝑘+1/2
− (

𝑘

∑

𝑖=0

(2𝑖 + 1) 𝑎 (𝑖))

−1

Δ𝑡

Δ𝑧

⋅ 𝑙
−1

𝑘

∑

𝑖=0

𝑎 (𝑖) (𝑉
𝑛

𝑘+𝑖+1
− 𝑉
𝑛

𝑘−𝑖
)

(29)

for 𝑘 = 0, 1, . . . , 𝐿
𝑆
− 2.
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Figure 4: A two-conductor line with an inductive resistance.

For the current iterative equations near the load

𝐼
𝑛+1/2

𝑘+1/2
= 𝐼
𝑛−1/2

𝑘+1/2
− (

NDZ−𝑘−1
∑

𝑖=0

(2𝑖 + 1) 𝑎 (𝑖))

−1

Δ𝑡

Δ𝑧

⋅ 𝑙
−1

NDZ−𝑘−1
∑

𝑖=0

𝑎 (𝑖) (𝑉
𝑛

𝑘+𝑖+1
− 𝑉
𝑛

𝑘−𝑖
)

(30)

for 𝑘 = NDZ − 𝐿
𝑆
+ 1,NDZ − 𝐿

𝑆
+ 2, . . . ,NDZ − 1.

The currents at the interior points are determined from
(13b)

𝐼
𝑛+1/2

𝑘+1/2
= 𝐼
𝑛−1/2

𝑘+1/2
−

Δ𝑡

Δ𝑧
𝑙
−1

𝐿
𝑆
−1

∑

𝑖=0

𝑎 (𝑖) (𝑉
𝑛

𝑘+𝑖+1
− 𝑉
𝑛

𝑘−𝑖
) (31)

for 𝑘 = 𝐿
𝑆
− 1, 𝐿

𝑆
, . . . ,NDZ − 𝐿

𝑆
.

2.3. Terminal Iterative Equations for Inductive Resistance in
MRTD Scheme. Since we have discussed the resistive load
in Section 2.2, we will consider a more complicated terminal
load which consisted of a resistance and inductance shown
in Figure 4. The resistance and the inductance at the load are
noted as 𝑅

𝐿
and 𝐿

𝐿
, respectively.

Keeping the source as a resistive terminal and changing
the load including inductance, we note the voltage at the
source (𝑧 = 0) as 𝑉

𝑆
(𝑡) and the current at the source as 𝐼

𝑆
(𝑡),

the external voltage at the load (𝑧 = 𝐿) as 𝑉
𝐿
(𝑡), and the

current at the load as 𝐼
𝐿
(𝑡). The terminal conditions could be

written as follows:

𝑉
0
(𝑡) = 𝑉

𝑆
(𝑡) − 𝑅

𝑆
𝐼
𝑆
(𝑡) (32a)

𝑉NDZ (𝑡) = 𝑉
𝐿
(𝑡) + 𝑅

𝐿
𝐼
𝐿
(𝑡) + 𝐿

𝐿

𝑑𝐼
𝐿
(𝑡)

𝑑𝑡
. (32b)

Expanding 𝑉
0
(𝑡), 𝐼
0
(𝑡), 𝑉
𝐿
(𝑡), and 𝐼

𝐿
(𝑡) as (2a) and (2b)

and sampling them at the time discreting point (𝑛 + 1/2)Δ𝑡,
the terminal conditions become

𝑉
𝑛+1

0
+ 𝑉
𝑛

0

2
=

𝑉
𝑛+1

𝑆
+ 𝑉
𝑛

𝑆

2
− 𝑅
𝑆
𝐼
𝑛+1/2

𝑆

(33a)

𝑉
𝑛+1

NDZ + 𝑉
𝑛

NDZ
2

=
𝑉
𝑛+1

𝐿
+ 𝑉
𝑛

𝐿

2
+ 𝑅
𝐿
𝐼
𝑛+1/2

𝐿

+
𝐿
𝐿

2Δ𝑡
(𝐼
𝑛+3/2

𝐿
− 𝐼
𝑛−1/2

𝐿
) .

(33b)

It could be seen from Section 2.2 that the change of
the terminal condition only affects the iterative equations
at the terminals, so we just need to consider two iterative
equations. Since we keep the source as a resistive termination,
the iterative equation at the source should be the same as (23).
Actually, if we substitute (33a) into (22), we could obtain (23).
So the only iterative equation we should derive is located at
the load. If we set 𝐿

𝐿
= 0 in (33b), the terminal condition at

the load will have the analogous form with the source, which
means the load with a resistance and inductance degenerates
to be a resistance. For those 𝐿

𝐿
̸= 0, transforming (33b) as

𝐼
𝑛+3/2

𝐿
= 𝐼
𝑛−1/2

𝐿
+

Δ𝑡

𝐿
𝐿

((𝑉
𝑛+1

NDZ + 𝑉
𝑛

NDZ) − (𝑉
𝑛+1

𝐿
+ 𝑉
𝑛

𝐿
)

− 2𝑅
𝐿
𝐼
𝑛+1/2

𝐿
) .

(34)

Following the steps we get the iterative equation of 𝑉𝑛+1
0

in Section 2.2; we can obtain the iterative equation at the load

𝑉
𝑛+1

NDZ = 𝑉
𝑛

NDZ

−
Δ𝑡

Δ𝑧
𝑐
−1

𝐿
𝑆
−1

∑

𝑖=0

2𝑎 (𝑖) (𝐼
𝑛+1/2

NDZ−𝑖+1/2 − 𝐼
𝑛+1/2

𝐿
) ,

(35)

where

𝐼
𝑛+1/2

𝐿
= 𝐼
𝑛−3/2

𝐿
+

Δ𝑡

𝐿
𝐿

((𝑉
𝑛

NDZ + 𝑉
𝑛−1

NDZ) − (𝑉
𝑛

𝐿
+ 𝑉
𝑛−1

𝐿
)

− 2𝑅
𝐿
𝐼
𝑛−1/2

𝐿
)

(36)

for 𝑛 = 2, 3, . . . ,NDT.

2.4. Stability Analysis. For the purpose of stability analysis,
(13a) and (13b) can be rewritten as

𝑉
𝑛+1

𝑘
− 𝑉
𝑛

𝑘

Δ𝑡
= −

1

𝑐Δ𝑧

𝐿
𝑆
−1

∑

𝑖=0

𝑎 (𝑖) (𝐼
𝑛+1/2

𝑘+𝑖+1/2
− 𝐼
𝑛+1/2

𝑘−𝑖−1/2
) (37a)

𝐼
𝑛+1/2

𝑘+1/2
− 𝐼
𝑛−1/2

𝑘+1/2

Δ𝑡
= −

1

𝑙Δ𝑧

𝐿
𝑆
−1

∑

𝑖=0

𝑎 (𝑖) (𝑉
𝑛

𝑘+𝑖+1
− 𝑉
𝑛

𝑘−𝑖
) . (37b)

Following the procedures in [22], the finite-difference
approximations of the timederivations on the left side of (37a)
and (37b) can be written as an eigenvalue problem

𝑉
𝑛+1

𝑘
− 𝑉
𝑛

𝑘

Δ𝑡
= 𝜆𝑉
𝑛+1/2

𝑘

(38a)

𝐼
𝑛+1/2

𝑘+1/2
− 𝐼
𝑛−1/2

𝑘+1/2

Δ𝑡
= 𝜆𝐼
𝑛

𝑘+1/2
.

(38b)

In order to avoid instability during normal time stepping,
the imaginary part of 𝜆 must satisfy

|Im (𝜆)| ≤
2

Δ𝑡
. (39)
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Figure 5: Phase error (in degrees) for different MRTD schemes. The Courant numbers are 𝑞 = 0.5 for (a) and 𝑞 = 0.1 for (b).

As we consider the lossless two-conductor transmission
lines in (1a) and (1b), the transient values of voltages and
currents distributed in space can be Fourier transformedwith
respect to 𝑘-coordinates to provide a spectrum of sinusoidal
modes. Assuming an eigenmode of the spectral domain with
𝑘
𝑧
, the voltages and currents can be written as

𝑉
𝐾

= 𝑉
𝑧
0

exp [−𝑗 (𝑘
𝑧
𝐾Δ𝑧)] (40a)

𝐼
𝐾+1/2

= 𝐼
𝑧
0

exp [−𝑗 (𝑘
𝑧
(𝐾 +

1

2
)Δ𝑧)] , (40b)

where 𝑉
𝐾
represents the voltage at point 𝐾Δ𝑧, 𝐼

𝐾+1/2
repre-

sents the current at point (𝐾+1/2)Δ𝑧, and 𝑉
𝑧
0

and 𝐼
𝑧
0

are the
amplitudes of the voltages and currents.

Substituting (40a) and (40b) into (38a) and (38b) and
(37a) and (37b), we obtain

𝜆
2

= −
4

𝑙𝑐Δ𝑧2
[

𝐿
𝑆
−1

∑

𝑖=0

𝑎 (𝑖) sin(𝑘
𝑧
(𝑖 +

1

2
)Δ𝑧)]

2

. (41)

In (41), 𝜆 is pure imaginary and

|Im (𝜆)| ≤
2V
Δ𝑧

𝐿
𝑆
−1

∑

𝑖=0

|𝑎 (𝑖)| , (42)

where V = 1/√𝑙𝑐 is the velocity of the wave along with the
lines.

Numerical stability is maintained for every spatial mode
only when the range of eigenvalues given by (42) is contained
entirely within the stable range of time-difference eigenvalues
given by (39). Since both ranges are symmetrical around zero,
it is adequate to set the upper bound of (42) to be smaller or
equal to (39); we can obtain the stability condition

VΔ𝑡

Δ𝑧
≤

1

∑
𝐿
𝑆
−1

𝑖=0
|𝑎 (𝑖)|

. (43)

Noting the Courant number

𝑞 =
VΔ𝑡

Δ𝑧
(44)

the maximum values of 𝑞 required by a stable algorithm,
which are listed in Table 1 as 𝑞max, can be calculated from the
connection coefficients.

2.5. Dispersion Analysis. To calculate the numerical disper-
sion, substituting a time harmonic trial solution into (37a)
and (37b), we can obtain

1

VΔ𝑡
sin(

𝜔Δ𝑡

2
) =

1

Δ𝑧

𝐿
𝑆
−1

∑

𝑖=0

𝑎 (𝑖) sin(𝑘
𝑧
(𝑖 +

1

2
)Δ𝑧) , (45)

where𝜔 is thewave angular frequency and 𝑘
𝑧
is the numerical

wave number.
Using the number of cells per wavelength 𝑛

𝑙
= 𝜆REAL/Δ𝑧

and the wave number 𝑘
𝑧

= (2𝜋)/𝜆NUM, we obtain the
dispersion relationship

1

𝑞
sin

𝜋𝑞

𝑛
𝑙

=

𝐿
𝑆
−1

∑

𝑖=0

𝑎 (𝑖) sin [(2𝑖 + 1)
𝜋𝑢

𝑛
𝑙

] , (46)

where 𝑢 = 𝜆REAL/𝜆NUM is the ratio between the theoretical
and numerical wavelength.

The value of 𝑢 could be computed by Newton iterative
method and using the formula |(𝑢 − 1) × 360| calculates the
phase error in degrees. Figure 5 shows the phase errors of
different MRTD schemes versus the samples per wavelength.
Compared with the conventional FDTD method at the
same sampling numbers, the MRTD schemes show better
numerical dispersion properties than FDTD method, which
means the discretization error of the MRTD schemes is
smaller than the FDTD method.



8 Mathematical Problems in Engineering

3. MRTD Scheme for Two-Conductor Lossy
Transmission Lines

In this section, we will extend the MRTD scheme to the two-
conductor lossy transmission lines.

3.1. MRTD Formulation. For the lossy case, the two-
conductor transmission line equations become

𝜕𝑉 (𝑧, 𝑡)

𝜕𝑧
+ 𝑟𝐼 (𝑧, 𝑡) + 𝑙

𝜕𝐼 (𝑧, 𝑡)

𝜕𝑡
= 0 (47a)

𝜕𝐼 (𝑧, 𝑡)

𝜕𝑧
+ 𝑔𝑉 (𝑧, 𝑡) + 𝑐

𝜕𝑉 (𝑧, 𝑡)

𝜕𝑡
= 0, (47b)

where 𝑟, 𝑙, 𝑔, and 𝑐 are the per-unit-length resistance, induc-
tance, conductance, and capacitance, respectively.

Compared to the lossless transmission lines, the lossy
case must consider the resistance losses along the lines and
the losses in the medium. However, the steps to obtain the
MRTD scheme are the same. Similar to the lossless case,
we firstly extend the voltage and current with Daubechies’
scaling functions and the rectangular function and use 𝑉

𝑛

𝑘

and 𝐼
𝑛+1/2

𝑘+1/2
representing the voltage at the point (𝑘Δ𝑧, 𝑛Δ𝑡) and

the current at the point ((𝑘+1/2)Δ𝑧, (𝑛+1/2)Δ𝑡), respectively,
and Δ𝑧 and Δ𝑡 represent the spatial and temporal discretiza-
tion intervals. By applying the Galerkin technique, we can
obtain the iterative equations for the lossy transmission lines
equations

𝑉
𝑛+1

𝑘
= 𝑃
1
𝑉
𝑛

𝑘

− 𝑃
2

Δ𝑡

Δ𝑧
𝑐
−1

𝐿
𝑆
−1

∑

𝑖=0

𝑎 (𝑖) (𝐼
𝑛+1/2

𝑘+𝑖+1/2
− 𝐼
𝑛+1/2

𝑘−𝑖−1/2
)

(48a)

𝐼
𝑛+1/2

𝑘+1/2
= 𝑄
1
𝐼
𝑛−1/2

𝑘+1/2

− 𝑄
2

Δ𝑡

Δ𝑧
𝑙
−1

𝐿
𝑆
−1

∑

𝑖=0

𝑎 (𝑖) (𝑉
𝑛

𝑘+𝑖+1
− 𝑉
𝑛

𝑘−𝑖
) ,

(48b)

where 𝑎(𝑖) is the connection coefficient and 𝑃
1
, 𝑃
2
, 𝑄
1
, and

𝑄
2
are constants

𝑃
1
= (1 +

Δ𝑡

2
𝑔𝑐
−1

)

−1

(1 −
Δ𝑡

2
𝑔𝑐
−1

) (49a)

𝑃
2
= (1 +

Δ𝑡

2
𝑔𝑐
−1

)

−1

(49b)

𝑄
1
= (1 +

Δ𝑡

2
𝑟𝑙
−1

)

−1

(1 −
Δ𝑡

2
𝑟𝑙
−1

) (50a)

𝑄
2
= (1 +

Δ𝑡

2
𝑟𝑙
−1

)

−1

. (50b)

The differences between (48a) and (48b) and (13a) and
(13b) are the coefficients of terms in the iterative equations
that are caused by the unit-per-length resistance 𝑟 and
inductance 𝑔. If we set 𝑟 = 0 and 𝑔 = 0, the coefficients 𝑃

1
,

𝑃
2
and 𝑄

1
, 𝑄
2
are all equal to 1, and the iterative equations

(48a) and (48b) will degenerate to iterative equations (13a)
and (13b).

For the lossy case, we should also modify the iterative
equations at the terminal and near the terminal of the lines.
Considering the two-conductor lines shown in Figure 2, we
assume the length of the total line is 𝐿 and the resistive
loads are 𝑅

𝑆
and 𝑅

𝐿
. The line is divided uniformly into NDZ

segments with the space interval Δ𝑧 and the total solution
time is divided intoNDT steps with the uniform time interval
Δ𝑡. Following the same steps in Section 2.2, we could obtain
the modified iterative equations.

For the voltage iterative equation at the source

𝑉
𝑛+1

0
= (𝑃
2

𝐿
𝑆
−1

∑

𝑖=0

𝑎 (𝑖) +
Δ𝑧

Δ𝑡
𝑐𝑅
𝑆
)

−1

⋅ [(𝑃
1

Δ𝑧

Δ𝑡
𝑐𝑅
𝑆
− 𝑃
2

𝐿
𝑆
−1

∑

𝑖=0

𝑎 (𝑖))𝑉
𝑛

0

− 2𝑃
2
𝑅
𝑆

𝐿
𝑆
−1

∑

𝑖=0

𝑎 (𝑖) 𝐼
𝑛+1/2

𝑖+1/2
+ 𝑃
2

𝐿
𝑆
−1

∑

𝑖=0

𝑎 (𝑖) (𝑉
𝑛+1

𝑆
+ 𝑉
𝑛

𝑆
)] .

(51)

For the voltage iterative equation at the load

𝑉
𝑛+1

NDZ = (𝑃
2

𝐿
𝑆
−1

∑

𝑖=0

𝑎 (𝑖) +
Δ𝑧

Δ𝑡
𝑐𝑅
𝐿
)

−1

⋅ [(𝑃
1

Δ𝑧

Δ𝑡
𝑐𝑅
𝐿
− 𝑃
2

𝐿
𝑆
−1

∑

𝑖=0

𝑎 (𝑖))𝑉
𝑛

NDZ

+ 2𝑃
2
𝑅
𝐿

𝐿
𝑆
−1

∑

𝑖=0

𝑎 (𝑖) 𝐼
𝑛+1/2

NDZ−𝑖+1/2

+ 𝑃
2

𝐿
𝑆
−1

∑

𝑖=0

𝑎 (𝑖) (𝑉
𝑛+1

𝐿
+ 𝑉
𝑛

𝐿
)] .

(52)

For the voltage iterative equations near the source

𝑉
𝑛+1

𝑘
= 𝑃
1
𝑉
𝑛

𝑘
− 𝑃
2
(

𝑘−1

∑

𝑖=0

(2𝑖 + 1) 𝑎 (𝑖))

−1

Δ𝑡

Δ𝑧

⋅ 𝑐
−1

𝑘−1

∑

𝑖=0

𝑎 (𝑖) (𝐼
𝑛+1/2

𝑘+𝑖+1/2
− 𝐼
𝑛+1/2

𝑘−𝑖−1/2
)

(53)

for 𝑘 = 1, 2, . . . , 𝐿
𝑆
− 1.

For the voltage iterative equations near the load

𝑉
𝑛+1

𝑘
= 𝑃
1
𝑉
𝑛

𝑘
− 𝑃
2
(

NDZ−𝑘−1
∑

𝑖=0

(2𝑖 + 1) 𝑎 (𝑖))

−1

Δ𝑡

Δ𝑧

⋅ 𝑐
−1

NDZ−𝑘−1
∑

𝑖=0

𝑎 (𝑖) (𝐼
𝑛+1/2

𝑘+𝑖+1/2
− 𝐼
𝑛+1/2

𝑘−𝑖−1/2
)

(54)

for 𝑘 = NDZ − 𝐿
𝑆
+ 1,NDZ − 𝐿

𝑆
+ 2, . . . ,NDZ − 1.
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The voltages at the interior points are determined from
(48a)

𝑉
𝑛+1

𝑘
= 𝑃
1
𝑉
𝑛

𝑘
− 𝑃
2

Δ𝑡

Δ𝑧
𝑐
−1

𝐿
𝑆
−1

∑

𝑖=0

𝑎 (𝑖) (𝐼
𝑛+1/2

𝑘+𝑖+1/2
− 𝐼
𝑛+1/2

𝑘−𝑖−1/2
) (55)

for 𝑘 = 𝐿
𝑆
, 𝐿
𝑆
+ 1, . . . ,NDZ − 𝐿

𝑆
.

For the current iterative equations near the source

𝐼
𝑛+1/2

𝑘+1/2
= 𝑄
1
𝐼
𝑛−1/2

𝑘+1/2
− 𝑄
2
(

𝑘

∑

𝑖=0

(2𝑖 + 1) 𝑎 (𝑖))

−1

Δ𝑡

Δ𝑧

⋅ 𝑙
−1

𝑘

∑

𝑖=0

𝑎 (𝑖) (𝑉
𝑛

𝑘+𝑖+1
− 𝑉
𝑛

𝑘−𝑖
)

(56)

for 𝑘 = 0, 1, . . . , 𝐿
𝑆
− 2.

For the current iterative equations near the load

𝐼
𝑛+1/2

𝑘+1/2
= 𝑄
1
𝐼
𝑛−1/2

𝑘+1/2
− 𝑄
2
(

NDZ−𝑘−1
∑

𝑖=0

(2𝑖 + 1) 𝑎 (𝑖))

−1

Δ𝑡

Δ𝑧

⋅ 𝑙
−1

NDZ−𝑘−1
∑

𝑖=0

𝑎 (𝑖) (𝑉
𝑛

𝑘+𝑖+1
− 𝑉
𝑛

𝑘−𝑖
)

(57)

for 𝑘 = NDZ − 𝐿
𝑆
+ 1,NDZ − 𝐿

𝑆
+ 2, . . . ,NDZ − 1.

The currents at the interior points are determined from
(48b)

𝐼
𝑛+1/2

𝑘+1/2
= 𝑄
1
𝐼
𝑛−1/2

𝑘+1/2
− 𝑄
2

Δ𝑡

Δ𝑧
𝑙
−1

𝐿
𝑆
−1

∑

𝑖=0

𝑎 (𝑖) (𝑉
𝑛

𝑘+𝑖+1
− 𝑉
𝑛

𝑘−𝑖
) (58)

for 𝑘 = 𝐿
𝑆
− 1, 𝐿

𝑆
, . . . ,NDZ − 𝐿

𝑆
.

Besides, for the two-conductor line shown in Figure 4, we
can obtain the iterative equation at the load

𝑉
𝑛+1

NDZ = 𝑃
1
𝑉
𝑛

NDZ

− 𝑃
2

Δ𝑡

Δ𝑧
𝑐
−1

𝐿
𝑆
−1

∑

𝑖=0

2𝑎 (𝑖) (𝐼
𝑛+1/2

NDZ−𝑖+1/2 − 𝐼
𝑛+1/2

𝐿
) ,

(59)

where

𝐼
𝑛+1/2

𝐿
= 𝐼
𝑛−3/2

𝐿
+

Δ𝑡

𝐿
𝐿

((𝑉
𝑛

NDZ + 𝑉
𝑛−1

NDZ)

− (𝑉
𝑛

𝐿
+ 𝑉
𝑛−1

𝐿
) − 2𝑅

𝐿
𝐼
𝑛−1/2

𝐿
)

(60)

for 𝑛 = 2, 3, . . . ,NDT.

3.2. Stability Analysis. To study the stability of the MRTD
scheme for lossy case, we need to make some changes.
Rewrite (48a) and (48b) as follows:

𝑃
−1

2
𝑉
𝑛+1

𝑘
− 𝑃
−1

2
𝑃
1
𝑉
𝑛

𝑘

Δ𝑡

= −
1

𝑐Δ𝑧

𝐿
𝑆
−1

∑

𝑖=0

𝑎 (𝑖) (𝐼
𝑛+1/2

𝑘+𝑖+1/2
− 𝐼
𝑛+1/2

𝑘−𝑖−1/2
)

(61a)

𝑄
−1

2
𝐼
𝑛+1/2

𝑘+1/2
− 𝑄
−1

2
𝑄
1
𝐼
𝑛−1/2

𝑘+1/2

Δ𝑡

= −
1

𝑙Δ𝑧

𝐿
𝑆
−1

∑

𝑖=0

𝑎 (𝑖) (𝑉
𝑛

𝑘+𝑖+1
− 𝑉
𝑛

𝑘−𝑖
) .

(61b)

The finite-difference approximations of the time deriva-
tions on the left side of (61a) and (61b) are different from the
left side of (37a) and (37b), but we can also write them as an
eigenvalue problem

𝑃
−1

2
𝑉
𝑛+1

𝑘
− 𝑃
−1

2
𝑃
1
𝑉
𝑛

𝑘

Δ𝑡
= 𝜆𝑉
𝑛+1/2

𝑘

(62a)

𝑄
−1

2
𝐼
𝑛+1/2

𝑘+1/2
− 𝑄
−1

2
𝑄
1
𝐼
𝑛−1/2

𝑘+1/2

Δ𝑡
= 𝜆𝐼
𝑛

𝑘+1/2
. (62b)

In order to avoid instability during normal time stepping,
the imaginary part of 𝜆 also must satisfy

|Im (𝜆)| ≤
2

Δ𝑡
. (63)

Then following the steps in Section 2.4, using the Fourier
transform, expand the transient values of voltages and cur-
rents distributed in space. We can also obtain the same
stability condition as (43)

VΔ𝑡

Δ𝑧
≤

1

∑
𝐿
𝑆
−1

𝑖=0
|𝑎 (𝑖)|

. (64)

However, the dispersion analysis for the iterative equa-
tions of the lossy transmission lines is quite different from
the lossless case. Since 𝑃

−1

2
̸= 𝑃
−1

2
𝑃
1
and 𝑄

−1

2
̸= 𝑄
−1

2
𝑄
1
, that

is, the coefficient of 𝑉𝑛+1
𝑘

is not equal to the coefficient of 𝑉𝑛
𝑘

and the coefficient of 𝐼𝑛+1/2
𝑘+1/2

is not equal to the coefficient of
𝐼
𝑛−1/2

𝑘+1/2
on the left side of (61a) and (61b), if we substitute a time

harmonic into the iterative equations into (61a) and (61b),
there are some other terms that could affect the ratio between
the theoretical and numerical wavelength except samples per
wavelength, so we could not obtain a brief dispersion relation
as (45). However, the numerical results in Section 4.2 show
that the MRTD method could obtain a more accurate result
than the FDTD method at the same space interval and time
interval.
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t

A

𝜏f𝜏r

VS(t)

Figure 6: Trapezoidal pulse with the rise time 𝜏
𝑟
and fall time 𝜏

𝑓
.

4. Numerical Result

4.1. Lossless Transmission Lines. In this section, the two-
conductor lossless transmission lines as shown in Figure 2 are
considered to calculate the terminal voltages. The length of
the lines is 𝐿 = 400m and the per-unit-length capacitance
and inductance are 𝑐 = 100 pF/m and 𝑙 = 0.25 𝜇H/m,
respectively. This corresponds to RG58U coaxial cable [18].
The characteristic impedance of the line is𝑍

𝐶
= √𝑙/𝑐 = 50Ω

and the velocity of propagation is V = 1/√𝑙𝑐 = 200m/𝜇s.The
terminal load is 100Ω and the source resistance is 50Ω.

We will use a trapezoidal pulse as shown in Figure 6 as
the source voltage, whose initial value is 0V and amplitude
is 𝐴 = 30V, total time is 10 𝜇s, rise time is 𝜏

𝑟
= 1 𝜇s, and

fall time is 𝜏
𝑓

= 1 𝜇s, respectively. The bandwidth of the
pulse is approximate to BW = 1/𝜏

𝑟
, so the segment length

Δ𝑧 should be electrically short at this frequency requiring
Δ𝑧 ≤ (1/10)(V/𝑓max) (𝑓max = 1/𝜏

𝑟
) [18]. As we take the

rise time of the trapezoidal pulse to be 1 𝜇s, the approximate
bandwidth of the pulse is 1MHz and the maximum section
length of Δ𝑧 should be less than 20m, noting Δ𝑧max = 20.
Since we divide the line into NDZ segments uniformly, NDZ
should be greater than 𝐿/Δ𝑧max = 20. The time step will be
calculated by (44) with different Courant number 𝑞.

Under the conditions of the space discretization number
NDZ = 20 and the Courant number 𝑞 = 0.5, we calculate
the terminal voltages using the MRTD schemes with 𝐷

2
,

𝐷
3
, and 𝐷

4
wavelets’ scaling functions. We also calculate

the terminal voltages by the FDTD method under the same
conditions. Figure 7 shows the numerical results by different
methods and 𝐷

𝑖
-MRTD represents the MRTD scheme using

Daubechies’ scaling functions with 𝑖 vanishing moment as
basis functions, where 𝑖 = 2, 3, 4.

For the time-dependent discrete terminal voltages, the
relative error is defined as follows [23]:

𝜖 =
∑

NDT
𝑖=1

(𝑥 (𝑖) − �̂� (𝑖))
2

∑
NDT
𝑖=1

�̂�
2

(𝑖)
. (65)

Here, 𝑥(𝑖) represents the numerical results of FDTD and
MRTD at each time discretization point and �̂�(𝑖) is the
numerical result of series solution at each time discretization
point, which can be regarded as the exact solution [18]. Taking
�̂�(𝑖) as the exact result, we calculate the relative errors of
FDTD method and MRTD scheme.
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Figure 7: Terminal voltage calculated by different numerical meth-
ods. The space discretization number and the Courant number are
NDZ = 20 and 𝑞 = 0.5.

Table 2: Relative errors and runtime of different methods (NDZ =
20, 𝑞 = 0.5).

Analysis scheme Relative error Runtime (s)
FDTD 1.08% 0.0011
𝐷
2
-MRTD 1.93% 0.0050

𝐷
3
-MRTD 0.66% 0.0054

𝐷
4
-MRTD 0.62% 0.0058

Table 2 shows the relative errors and runtime for different
schemes. Since the iterative equations in MRTD schemes
contain more terms than the conventional FDTD method,
the MRTD schemes expend more runtime. When we use
𝐷
2
-MRTD, the numerical result shows a larger relative error.

The reason is that the vanishing moment of the 𝐷
2
wavelet’s

scaling function is not high enough. For the wavelets’ scaling
functions whose vanishing moment is high enough, like 𝐷

3

wavelet and 𝐷
4
wavelet, the numerical results show smaller

relative errors.
Figure 8 shows the relative errors versus the space dis-

cretization numbers.The space interval will decrease with the
increase of the space discretization number. We can see from
the figures that the relative errors for𝐷

2
-MRTD increasewith

the increase of NDZ. And, for𝐷
3
-MRTD and𝐷

4
-MRTD, the

relative errors decrease with the increase of NDZ and show
a little smaller relative error than the conventional FDTD. It
meanswe can get amore accurate result at same space interval
and time interval by 𝐷

3
-MRTD and 𝐷

4
-MRTD.

Figure 9 describes the relative errors versus the Courant
numbers. The time interval will decrease with the decrease
of the Courant number. The results show that, with the
decrease of the Courant numbers, the relative errors are
almost unchanged for the conventional FDTDmethod, while
the relative errors are quite different with different Courant
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Figure 8: Relative error for different discretization numbers. The Courant numbers are 𝑞 = 0.5 for (a) and 𝑞 = 0.1 for (b).
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Figure 9: Relative errors for different Courant numbers. The space discretization numbers are NDZ = 20 for (a) and NDZ = 50 for (b).

numbers for all the three MRTD schemes. That means the
choice of the Courant number significantly affects the relative
errors of theMRTD schemes, andwe could choose the proper
Courant number to optimize the MRTD schemes.

To validate the stability of the MRTD schemes, we
increase the initial value of the pulse to 20V and keep
other parameters unchanged. Figure 10 shows the relative
errors versus the pace discretization numbers. It can be seen
from the figures that the 𝐷

2
-MRTD scheme shows a larger

relative error and the relative errors of 𝐷
3
-MRTD and 𝐷

4
-

MRTD schemes are smaller than the conventional FDTD
method.

The numerical results for the lossless transmission lines
also show that the 𝐷

2
-MRTD does not perform better than

the FDTD method; meanwhile, 𝐷
3
-MRTD and 𝐷

4
-MRTD

schemes show better quality in accuracy and stability. The
reason for this phenomenon is that the scaling function of the
𝐷
2
wavelet does not have enough high vanishing moment.

When we use Daubechies’ scaling functions to expand the
voltages and currents in the two-conductor transmission
lines equations, the vanishing moment decides the accuracy
of the approximation. The scaling functions with high van-
ishing moments could approximate voltages and currents
more accurately; however, the scaling functions with low
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Figure 10: Relative error for different space discretization numbers for the initial value of the trapezoidal pulse to be 20V. The Courant
numbers are 𝑞 = 0.5 for (a) and 𝑞 = 0.1 for (b).
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Figure 11: A lossy printed circuit board: (a) line dimensions and terminations and (b) cross-sectional dimensions.

vanishing moments like 𝐷
2
wavelet’s may introduce a larger

error. So we can see fromFigure 5 that𝐷
2
-MRTDhas a better

numerical dispersion property than the FDTD method, but
it gets larger relative errors in numerical computation. For
the scaling functions which have high enough vanishing
moments like 𝐷

3
wavelet and 𝐷

4
wavelet, the numerical

results show smaller relative errors and are in agreement
with the dispersion analysis. However, a high vanishing
moment for scaling function may increase the computation
complexity in MRTD schemes. So the vanishing moments
of the wavelet’s scaling functions have a great effect on the
accuracy of the MRTD scheme; it is necessary to choose a
scaling function with proper vanishingmoment when we use
the MRTD scheme for the numerical computation.

4.2. Lossy Transmission Lines. In this section, we will con-
sider the lossy two-conductor transmission lines shown in
Figure 11. Two conductors of rectangular cross section of
width 𝑤 = 20 𝜇m and thickness 𝑡 = 10 𝜇m are separated
by 𝑠 = 20 𝜇m and placed on one side of a silicon substrate
(𝜀
𝑟

= 12) of thickness ℎ = 100 𝜇m; the total line length is
𝐿 = 20 cm. The near end is a source with a 𝑅

𝑆
=

50Ω resistance and the far end is a load with a 𝑅
𝐿

= 50Ω

resistance and 𝐿
𝐿

= 0.5 𝜇H inductance in series. The per-
unit-length inductance and capacitance were computed as 𝑙 =
0.805969 𝜇H/mand 𝑐 = 88.2488 pF/m.This gives a velocity of

t0.5nsO

1V

VS(t)

Figure 12: Representation of the source voltage waveform.

V = 1.18573 × 10
8m/s and a one-way time delay of

𝑇
𝐷

= 1.68672 ns, which gives an effective dielectric constant
of (𝜀
𝑟

= 6.4) and characteristic impedance of 𝑍
𝐶

=

95.566Ω. The per-unit-length dc resistance is computed as
𝑟 = 1/(𝜎𝑤𝑡) = 86.207Ω/m [18]. Dielectric loss is not
included in these calculations, which means the per-unit-
length conductance is 𝑔 = 0.

The source is a ramp function as shown in Figure 12, the
initial value of the ramp function is 0V, and the amplitude is
𝐴 = 1V with a rise time of 𝜏

𝑟
= 0.5 ns. The total computing

time is 20 ns. The bandwidth of the source is approximate to
BW = 1/𝜏

𝑟
= 2GHz. The space discretization step for the

MRTD was chosen to be 𝜆/10, so the space discretization
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Figure 13: Terminal voltages for lossy transmission lines: (a) for the near end and (b) for the far end. The space discretization number is
NDZ = 40 and the Courant number is 𝑞 = 0.5.

Table 3: Relative errors and runtime of different methods. 𝑉
0

represents the near end voltage and𝑉
𝐿
represents the far end voltage

(NDZ = 40, 𝑞 = 0.5).

Analysis
scheme

Relative error
for 𝑉
0

Relative error
for 𝑉
𝐿

Runtime (s)

FDTD 0.30% 0.92% 0.0066
𝐷
3
-MRTD 0.18% 0.57% 0.0245

𝐷
4
-MRTD 0.17% 0.54% 0.0275

number NDZ should be greater than 34. The time step will
also be calculated by (44) with different Courant numbers.

We calculate the near end voltage and the far end voltage
of the lossy PCB with space discretization number NDZ =
40 and the Courant number 𝑞 = 0.5. Figure 13 shows the
computing results. Since 𝐷

2
-MRTD may introduce a larger

error in the computation as shown in Section 4.1, we use 𝐷
3
-

MRTD and 𝐷
4
-MRTD to compute the terminal voltages.

Here, we choose the time-domain to frequency-domain
transformation method (TDFD), which is a straightforward
adaptation of a common analysis technique for lumped,
linear circuits and systems [18], to validate the computing
results of MRTD schemes and FDTD method. Table 3 shows
the relative errors and the runtime of the MRTD schemes
and FDTDmethod. It can be seen thatMRTD schemes spend
much time to obtain more accurate results.

Figure 14 describes the relative errors versus the space
discretization numbers. For both𝐷

3
-MRTD and𝐷

4
-MRTD,

the MRTD schemes show a little smaller relative error than
the conventional FDTD. That means the MRTD schemes
could obtain a more accurate solution under the same time
interval and space interval. This is because 𝐷

3
-MRTD and

𝐷
4
-MRTD have better dispersion property than the FDTD

method and the scaling functions of 𝐷
3
wavelet and 𝐷

4

wavelet have high enough vanishing moments.
Figure 15 shows the relative errors versus the Courant

numbers. With the decrease of the Courant number, the
relative errors of the FDTD method increase, because the
time-domain is oversampled for the FDTD method. How-
ever, the MRTD schemes perform decreasing relative errors.
Thatmeans theMRTD schemes could obtain amore accurate
result with a smaller time interval. And even when the FDTD
method is oversampled in the time-domain, the MRTD
schemes perform well.

5. Conclusion

In this paper, we derived the MRTD scheme for the two-
conductor transmission lines and studied the stability and the
numerical dispersion of this scheme. By viewing the MRTD
schemes as the weighted mean of the conventional FDTD
method at different space interval, we derived the iterative
equations for the terminal voltages when the terminals are
pure resistive, and a method is proposed to update the
iterative equations which contain some terms whose indices
exceed the index range in theMRTD scheme. Using the same
method, we derived the iterative equation for the inductive
load. Then we extended the MRTD scheme to the lossy
transmission lines. Using different wavelets’ scaling functions
as basis functions, the MRTD schemes are implemented for
both lossless case and lossy case and the numerical results are
compared to the conventional FDTDmethod.The numerical
results show the MRTD schemes need more runtime to
obtain more accurate results. And the vanishing moment
of the wavelet’s scaling functions will significantly affect the
quality of the MRTD scheme; using a scaling function with a
proper vanishingmoment as basis function inMRTD scheme
could obtain a more accurate result.
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Figure 14: Relative error for the terminal voltages with different space discretization numbers: (a) for the near end and (b) for the far end.
The Courant number is 𝑞 = 0.5.
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Figure 15: Relative errors for the terminal voltages with different Courant numbers: (a) for the near end and (b) for the far end. The space
discretization number is NDZ = 40.
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