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The optimal regulation properties of multi-input and multioutput (MIMO) discrete-time networked control systems (NCSs),
over additive white Gaussian noise (AWGN) fading channels, based on state space representation, are investigated. The average
performance index is introduced. Moreover, the regulation performance is measured by the control energy and the error energy of
the system, and fundamental limitations are obtained. Two kinds of network parameters, fading and the additive white Gaussian
noise, are considered. The best attainable regulation performance limitations can be obtained by the limiting steady state solution
of the corresponding algebraic Riccati equation (ARE). The simulation results are given to demonstrate the main results of the
theoretical development.

1. Introduction

In recent years, there has been growing attention devoted to
the study of feedback control over communication networks
[1–9], because, comparingwith classical feedback control sys-
tems, the NCSs have their advantages, for example, low cost,
flexibility, reduced weight and power requirement, and sim-
ple installation and maintenance. However, there exist many
tough challenging problems in the stability and performance
analysis ofNCSs owing to the existence of networks. Research-
ers keep their eyes on the communication constraints in the
networks, for example, quantization effects [10, 11], time delay
[12–15], data rate constraint [16, 17], and data packet dropout
[12, 18, 19]. Nevertheless, the performance limitation of NCSs
remains a puzzle.

Performance limitation of control systems has been
receiving an increasing amount of interest in the control com-
munity; see [20–24] for details. A partial review of previous
work on feedback performance over a communication chan-
nel is given as follows. By invoking Shannon entropy as amea-
sure of performance, a universal lower bound was obtained
in [25]. Reference [26] derived a conservation law dictating

that causal feedback cannot reduce the differential entropy
inserted in the loop by external sources and an inequality
unveiling that the feedback loopmust be able to convey infor-
mation originating from initial states of the physical plant
and exogenous disturbance signals. By using nonlinear time-
varying communication and control strategies, [27] proposed
a lower bound on the performance achievable at a specified
terminal time and pointed out that the bound can be achieved
by linear strategies. Reference [28] showed the performance
limitations for scalar systems under either bounded or Gaus-
sian disturbances, and two kinds of disturbances were treated
in a unified manner using appropriate entropies and distor-
tions. However, in [28], the achievable performance had not
been improved even if the maximum information constraint
is relaxed to an average information constraint. Optimal
tracking performance issues were studied formulti-input and
multioutput linear time-invariant systems under networked
control with limited bandwidth and additive colored white
Gaussian noise channel in [22]. In [1], the optimal tracking
performance of NCSs with encoder-decoder was studied.The
optimal tracking performance of single-input single-output
(SISO) discrete-time NCSs with the packet dropouts and
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channel noise is studied in [2]. The communication channel
is characterized by three parameters: the packet dropouts,
channel noise, and the encoding and decoding. In [3], the
optimal tracking performance of MIMO discrete-time NCSs
with bandwidth and coding constraints is studied by using
spectral factorization technique. In [4], the limitations in
stabilization and tracking of MIMO networked feedback
systems are studied. The reference is considered as a random
reference signal with finite power. The optimal tracking per-
formance by linear time-invariant (LTI) controllers subject
to channel input power constraint is obtained. The adopted
model can be found inmany real systems. For example, in the
telemedicine system of robot-assisted neurosurgery, patient
and robot are, respectively, the plant and the controller.
The remote expert obtains information via the network
transmission, and the instruction of the expert is then sent
back to the robot via the network transmission. In addition,
for leader-followermultiagent systems [29], provided that the
position, velocity, and direction information of a leader are
considered as the reference signal, the controller is designed
to achieve the minimal tracking error between the leader and
the follower.

In this paper, we investigate optimal regulation perfor-
mance issues pertaining to MIMO feedback control systems
over multiple AWGN fading channels. The average perfor-
mance index is introduced, and the regulation performance
is measured by controlling energy and the state energy of the
system.And regulation fundamental limitations are obtained.
The stability or stabilization problem for the network with a
fading channel is considered in a few works [30, 31]. More-
over, few results about the performance limitation analysis of
the network with a fading channel can be found nowadays.
Due to the impact of multiplicative noise in fading channel, it
is difficult to be processed and analyzed for the performance
limitation with fading channels by the frequency domain
method. Therefore, in this paper, the performance limitation
is considered from another angle, that is, the state space
method. Additionally, in most of the existing results, the best
achievable performance is analyzed under transfer function
representation [1–4, 21, 22, 26, 32]. However, from a modern
control theoretic point of view, this is not the only possible
line of research to pursue. The goal of this paper is to derive
the regulation performance under state space representation.
The contributions of this paper can be summarized as follows.
Firstly, the model about multiple AWGN fading channels
is considered, which is more practical than most existing
literatures focusing on AWGN channel models, for instance,
[4, 21, 22]. Secondly, we are mainly devoted to study the
performance limitations for the NCS with fading channels
and AWGN, which is different from the results [30, 31] of the
existing focus on the stability or stabilization problem for the
NCS with fading channel. Furthermore, the best attainable
regulation performance limitations can be reached by the
limiting steady state solution of its associated algebraic Riccati
equation (ARE).

The rest of the paper is organized as follows.The feedback
regulation performance limitations are studied by parameter

Network

u

n

� uc

GK

y

x

Fading
channel (s)

Figure 1: State feedback control by one-parameter controller over
AWGN fading channels.

controller in Section 2. Simulation studies are shown to
validate the theoretical results in Section 3. Concluding
remarks are made in Section 4.

Terminology. The open unit disk is denoted by D, the closed
unit disk byD, and their complements byD𝐶 andD𝐶, respec-
tively. 𝑀

𝑇 is the transpose of a matrix 𝑀 and 𝑀
† is its

Moore-Penrose pseudo inverse; and Tr(𝑀) is the trace of
a square matrix 𝑀. 𝐸[𝑥] represents the expectation of a
random variable 𝑥.

2. Regulation Performance Limitations

In thiswork,wewill consider a feedback control systemwith a
network in the upstream channel as showed in Figure 1, where
the plant model 𝐺 is a rational transfer function matrix. The
network model is an unreliable network in the path from the
controller to the plant, which contains a fading channel and
an additive white Gaussian noise (AWGN) channel.

Assume that the plant𝐺(𝑠) is strictly proper and unstable,
and one of its minimum realizations is given by

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑢
𝑐 (𝑘) ,

𝑦 (𝑘) = 𝐶𝑥 (𝑘) ,

(1)

where 𝑥(𝑘) ∈ R𝑝, 𝑢𝑐(𝑘) ∈ R𝑚, and 𝑦(𝑘) ∈ R𝑝 are the plant
state, the plant input, and the measured output, respectively.
Obviously, 𝐴 is unstable, 𝐵 = [𝐵1 𝐵

2
⋅ ⋅ ⋅ 𝐵
𝑚] has full-

column rank, 𝐶 = [𝐶
𝑇

1
𝐶
𝑇

2
⋅ ⋅ ⋅ 𝐶

𝑇

𝑝
]
𝑇

has full-row rank, and
the triple (𝐴, 𝐵, 𝐶) is stabilizable and detectable.

The input and output relationship for the AWGN fading
channel is given by

𝑢
𝑐 (𝑘) = V (𝑘) + 𝑛 (𝑘) , (2)

where V(𝑘) is the fading channel output and 𝑛(𝑘) = (𝑛
1
(𝑘), . . . ,

𝑛
𝑚
(𝑘))
𝑇 is a vector of uncorrelated zero-mean white noises

each with power spectral density Φ
𝑖
(𝑘), 1 ≤ 𝑖, 𝑘 ≤ 𝑚, for

each element andΦ = diag{Φ
1
(𝑘), . . . , Φ

𝑚
(𝑘)}. And V(𝑘) and
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𝑛(𝑘) are independent of each other. The model of the fading
channel is given in the following memoryless multiplicative
form:

V (𝑘) = 𝜁 (𝑘) 𝑢 (𝑘) , (3)

where 𝑢(𝑘) is the network control input, and

𝜁 (𝑘) = {𝜁1 (𝑘) 𝜁
2 (𝑘) ⋅ ⋅ ⋅ 𝜁

𝑚 (𝑘)} , (4)

with {𝜁
𝑖(𝑘)} being 𝑚 independent random variables at each

time index 𝑘. And it is assumed that {𝜁𝑖(𝑘)} are white noise
processes with

𝜇
𝑖
fl 𝐸 {𝜁

𝑖 (𝑧)} ,

𝜎
2

𝑖
fl 𝐸 {(𝜁

𝑖 (𝑧) − 𝜇
𝑖
)
2
} ,

(5)

satisfying 𝜇
𝑖
> 0, 𝜎

𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑚. Denote

Π fl diag {𝜇
1, 𝜇2, . . . , 𝜇𝑚} ,

Λ fl diag {𝜎
1
, 𝜎
2
, . . . , 𝜎

𝑚
} .

(6)

Remark 1. Besides the fading phenomenon, the uncertainties
of a digital network can be described by themodel (3), such as
packet dropouts and quantization errors [30]. Specifically, the
model (3) covers packet dropout described by identically and
independently distributed (i.i.d.) Bernoulli processes [30].
The 𝜁(𝑘) represents the packet-loss process by a 0-1 binary-
valued scalar.

The following lemmas are useful for subsequent develop-
ment and thus are introduced first.

Lemma 2 (see [31]). 𝐺 is a nonminimum phase strictly proper
right-invertible transfer function matrix; then, a state space
realization of 𝐺 can be given by

𝐴 = [

𝐴
𝑠

0

0 𝐴
𝑢

] ,

𝐵 = [

𝐵
𝑠

𝐵𝑢

] ,

𝐶 = 𝐼,

𝐷 = 0,

(7)

where 𝐴 𝑠 is stable, all the poles of 𝐴𝑢 are either on or outside
the unit circle, and (𝐴𝑢, 𝐵𝑢) is controllable.

Lemma 3 (see [33]). The equation 𝐴𝑋𝐵 = 𝐶 has a solution𝑋

if and only if

𝐴𝐴
†
𝐶𝐵
†
𝐵 = 𝐶. (8)

Moreover, the general solution is

𝑋 = 𝐴
†
𝐶𝐵
†
+ 𝑌 − 𝐴

†
𝐴𝑌𝐵𝐵

†
, (9)

where 𝑌 is arbitrary.

2.1. State Feedback Regulation Performance Limitations. In
this subsection, we consider the feedback system of Figure 1
where the channel input

𝑢 (𝑖) = −𝐾
𝑖
𝑥 (𝑖) (10)

is based on static state feedback. To simplify the form, we
recorded 𝑢(𝑖) fl 𝑢

𝑖
. The average performance index to be

minimized in the present subsection is given by

𝐽 = lim
𝑁→∞

1

𝑁
inf
𝑢𝑖∈𝑈sf

𝐽 (𝑥0, 𝑢0, 𝑢1, . . . , 𝑢𝑁) (11)

= lim
𝑁→∞

1

𝑁
inf
𝑢𝑖∈𝑈sf

𝐸{

𝑁

∑

𝑖=0

(𝜀
𝑦𝑖



2
+ (1 − 𝜀)

𝑢𝑖


2
)} (12)

= lim
𝑁→∞

1

𝑁

⋅ inf
𝑢𝑖∈𝑈sf

𝑁

∑

𝑖=0

Tr {(𝑄 + 𝐾
𝑇

𝑖
𝑅
𝑖
𝐾
𝑖
)𝑋
𝑖
+ 𝑄
𝑁+1

𝑋
𝑁+1

} ,

(13)

where 𝜀 ∈ [0, 1] is a parameter to be determined prior to one’s
choice, and it may be used to weigh the relative importance
of tracking objective versus that of constraining the input
energy. 𝑄 = 𝜀𝐶

𝑇
𝐶, 𝑅 = (1 − 𝜀)𝐼, 𝑋

𝑖
= 𝐸(𝑥

𝑖
𝑥
𝑇

𝑖
), and 𝑄

𝑁+1
is a

symmetric positive definite matrix of appropriate dimension.
𝑈sf is the class of all stabilizing state feedback controllers.

The problem under study can be described as follows.

Problem 4. For a discrete-time NCS as depicted in Figure 1,
find a network control input 𝑢 ∈ 𝑈sf (𝐾𝑖) such that the
minimum performance index (11) is obtained.

Theorem 5. Consider the feedback system of Figure 1 with
a fading channel by (2) and (3), and the system 𝐺(𝑧) is
unstable, nonminimum phase, and strictly proper, (𝐴, 𝐵, 𝐶)

is the minimum state space realization of 𝐺(𝑧), and then the
minimum state regulation performance is given by

𝐽
∗
= Tr {𝐵Φ𝐵

𝑇
𝑃} , (14)

where 𝑃 is the unique solution of discrete-time ARE:

𝑃 = 𝑄 + 𝐴
𝑇
𝑃𝐴 − 𝑁

𝑇
𝑀
†
𝑁, (15)

and the optimal controller sequence is

𝑢
∗

𝑘
= −𝑀

†
𝑁𝑥𝑘, (16)

where

𝑀 = 𝑅 + Π𝐵
𝑇
𝑃𝐵Π + Λ𝐵

𝑇
𝑃𝐵Λ,

𝑁 = Π𝐵
𝑇
𝑃𝐴.

(17)

Proof. Theoptimal problem is formulated in terms of the state
covariance matrices 𝑋

𝑖
= 𝐸[𝑥

𝑖
𝑥
𝑇

𝑖
] and the gain matrices

𝐾
𝑖
. By a simple calculation it can be seen that the following

deterministic optimal control problem is equivalent to the
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original problem (1), (2), (3), (10), (11), and (13), with a
feedback control of the form (10):

𝐽 = lim
𝑁→∞

1

𝑁

⋅ inf
𝑢𝑖∈𝑈sf

𝑁

∑

𝑖=0

Tr {(𝑄 + 𝐾
𝑇

𝑖
𝑅
𝑖
𝐾
𝑖
)𝑋
𝑖
+ 𝑄
𝑁+1

𝑋
𝑁+1

} ,

(18)

subject to

𝑋
𝑘+1

= (𝐴 + 𝐵Π𝐾
𝑘
)𝑋
𝑘
(𝐴 + 𝐵Π𝐾

𝑘
)
𝑇

+ 𝐵Λ𝐾
𝑘
𝑋
𝑘
𝐾
𝑇

𝑘
Λ𝐵
𝑇
+ 𝐵Φ𝐵

𝑇
.

(19)

Firstly, consider the following performance index:

𝐽
𝑁
fl inf
𝑢𝑖∈𝑈sf

𝑁

∑

𝑖=0

Tr {(𝑄 + 𝐾
𝑇

𝑖
𝑅
𝑖
𝐾
𝑖)𝑋
𝑖
+ 𝑄
𝑁+1

𝑋
𝑁+1} . (20)

In order to obtain the optimal performance 𝐽
∗

𝑁
under

conditions (19), we can construct the following Lagrangian
function:

𝐿 =

𝑁

∑

𝑖=0

𝐻
𝑖
+ 𝑄
𝑁+1

𝑋
𝑁+1

, (21)

where 𝐻
𝑖
is Hamiltonian function:

𝐻
𝑖
≜ Tr [(𝑄 + 𝐾

𝑇

𝑖
𝑅𝐾
𝑖
)𝑋
𝑖
] + Tr [𝑃

𝑖+1
(𝐴𝑋
𝑖
𝐴
𝑇

+ 𝐵Π𝐾𝑖𝑋𝑖𝐴
𝑇
+ 𝐴𝑋𝑖𝐾

𝑇

𝑖
Π𝐵
𝑇
+ 𝐵Π𝐾𝑖𝑋𝑖𝐾

𝑇

𝑖
Π𝐵
𝑇

+ 𝐵Λ𝐾
𝑖
𝑋
𝑖
𝐾
𝑇

𝑖
Λ𝐵
𝑇
+ 𝐵Φ𝐵

𝑇
− 𝑋
𝑖+1

)] ,

(22)

where𝑃
𝑖+1

is a parameter matrix and𝑃
𝑖+1

is symmetric matri-
ces of Lagrangian multiplier [34]. The necessary conditions
for optimality are

𝜕𝐻𝑖

𝜕𝐾
𝑖

= 0,

𝑃
𝑖
=

𝜕𝐻
𝑖

𝜕𝑋𝑖

,

𝑃
𝑁+1

= 𝑄
𝑁+1

.

(23)

Then, we can obtain the following AREs:

(𝑅 + Π𝐵
𝑇
𝑃
𝑖+1

𝐵Π + Λ𝐵
𝑇
𝑃
𝑖+1

𝐵Λ)𝐾
𝑖
+ Π𝐵
𝑇
𝑃
𝑖+1

𝐴

= 0,

𝑃𝑖

= 𝑄 + 𝐴
𝑇
𝑃
𝑖+1

𝐴

+ 𝐾
𝑇

𝑖
(𝑅 + Π𝐵

𝑇
𝑃
𝑖+1

𝐵Π + Λ𝐵
𝑇
𝑃
𝑖+1

𝐵Λ)𝐾
𝑖

+ 𝐴
𝑇
𝑃
𝑖+1

𝐵Π𝐾
𝑖
+ 𝐾
𝑇

𝑖
Π𝐵
𝑇
𝑃
𝑖+1

𝐴,

𝑃
𝑁+1

= 𝑄
𝑁+1

.

(24)

And then, we have

𝐽
∗

𝑁
= Tr[𝑋 (0) 𝑃 (0) +

𝑁

∑

𝑖=0

𝐵Φ𝐵
𝑇
𝑃 (𝑖 + 1)] . (25)

It is known that the general finite ARE has a unique solution
𝑃
𝑁
(𝑡) > 0, 𝑡 ∈ {0, 1, 2, . . . , 𝑁}. It is obvious that 𝑃

𝑁
(𝑡) =

𝑃
𝑁−𝑡

(0). If the system (1) is stable by feedback control
𝑢
𝑖
, 𝑖 ∈ {1, 2, . . . , 𝑁, . . . ,∞}, the corresponding regulation

performance limitationmust exist; namely,𝑃(0) exists in (25),
and the solution of general ARE (24) lim

𝑁→∞
𝑃
𝑁
(0) exists.

Moreover

lim
𝑁→∞

𝑃
𝑁 (0) = lim

𝑁→∞

𝑃
𝑁−𝑡 (0) = lim

𝑁→∞

𝑃
𝑁 (𝑡) = 𝑃. (26)

Then, (24) can be written as

(𝑅 + Π𝐵
𝑇
𝑃𝐵Π + Λ𝐵

𝑇
𝑃𝐵Λ)𝐾

𝑖
+ Π𝐵
𝑇
𝑃𝐴 = 0,

𝑃

= 𝑄 + 𝐴
𝑇
𝑃𝐴 + 𝐾

𝑇

𝑖
(𝑅 + Π𝐵

𝑇
𝑃𝐵Π + Λ𝐵

𝑇
𝑃𝐵Λ)𝐾

𝑖

+ 𝐴
𝑇
𝑃𝐵Π𝐾

𝑖
+ 𝐾
𝑇

𝑖
Π𝐵
𝑇
𝑃𝐴.

(27)

Now by using Lemma 3, we can obtain

𝐾
𝑖
= −𝑀

†
𝑁 + 𝑌 − 𝑀

†
𝑀𝑌,

𝑀𝑀
†
𝑁 = 𝑁,

(28)

where

𝑀 = 𝑅 + Π𝐵
𝑇
𝑃𝐵Π + Λ𝐵

𝑇
𝑃𝐵Λ,

𝑁 = Π𝐵
𝑇
𝑃𝐴.

(29)

In particular, we can take 𝑌 = 𝑀
†
𝑁 and noting (13), (20),

(25), and (27), then the optimal performance, the control gain
𝐾
𝑖
, and the discrete-time ARE can be given by

𝐾
𝑖
= −𝑀

†
𝑁,

𝐽opt = Tr {𝐵Φ𝐵
𝑇
𝑃} ,

𝑃 = 𝑄 + 𝐴
𝑇
𝑃𝐴 − 𝑁𝑀

†
𝑁.

(30)

Remark 6. Considering the traditional sense of the perfor-
mance index

𝐽 = inf
𝑢𝑖∈𝑈sf

𝐽 (𝑥
0
, 𝑢
0
, 𝑢
1
, . . . , 𝑢

𝑁
)

= inf
𝑢𝑖∈𝑈sf

𝐸{

𝑁

∑

𝑖=0

(𝜀
𝑦𝑖



2
+ (1 − 𝜀)

𝑢𝑖


2
)} ,

(31)

by the proof of Theorem 5, we can get that the performance
limitation is

𝐽
∗
= Tr[𝑋 (0) 𝑃 (0) +

∞

∑

𝑖=0

𝐵Φ𝐵
𝑇
𝑃 (𝑖 + 1)] . (32)
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Noting (26), the performance limitation (32) will reach an
infinite value for 𝑃 > 0, so we introduced the average
performance limitations (11).

When the unreliable network does not contain the fading
channel, that is, it contains only a white Gaussian noise
channel, we can obtain the following corollary.

Corollary 7. Consider the feedback system of Figure 1 with a
white Gaussian noise channel, and the system 𝐺(𝑠) is unstable
and nonminimum phase corresponding to Lemma 2; then the
minimum state regulation performance is given:

𝐽
∗
= Tr {𝐵

𝑢
Φ𝐵
𝑇

𝑢
𝑃
𝑢
} , (33)

where 𝑃
𝑢
is the unique solution of discrete-time ARE:

𝑃𝑢 = 𝑄𝑢 + 𝐴
𝑇

𝑢
𝑃𝑢𝐴𝑢 − 𝑁

𝑇

𝑢
𝑀
†

𝑢
𝑁𝑢. (34)

And the optimal controller sequence is

𝑢
∗

𝑘
= [0 −𝑀

†

𝑢
𝑁𝑢] 𝑥

𝑘
, (35)

where

𝑀 = 𝑅 + Π𝐵
𝑇

𝑢
𝑃𝑢𝐵𝑢Π + 𝐵

𝑇

𝑢
𝑃𝑢𝐵𝑢,

𝑁 = 𝐵
𝑇

𝑢
𝑃
𝑢
𝐴
𝑢
.

(36)

Proof. Similar to the previous section

𝐽
𝑁
fl inf
𝑢𝑖∈𝑈sf

𝑁

∑

𝑖=0

Tr {(𝑄 + 𝐶
𝑇
𝐾
𝑇

𝑖
𝑅
𝑖
𝐾
𝑖
𝐶)𝑋
𝑖
+ 𝑄
𝑁+1

𝑋
𝑁+1

} ,

𝐿 fl
𝑁

∑

𝑖=0

𝐻
𝑖
+ 𝑄
𝑁+1

𝑋
𝑁+1

,

𝐻𝑖 fl Tr [(𝑄 + 𝐾
𝑇

𝑖
𝑅𝐾𝑖)𝑋𝑖] + Tr [𝑃𝑖+1 (𝐴𝑋𝑖𝐴

𝑇

+ 𝐴𝑋𝑖𝐾
𝑇

𝑖
𝐵
𝑇
+ 𝐵𝐾𝑖𝑋𝑖𝐴

𝑇
+ 𝐵𝐾𝑖𝑋𝑖𝐾

𝑇

𝑖
𝐵
𝑇
+ 𝐵Φ𝐵

𝑇

− 𝑋𝑖+1)] .

(37)

Then

𝐽
∗

𝑁
= Tr[𝑋 (0) 𝑃 (0) +

𝑁

∑

𝑖=0

𝐵Φ𝐵
𝑇
𝑃 (𝑖 + 1)] . (38)

And then, the following equations can be obtained:

(𝑅 + 𝐵
𝑇
𝑃𝐵)𝐾

𝑖
+ 𝐵
𝑇
𝑃𝐴 = 0,

𝑃

= 𝑄 + 𝐴
𝑇
𝑃𝐴 + 𝐾

𝑇

𝑖
(𝑅 + 𝐵

𝑇
𝑃𝐵)𝐾

𝑖
+ 𝐴
𝑇
𝑃𝐵𝐾
𝑖

+ 𝐾
𝑇

𝑖
𝐵
𝑇
𝑃𝐴.

(39)
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Figure 2: 𝐽∗ with respect to 𝑝 for different 𝜀 (𝑞 = 1.8, Φ = 0.2,
Π = 0.6, and Λ = 0.6).

Applying Lemma 2, the above equation can be transformed
into

(𝑅 + 𝐵
𝑇

𝑢
𝑃𝐵
𝑢
)𝐾
𝑢
+ 𝐵
𝑇

𝑢
𝑃
𝑢
𝐴
𝑢
= 0,

𝑃
𝑢

= 𝑄
𝑢
+ 𝐴
𝑇

𝑢
𝑃
𝑢
𝐴
𝑢
+ 𝐾
𝑇

𝑢
(𝑅 + 𝐵

𝑇

𝑢
𝑃
𝑢
𝐵
𝑢
)𝐾
𝑢

+ 𝐴
𝑇

𝑢
𝑃
𝑢
𝐵
𝑢
𝐾
𝑢
+ 𝐾
𝑇

𝑢
𝐵
𝑇

𝑢
𝑃
𝑢
𝐴
𝑢
.

(40)

Therefore, we have

𝐾
∗

𝑖
= −𝑀

†

𝑢
𝑁
𝑢
,

𝐽opt = Tr {𝐵
𝑢
Φ𝐵
𝑇

𝑢
𝑃
𝑢
} ,

𝑃
𝑢
= 𝑄
𝑢
+ 𝐴
𝑇

𝑢
𝑃
𝑢
𝐴
𝑢
− 𝑁
𝑇

𝑢
𝑀
†

𝑢
𝑁
𝑢
,

(41)

where

𝑀 = 𝑅 + Π𝐵
𝑇

𝑢
𝑃
𝑢
𝐵
𝑢
Π + 𝐵

𝑇

𝑢
𝑃
𝑢
𝐵
𝑢
,

𝑁 = 𝐵
𝑇

𝑢
𝑃𝑢𝐴𝑢.

(42)

3. Simulation Studies

We now use an example to illustrateTheorem 5. Consider the
plant

𝐺 (𝑧) =
(𝑧 − 𝑝)

(𝑧 − 1.5) (𝑧 − 𝑞)
. (43)

Clearly, 𝐺(𝑧) is nonminimum phase and unstable for |𝑝| ≥ 2

and |𝑞| ≥ 1.5.
Figures 2 and 3 show the optimal performances plotted

for different values of 𝜀. The two figures also show that the
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Figure 3: 𝐽∗ with respect to 𝑞 for different 𝜀 (𝑝 = −2, Φ = 0.2,
Π = 0.6, and Λ = 0.6).

unstable poles/nonminimum phase zero will deteriorate the
optimal regulation performances.

4. Conclusions

In this paper, we have investigated the optimal regulation
performance of networked control systems over an unreliable
network in the path from the controller to the plant. The
unreliable network contains a fading channel and an additive
white Gaussian noise (AWGN) channel. We consider two
types of feedback control: state feedback and output feedback,
and fundamental limitations are obtained for regulation per-
formance, respectively. The optimal regulation performance
limitations can be obtained by the limiting steady state
solution of its associated algebraic Riccati equation (ARE).
Finally, some simulation results are given to illustrate the
obtained results.

Furthermore, the obtained results of this paper can
be easily extended to the continuous-time case. When the
networked control system contains the nondeterministic or
hybrid switching, the issue of performance limitation also
deserves to be studied furthermore.
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