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New formula for a resonant scattering near
an inelastic threshold
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Abstract. We show that the Flatté formula is not adequate to interpret precision data on a resonance
production near an inelastic threshold. A unitary parameterization, satisfying generalized Watson’s
theorem for the production amplitudes, is proposed to replace the Flatté parameterization in the
phenomenological analyses of the experimental data.
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INTRODUCTION

In 1976 S. M. Flatté analysed theπη and the KK coupled channel systems and proposed
the following parameterization of theS-wave production amplitudesAi :

Ai ∼
MR

√
Γ0Γi

M2
R−E2− iMR(Γ1+Γ2)

, i = 1,2. (1)

HereE is the effective mass (c.m. energy),MR is a resonance mass (thea0(980) mass in
this particular case), the first channel width

Γ1 = g1k1, k1 =
1

2E

√

[E2− (mη +mπ)2][E2− (mη −mπ)2], (2)

k1 being the pion or eta c.m. momentum. Above the KK threshold the second channel

width Γ2 = g2k2, wherek2 =
√

E2

4 −m2
K is the kaon c.m. momentum. Below the thresh-

old Γ2 = ig2p2, wherep2 =
√

m2
K − E2

4 . At the threshold energyE0 = 2mK, q= k1(E0)

andΓ0 = g1q. The Flatté production amplitudes (1) depend on three real parameters: the
resonance massMR and the two coupling constantsg1 andg2. Some discussions related
to the Flatté parameterization can be found in Refs. [2-4].

At first we consider an elastic scattering amplitude in the second channel. Without a
coupling to the first channel it can be written as

T22=
sinδ2

k2
eiδ2 ≡ 1

k2cotδ2− ik2
, (3)
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whereδ2 is the channel two phase shift. Near the KK threshold, fork2 close to 0, one
gets the effective range expansion:

k2cotδ2 ≈
1
a
+

1
2

r k2
2, (4)

wherea is the scattering length andr is the effective range. Botha and r are real. In
presence of a coupling to the first channel theT22 amplitude (3) can to be written as

T22 =
1

2ik2
(ηe2iδ2 −1), (5)

whereη denotes the inelasticity parameter. The inelastic coupling near the threshold can
effectively be taken into account by a modification of the effective range expansion:

T22 =
1

1
A − i k2+

1
2 R k2

2

. (6)

Here A denotes thecomplexscattering length andR is the complexeffective range.
Thus for a description of the elastic scattering in the second channel one needs four
real parameters. In the Flatté formula, however, we have only three parameters , so it
is evident that this parameterization is not sufficient to describe a system of the two
coupled channels.

We introduce a new formula for the denominatorW of the production amplitudes
above an inelastic threshold:

Ai ∼
1

W(E)
, W(E) = M2

R−E2− iMRg1q− iMRg2k2+N k2
2, (7)

whereN is a new complex constant. Below the threshold one should replacek2 by ip2.
Since in the KK channelE2 = E2

0 +4k2
2, the denominatorW(E) in (7) can be directly

related to the denominator ofT22 in Eq. (6):

W(E)
MRg2

=
1
A
− ik2+

1
2

Rk2
2, (8)

where we find the inverse of the scattering length

Re(
1
A
) =

M2
R−E2

0

MRg2
, Im(

1
A
) =−g1

g2
q, (9)

and the effective range

R=
2N−8
MRg2

. (10)

In the Flatté approximationN = 0, henceReR= −8
MRg2

andImR= 0. The zero value of
the imaginary part of the effective range is an essential limitation of the Flatté formula.



Elastic scattering in the first channel and a transition between
channels

In close analogy to Eq. (5), the elastic scattering amplitude in the first channel depends
on the phase shiftδ1:

T11 =
1

2ik1
(ηe2iδ1 −1) · (11)

At the KK thresholdη = 1, δ1(q) ≡ δ0 and T11(E0) =
sinδ0

q eiδ0. Using the unitarity

property of the scattering amplitudes we can derive a new formula forT11 above the KK
threshold:

T11 =
eiδ0

k1

sinδ0 + i Im (e−iδ0 A) k2 − 1
2 Im (e−iδ0 A R) k2

2

1− i A k2 + 1
2 A R k22

· (12)

There are five independent parameters inT11: Re A, Im A, Re R, Im R andδ0. Below
the KK thresholdk2 → ip2. In the Flatté limitδ0 equals to the phase of the complex
scattering lengthA and the second numerator ofT11 in Eq. (12) becomes constant
(sinδ0).

A general form of the transition amplitude from the first to the second channel is the
following:

T12=
1

2
√

k1k2

√

1−η2 ei(δ1+δ2) · (13)

In the new parameterization near the thresholdT12 reads:

T12 =
1√
k1

eiδ0

√

Im A − 1
2 |A|2 Im R k22

1− i A k2 + 1
2 A R k22

· (14)

Let us remark that ifIm A= Im R= 0 thenT12= 0 (no transition between channels). In
the Flatté limitIm R= 0 and the numerator ofT12 is a constant independent onk2.

Poles of the scattering amplitudes

All the three amplitudes, given by Eqs. (6), (12) and (14), have a common denomina-
tor

D(k2) = 1− i A k2 +
1
2

A R k22 · (15)

The amplitude poles coincide with the zeroes ofD(k2) located atz1 andz2:

z1,2 =
i
R
±
√

− 1
R2 −

2
AR

· (16)

From these equations we obtain the following relations for the scattering lengthA and
the effective rangeR:

A=−i(
1
z1

+
1
z2
), R=

2i
z1+z2

· (17)



In the Flatté approximationRe z1 =−Re z2. This constraint has an important impact on

the values of the complex energy polesE1,2 =
√

E2
0 +4z2

1,2.

NEW FORMULA FOR THE PRODUCTION AMPLITUDES

Parameterization of the production amplitudesAi can be done in terms of the linear
combination of the amplitudesTi j (k2):

A1 = f1 T11 + f2 T12, A2 = f1 T12 + f2 T22 . (18)

Here f1, f2 are real functions of energy (or momentumk2) and the two-channel scattering

amplitudes in a new approach are written asTi j (k2) =
Ni j (k2)
D(k2)

, where the numeratorsNi j

can be directly obtained from Eqs. (12), (6) and (14) by usingEq. (15). Then

A1 =
B1(k2)

D(k2)
, A2 =

B2(k2)

D(k2)
, (19)

where

B1 = f1(k2)N11(k2)+ f2(k2)N12(k2), B2 = f1(k2)N12(k2)+ f2(k2)N22(k2) . (20)

A possible approximation offi(k2) near the inelastic threshold is:

f1(k2)≈ α1+β1k2
2, f2(k2)≈ α2+β2k2

2; (21)

α1,α2 are normalization constants andβ1,β2 are real coefficients.

Watson’s theorem and its generalization above the inelastic threshold

Below the inelastic threshold Watson’s theorem is satisfiedby the production ampli-
tudeA1:

Im A1 = k1 T11 A∗
1 . (22)

From this equation one infers that the phase ofA1 is equal to the phase ofT11 which in
turn equals to the phase shiftδ1.

A generalization to the two coupled channels can be done as follows:

Im A1 = k1 T11 A∗
1 +k2 T12 A∗

2, (23)
Im A2 = k2 T22 A∗

2 + k1 T21 A∗
1. (24)

In a matrix notation one can define:

A=

(

A1
A2

)

, T =

(

T11 T12
T21 T22

)

, k=

(

k1 0
0 k2

)
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FIGURE 1. Squares of the amplitude moduli versus the c.m. energy. The solid lines correspond to the
new parameterization, given by Eqs. (6) and (12), the dashedlines - to the Flatté formula.

and write the matrix form of the generalized Watson theorem as Im A= T k A∗. This is
equivalent toA = S A∗, whereS denotes theS− matrix. Its elements are related to the
scattering matrix elementsTi j (i, j = 1,2) by

Si j = δi j +2 i
√

kik j Ti j . (25)

NUMERICAL EXAMPLE: A CASE OF THE a0(980) RESONANCE

Thea0(980) resonance is situated close to the KK threshold. It decays predominantly to
theπη channel in which two mesons interact in theS-wave, isospin one state. A coupled
channel formalism for the separable meson-meson interactions in two or three channels
has been developed in [5]. Then in Ref. [6] it was applied to study thea0 resonances
in the πη and the KK channels. The model parameters were fixed using the data of
the Crystal Barrel and of the E-852 Collaborations. The following threshold parameters
have been presently calculated:Re A= 0.17 fm,Im A= 0.41 fm,Re R=−11.32 fm, and
Im R=−3.18 fm. Let us stress here that the imaginary part of the effective range cannot
be neglected. In Fig. 1 we see important differences betweenthe amplitude intensities
calculated in two cases: 1. forIm R=−3.18 fm and 2.Im R= 0 fm (Flatté’s limit). All
curves are normalized to 1 at the KK threshold but already at the distance of 50 MeV to
the left and to the right of the maximum the relative deviations between the two cases
reach as much as 100 %.

In Fig. 2 the pole positions of the amplitudes are shown in thecomplex momentum
k2 and in the complex energy planes. One can notice a large shiftof Re E1 between
the new result and the Flatté value. It exceeds 10 MeV and is larger than the present
experimental energy resolution of many experiments. Thus,using the Flatté formula
in the data analysis can lead to an important distortion of the particle spectra and to
large theoretical errors of the threshold parameters. In particular, this may influence
resonance masses and widths presented by the Particle Data Group in the Review of
Particle Physics. The phases of the scattering amplitudes are also different in the two
cases.
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FIGURE 2. Pole positions in the KK complex energy plane (left panel) and in the complex momentum
plane (right panel)

CONCLUSIONS

1. The Flatté formula is not sufficiently accurate to be used in analyses of the newest
data on the resonance production near inelastic thresholds. Its application can lead
to a substantial distortion of the effective mass distributions and to a displacement
of the resonance pole positions.

2. A simple unitary parameterization, satisfying a generalized Watson theorem for the
production amplitudes, is proposed. It enables one to determine crucial measurable
particle interaction parameters, like the complex scattering length and the complex
effective range. It is shown that a near threshold resonanceshould be characterized
by two distinct complex poles.

3. A generalization of the new parameterization to the coupled particle systems other
thanπη and KK is straightforward.

4. New formula can be applied in numerous analyses of presentand future experi-
ments (for example: Belle, BaBar, CLEO, BES, KLOE, COSY, Tevatron, LHC,
CLAS at JLab, Panda etc.). They can also serve to reanalyse older experiments
with an aim to improve our knowledge of hadron spectroscopy and of reaction
mechanisms.
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