
Eur. Phys. J. C (2016) 76:398
DOI 10.1140/epjc/s10052-016-4226-2

Regular Article - Theoretical Physics

About the isocurvature tension between axion and high scale
inflationary models

M. Estevez1,2,a, O. Santillán3,b

1 CONICET-International Center for Advances Studies (ICAS), UNSAM, Campus Miguelete 25 de Mayo y Francia,
Buenos Aires 1650, Argentina

2 CONICET-Instituto de Física de Buenos Aires (IFIBA), Pabellón I Ciudad Universitaria, C. A. B. A, Buenos Aires 1428, Argentina
3 CONICET-Instituto de Matemáticas Luis Santaló (IMAS), Pabellón I Ciudad Universitaria, C. A. B. A, Buenos Aires 1428, Argentina

Received: 9 November 2015 / Accepted: 23 June 2016 / Published online: 14 July 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract The present work suggests that the isocurvature
tension between axion and high energy inflationary scenar-
ios may be avoided by considering a double field inflation-
ary model involving the hidden Peccei–Quinn Higgs and the
Standard Model one. Some terms in the lagrangian we pro-
pose explicitly violate the Peccei–Quinn symmetry but, at the
present era, their effect is completely negligible. The result-
ing mechanism allows for a large value for the axion constant,
of the order fa ∼ Mp, thus the axion isocurvature fluctua-
tions are suppressed even when the scale of inflation Hinf

is very high, of the order of Hinf ∼ Mgut. This numerical
value is typical in Higgs inflationary models. An analysis
about topological defect formation in this scenario is also
performed, and it is suggested that, under certain assump-
tions, their effect is not catastrophic from the cosmological
point of view.

1 Introduction

The axion mechanisms are an attractive solution to the CP
problem in QCD [1–15]. In their simplest form, the axion
a is identified as a Nambu–Goldstone pseudo-scalar corre-
sponding to the breaking of the so called Peccei–Quinn sym-
metry. This is aU (1) global symmetry which generalizes the
standard chiral one. There exist models in the literature for
which this symmetry breaking takes place in a visible sec-
tor [3,4], or in a hidden one [9–12]. In particular, the KSVZ
axion scenario [9,10] postulates the existence of a hidden
massive quark Q, which behaves as a singlet under the elec-
troweak interaction. This quark acquires its mass through-
out a Higgs mechanism involving a neutral Peccei–Quinn
field �. Since this quark does not interact with the photon
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and with the massive Z and W bosons, the corresponding
Nambu–Goldstone pseudo-bosona is not gauged away. Stan-
dard current algebra methods show that the mass of this axion
a is inversely proportional to the scale of symmetry breaking
fa [14]. There are phenomenological observations which fix
this scale, fa > 109 GeV [32]. This lower bound is required
for suppressing the power radiated in axions by the helium
core of a red giant star to the experimental accuracy level.

Besides these constraints, there are estimates that sug-
gest the upper bound fa < 1012 GeV [29,30]. This bound
insures that the present axion density is not higher than the
critical one. The idea behind this bound is the following.
The standard QCD picture is that the axion potential is flat
until the temperature of the universe is close to Tqcd. Below
this temperature there appears an induced periodic potential
V (a), and the axion becomes light but massive. A custom-
ary assumption is that the axion is at the top of the poten-
tial V (a) at the time where this transition occurs. When the
Hubble constant is of the same order as the axion mass this
pseudo-scalar falls to the potential minimum and starts coher-
ent oscillations around it. The initial amplitude, which corre-
spond to a maximum, is A ∼ fa and thus, the energy stored at
by these oscillations is of the order E ∼ A2m2

a . The authors
of [29,30] analyzed the evolution of these oscillations to
the present universe and found that the axion energy density
today would be larger than the critical one ρc ∼ 10−47 GeV4

unless we have the bound fa < 1012 GeV.
The axion has many interesting properties from the par-

ticle physics point of view. However, there exist some cos-
mological problems about them, specially in the context of
inflationary scenarios. These problems depend on whether
the Peccei–Quinn symmetry is broken during, at the end,
or after inflation [28]. If the symmetry breaking takes place
after inflation, then axionic strings are formed when the tem-
perature falls down below the temperature fa/N , with N
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is the integer characterizing the color anomaly of the model.
These strings produce relativistic actions, which only acquire
masses when the temperature of the universe is comparable
to �qcd. At this point these axions become a considerable
fraction of dark matter. Constraints on axion model related
to this axion production by radiating strings and string loops
have been studied in [19–25]. There is the possibility that the
breaking occurs at the end of the transition, for which the
formation of the strings is qualitatively different [26,27].

An alternative to this problem is that the symmetry is bro-
ken at the end of inflation. The topological defects that arise
in this situation are qualitatively different from the strings
discussed above and, to the best of our knowledge, they have
not been studied yet [28].

A further possibility is that the breaking takes place before
inflation, which implies that the strings are diluted away
due to the rapid expansion of the universe. This softens the
axionic domain wall problem. Scenarios of this type takes
place when Hinf is below the value 2π fa/N . In this case the
relic density is suppressed by a factor exp(Ne) with Ne the
number of e-folds that occur between the symmetry breaking
and the end of the inflation. For Ne large enough, the sup-
pression may be effective, and the density of such relics will
be negligible today [28].

The last possibility discussed above is attractive from the
theoretical point of view. However, for this realization of
symmetry breaking, the bound 109 GeV< fa < 1012 GeV
is in tension with high energy inflationary models. This is
due to the fact that the axion is effectively massless at the
inflationary period and, for any massless scalar (or pseudo-
scalar) fielda present during inflation, there will appear quan-
tum fluctuations with a nearly scale invariant spectrum of the
form

< δa2(k) >=
(
Hinf

2π

)2 2π2

k3 .

This is a standard result, which implies that the isocurvature
perturbation corresponding to the field a is given by [26,27]

SCDM = ra
δa

a
= ra

Hinf

2π fa
,

with ra the fraction of a particles in the present CDM. When
this result is applied to axions, the observational constraints
on SCDM [34] together with the axion window 109 GeV<

fa < 1012 GeV put constraints on Hinf of the form Hinf <

107 − 1010 GeV. For this reason, there is a special interest
in relaxing the axion window 109 GeV< fa < 1012 GeV,
since otherwise the existence of a solution to the CP problem
may get in conflict with the existence of high scale inflation,
where a high scale means Hinf > 1010 GeV.

A well-known example of these high scale models is
the Higgs inflationary scenario [35]. This model is very
attractive, since it introduces a single parameter to the Stan-

dard Model. This dimensionless parameter, denoted ξ , has a
numerical value ξ ∼ 5.104 and describes the non-minimal
coupling between the Higgs and the curvature R. This min-
imality generated a vivid interest in the subject.The scale
at the end of inflation for this scenario is of the order of
Hinf ∼ 1015 GeV, which is not far to the GUT scale. Thus,
if it is assumed that the symmetry breaking takes place at
inflation, one should find mechanisms for which initially
fa ∼ 1017−1019 GeV for avoiding the isocurvature problem.
This scale is essentially the Planck mass, and it violates the
bound in [29,30] by seven orders of magnitude. The present
paper is related to this problem.

A valid approach for solving the isocurvature problem is
to assume that fa is of the order of the Planck mass today.
The bound fa < 1012 GeV assumes that at the beginning of
the QCD era the axion is at the top of its potential. Thus an
axion constant fa ∼ Mp can be introduced in the picture if
at the beginning of this era the axion already has rolled to a
lower value by some unknown dynamics. If the axion mass
during the inflationary and the reheating periods is not zero,
and in fact very large, the axion may roll to the minimum
in an extremely short time before the QCD era. There exist
some mechanisms in the literature in terms of this aspect is
discussed [39–41]. Further interpretations of these problems
and an update of the cosmological constraints may be found
in [33] and references therein.

In the present work, a double Higgs inflationary mecha-
nism [45–48] involving the ordinary Higgs and the KSVZ
Peccei–Quinn field will be considered. It is argued here
that the KSVZ field falls to the minima inside the infla-
tionary period, in such a way that the topological defects
are diluted away. The present model contains some explic-
itly Peccei–Quinn symmetry violating terms which induces
a small axion mass at the early universe. The key point is
that when the terms induced after the QCD transition are
added to the original potential coming from inflation, the
result is the interchange between the maxima and the min-
ima. It is suggested that these initial terms are irrelevant at the
present era, but they may induce the axion to sit in the point
a ∼ 0 during the universe evolution, thus avoiding the bound
fa < 1012 GeV. In addition, several cosmological constraints
on the parameter of the model are also discussed in detail.
There exists related work combining double Higgs inflation
with the DFSZ axion [48], and a comparison between that
work and the present one will be presented in the conclusions.

The present work is organized as follows. In Sect. 2 some
known models dealing with the isocurvature problem are
briefly discussed. This description is exhaustive, but the facts
described there are the ones that inspire our work. In Sect.
3 a mechanism for avoiding the isocurvature problem is
described in detail. This mechanism is a convenient modi-
fication of the double Higgs inflationary scenarios adapted
to our purposes. Section 4 contains a discussion of the forma-
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tion of the topological defects in our model. It is argued there
that the contribution of topological defects is not relevant and
the axion emission do not overcome the critical density. Sec-
tion 5 contains some variations of the model, and describe
in detail the relevance of some of the parameters. Section 6
contains a discussion of the results and comparison with the
existing literature.

2 Preliminary discussion

2.1 General scenarios related to the isocurvature problem

Before we turn attention to a concrete model, it may be
instructive to describe some well-known mechanism which
deals with the isocurvature problem. The following discus-
sion is not complete but it is focused on some facts to be
applied latter on.

A not so recent approach to the isocurvature problem is
to consider some non-renormalizable interactions between
the inflaton χ and the Peccei–Quinn field �. For instance,
in a supersymmetric context, there is no symmetry prevent-
ing a term of the form δK = 1

M2
p
χ†χ�†� [49,50], which

can be present at the Planck scale. At inflationary stages,
where the field χ is the dominating energy component, these
terms induce an effective coupling of the form 	V (�) =
cH2��∗, with c a dimensionless constant [49,50]. Fur-
thermore, when supergravity interactions are turned on, a
generic expression for these corrections may be of the form

	V (�) = H2M2
p f

(
�
Mp

)
, with f (x) a model dependent

function [49,50]. Thus, for a high scale inflation, these cor-
rections may be considerable since the value of H is large. On
the other hand, depending on the model, the sign of these cor-
rections may be positive or negative. For instance, the authors
[51] consider soft supersymmetry breaking terms which lead
to an effective potential of the form

V (�) = m2
���∗ − cH H2��∗ −

(
aHλH

(��∗)2

4Mp
+ c.c

)

+ λ2 (��∗)3

4M2
p

,

with aH , cH , and λ the effective parameters of the model.
Note that the sign of the second term is opposite to the first
one. These models assume the presence of physics beyond the
Standard Model, but the addition of such terms can induce
a large expectation value for � at the inflationary period,
which suppresses isocurvature perturbations. Further details
as regards this mechanism may be found in the original lit-
erature.

The scenarios discussed above fulfill the bound 109 GeV<

fa < 1012 GeV and postulate that the isocurvature fluctua-
tions are suppressed due to a dynamical effective symmetry

breaking scale fa ∼ Mp, which evolves to a lower value
later on. A variant for these scenarios is to consider assume
that fa ∼ Mp, and therefore the bound 109 GeV< fa <

1012 GeV is in fact violated. This will be the approach to be
employed for the authors in the following. Scenarios of this
type may be realized if there is some dynamical process pre-
vious to the QCD transition epoch that forces the axion a to
be much below than the top of the potential a ∼ fa . These
possibilities were discussed for instance in [39–41], where
the authors present several contribution to the axion mass ma

in the early universe which are negligible today. These mod-
els require corrections that come from physics that comes
from supersymmetric scenarios or even string theory ones.

Some scenarios that go in those directions are the ones in
[52,53]. These models are considered in the context of elec-
troweak strings with axions and their applications to baryo-
genesis, and introduce effective corrections to the axion mass
of the form

V (a, H) = λ

4
(HH† − v)2 +

(
m2

π f 2
π + f (HH† − v)

)

×
[

1 − cos

(
a

fa

)]
. (2.1)

The function f (x) is not known, but it is assumed that
f (0) = 0. This implies that, when the Higgs H field is at
the minimum, there are no correction to the axion mass, i.e.,
ma ∼ mπ fπ/ fa [7]. Thus the low energy QCD picture is
unchanged in the present era.

The corrections (2.1) suggest the following solution to the
isocurvature problem. The corrections f (HH† − v) and the
term m2

π f 2
π may have opposite sign, in such a way that the

sign of the term multiplying the function cos(a/ fa) is nega-
tive. In this case the point a = 0 is now a maximum instead
a minimum. By assuming, as customary, that the axion is
initially at the top of the potential, it is concluded the ini-
tial value may be a ∼ 0. Furthermore, when the inequality
Ha(t) > ma(t) is satisfied during the universe evolution, the
axion is frozen in an small neighbor a ∼ 0. If in addition,
there is a time for which the value of m2

π f 2
π has absolute

value larger than f (HH† − v), then the sign of the poten-
tial changes, but the axion did not evolve and is still is near
a ∼ 0. This violates the hypothesis [29,30] and thus the
bound fa < 1012 GeV is avoided since the initial axion value
at the QCD transition era is not a ∼ fa but instead a ∼ 0.

2.2 Generalities about double Higgs inflationary models

The discussion given above suggests that the corrections to
the axion mass (2.1) may be important for softening the
tension between high energy inflationary and axion models.
However, the authors [52,53] did not give a complete expla-
nation of the dynamical origin of such a mass term. Never-
theless, it is clear from (2.1) that, when the Higgs is at not at
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the minima, there are some violations of the Peccei–Quinn
symmetry. Otherwise, the axion would be massless. Thus,
it is necessary to include Peccei–Quinn violating terms in
our scenario but simultaneously, it should be warranted that
their effects are not important at present times. A possibil-
ity is to employ some version of double Higgs inflationary
models [45,45,47], when some small but explicitly breaking
Peccei–Quinn terms are allowed into the picture. These mod-
els, however, do not consider a singlet Higgs, and this type of
Higgs are essential in axion models. For these reason, it will
be convenient to describe the main features of double Higgs
inflationary models, in order to adapt them to our purposes
later on.

In general, the double Higgs scenarios contains two scalar
field doublets, �1 and �2, with a non-zero minimal cou-
pling to the curvature R. This coupling is described by three
parameters denoted by ξ1, ξ2, and ξ3. The lagrangian for such
a model in the Jordan frame is given by [45,45,47]

L J√−gJ
= R

2
+

(
ξ1|�1|2 + ξ2|�2|2 + ξ3�

†
1�2 + c.c.

)
R

− ∣∣Dμ�1
∣∣2 − ∣∣Dμ�2

∣∣2 − VJ (�1,�2) .

Here the covariant derivative Dμ corresponds to the elec-
troweak interactions, but it may be allowed to correspond to
another type of interactions if gauge invariance is respected.
The potential VJ (�1,�2) is the generic two Higgs one
described in detail in [54,55], namely

V (�1,�2) = −m2
1|�1|2 − m2

2|�2|2 +
(
m2

3�
†
1�2 + .c.c.

)

+ 1

2
λ1|�1|4 + 1

2
λ2|�2|4 + λ3|�1|2|�2|2

+ λ4

(
�

†
1�2

) (
�

†
2�1

)
+

[
1

2
λ5

(
�

†
1�2

)2

+ λ6

(
�

†
1�1

) (
�

†
1�2

)
+ λ7

(
�

†
2�2

)

×
(
�

†
1�2

)
+ c.c.

]
. (2.2)

In the following, the choice of dimensionless parameters will
be such that always ξ3 = 0 and λ6 = λ7 = 0. The remaining
non-vanishing parameters mi and λi are assumed to be real.
The lagrangian given above is expressed in units for which
Mp = 1, but the dependence on this mass parameter will be
inserted back later on.

The scalar doublets of the model may be parameterized as

�1 = 1√
2

(
0
h1

)
, �2 = 1√

2

(
0
h2eiθ

)
. (2.3)

As for the standard Higgs inflationary model, the physics of
the double Higgs model is clarified by performing a Weyl
transformation gJ

μν = gEμν/
2 with a scale factor 
2 ≡
1 + 2ξ1|�1|2 + 2ξ2|�2|2. By assuming that the fields have

large values ξ1h2
1 + ξ2h2

2 >> 1 and by making the following
field redefinitions:

χ =
√

3

2
log(1 + ξ1h

2
1 + ξ2h

2
2), r = h2

h1
, (2.4)

it is found that the previous action can be expressed in the
following form [47]:

LE√−gE
∼ R

2
− 1

2

(
1 + 1

6

r2 + 1

ξ2r2 + ξ1

)
(∂μχ)2

− 1√
6

(ξ1 − ξ2)r(
ξ2r2 + ξ1

)2 (∂μχ)(∂μr)

− 1

2

ξ2
2 r

2 + ξ2
1(

ξ2r2 + ξ1
)3 (∂μr)

2 − 1

2

r2

ξ2r2 + ξ1

×
(

1 − e−2χ/
√

6
)

(∂μθ)2 − VE (χ, r, θ). (2.5)

The potential energy (2.2) should be expressed in terms of the
redefined fields as well. In the following, the quartic terms are
assumed to be predominant and the quadratic ones, propor-
tional to mi will be neglected. The resulting potential energy
is approximated by

VE (χ, r, θ) = λ1 + λ2r4 + 2λLr2 + 2λ5r2 cos(2θ)

8
(
ξ2r2 + ξ1

)2

×
(

1 − e−2χ/
√

6
)2

, (2.6)

with the definition λL ≡ λ3 + λ4. The subscript E will be
omitted from now on, and it will be understood that all the
variables are related to the Einstein frame.

It is convenient to remark that the distinction between
Jordan and Einstein frames is important at the early universe.
However, for large times the scale factor 
2 ∼ 1 and this
distinction is not essential [35].

Now, the potential for the quotient field r defined in (2.4)
is given by [45,45,47]

V (r) � λ1 + λ2r4 + 2λLr2

8
(
ξ1 + ξ2r2

)2 . (2.7)

The kinetic term for such field is not canonical, and scales as√
ξ . The canonically normalized field is very massive [46]

and is not slow rolling. Thus r rapidly stabilizes at the mini-
mum r0 and the effective potential of the neutral Higgses and
the pseudo-scalar Higgs becomes

V (χ, θ) � λeff

4ξ2
eff

(
1 − e−2χ/

√
6
)2

[1 + δ cos(2θ)] , (2.8)

where δ ≡ λ5r2
0 /λeff , ξeff ≡ ξ1 + ξ2r2

0 , and λeff ≡(
λ1 + λ2r4

0 + 2λLr2
0

)
/2, with the finite value of r2

0 given
by

r2
0 = λ1ξ2 − λLξ1

λ2ξ1 − λLξ2
. (2.9)
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In this case, the effective non-minimal coupling and the effec-
tive quartic coupling are

λeff = λ1λ2 − λ2
L

2

λ1ξ
2
2 + λ2ξ

2
1 − 2λLξ1ξ2

(λ2ξ1 − λLξ2)
2 ,

ξeff = λ1ξ
2
2 + λ2ξ

2
1 − 2λLξ1ξ2

λ2ξ1 − λLξ2
.

In these terms, the inflationary vacuum energy becomes [45,
45,47]

V0 = λ1λ2 − λ2
L

8
(
λ1ξ

2
2 + λ2ξ

2
1 − 2λLξ1ξ2

) . (2.10)

Note that U (θ) becomes flat (or trivial) when δ = 0.
In the discussion given above, the quadratic terms of the

potential (2.2) have been neglected. However, these terms are
relevant in our model, since they are decisive in the evolution
of the axion field. The quadratic potential in the Einstein
frame with the variables (2.4) is given by

Vq=
M4

p

2(ξ1 + ξ2r2)2h2
1

(−m2
1 − m2

2r
2 + 2m2

3r cos θ),

(2.11)

where the dependence on Mp was inserted back.

3 A scenario for avoiding the axion isocurvature
problem

In view of the formulas given above, it is tempting to define
θ = a/ fa from where an axion a emerges. Recall that the
standard axion QCD potential goes as V (a) ∼ 1−cos(a/ fa)
while, ifm2

3 > 0 in (2.11), the term cos(a/ fa) in the potential
(2.11) is positive. Thus the early and the QCD contributions
are of opposite sign. This will be essential in our scenario,
by the reasons discussed below Eq. (2.1). In addition, the
potential (2.8) also looks like an axion one, but with the
opposite sign if δ is positive. This non-zero value for the
potential makes perfect sense, since the parameter δ ∼ λ5

and the coupling induced by a non-zero λ5 violates explicitly
the Peccei–Quinn symmetry of the model. When the depen-
dence on Mp is inserted back into (2.8), the induced potential
becomes

V (χ, a) � M4
pλeff

4ξ2
eff

(
1 − e−2χ/Mp

√
6
)2

[
1 + δ cos

(
2a

fa

)]
.

(3.12)

Thus the potential gets factorized as V (χ, a) = V (χ)U (a)

with V (χ) the standard Higgs potential in the transformed
frame. Furthermore the function V (χ) coincides with the
potential for the Higgs in the single inflation model [35]. For
larger times the conformal factor 
2 ∼ 1, H ∼ χ , and a
pion description of the strong interactions is possible. Then

V (a, χ) becomes equal to the potential in the Jordan frame.
The resulting expression clearly resembles (2.1) as well.

Despite these resemblances with axion physics, the appli-
cation of the formulas given in the previous section to the
KSVZ scenario is not straightforward. First of all, the stan-
dard double Higgs extensions of the Standard Model contain
two Higgs doublets �1 and �2 with hyper charge Y = 1/2,
otherwise the potential (2.2) would not be gauge invariant.
Instead, the KSVZ axion model contains the Standard Model
Higgs � and a hidden complex Peccei–Quinn scalar, which
we will denote ϕ, which is neutral under the electroweak
interaction. Thus direct application of the previously pre-
sented results may enter in conflict with gauge invariance.

The drawbacks described above will be avoided as fol-
lows. First of all, a new real neutral scalar field β will be
introduced in the picture. The lagrangian to be considered is
now

L J√−gJ
= M2

p

2
R +

(
ξ1|�|2 + ξ2|ϕ|2 + c.c.

)
R

− ∣∣Dμ�
∣∣2 − ∣∣∂μϕ

∣∣2 −1

2

∣∣∂μβ
∣∣2 − VJ (�, ϕ, β) .

Here the covariant derivative Dμ corresponds to the elec-
troweak interactions, as before, and only the Higgs � par-
ticipates in this interaction. The potential VJ (�, ϕ, β) is a
modification of (2.2) and is given by

VJ (�, ϕ, β) = 1

2
λ1(|�|2 − v2

1)2 + 1

2
λ2(|ϕ|2 − f 2

a )2

+ 1

2
m2

ββ2 +
(

1

2
λ5|�|2ϕ2 + μβϕ + c.c.

)
.

(3.13)

This potential is gauge invariant and it is assumed that v1 ∼
246 GeV while fa is not far from the Planck scale. The two
Higgs fields are parameterized as

� = 1√
2

(
0
h

)
, ϕ = 1√

2
ρeiθ . (3.14)

In the following the case ξ2 = 0 will be considered by sim-
plicity. By defining the standard single Higgs inflation vari-
able [35]

χ =
√

3

2
Mp log

(
1 + ξ1h2

M2
p

)
, (3.15)

the resulting lagrangian becomes

LE√−gE
= M2

p

2
R − 1

2
(∂μχ)2 − e

−
√

2
3

χ
Mp

2
(∂μρ)2

+ e
−

√
2
3

χ
Mp

2
ρ2(∂μθ)2+e

−
√

2
3

χ
Mp

2

∣∣∂μβ
∣∣2 −VE (h, ρ, θ),

(3.16)
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where now

VE (h, ρ, θ) = e
−2

√
2
3

χ
Mp

(
λ1

8
(h2 − v2

1)2 + λ2

8
(ρ2 − f 2

a )2

+ 1

2
m2

ββ2 + 1

4
λ5h

2ρ2 cos(2θ) + μβρ cos(θ)

)
. (3.17)

In the following, the case λ5 = 0 will be considered, the
effect of this parameter will be analyzed later on. Models of
the type described above were considered recently in [62].

Before we enter into the details of the model it may be
convenient to describe how the bound fa < 1012 GeV is
avoided. Assume that ρ rolls fast to its mean value ρ = fa
inside the inflationary period while the field χ drives infla-
tion. The behavior of the field β is not of importance, and
it may be slow rolling and subdominant. However, it should
roll to its minima before the QCD era. The relevant point is
the value of the parameter μ, which should be small enough
for the axion a = faθ to be frozen till the QCD era. In addi-
tion, the mass of the field β should be mβ >> Hqcd, which
ensures that this field rolls from its initial value β0 ∼ Mp to
its minimum βm before the QCD era. The minimum βm for
a generic value of the axion a can be calculated from (3.17),
the result is

βm = −μ fa
m2

β

cos

(
a

fa

)
.

In the last formula, it has been assumed that ρ reached the
minimum ρ ∼ fa . In these terms the part of the potential
(3.17) corresponding to β and a = faθ becomes

V (a) = −μ2 f 2
a

2m2
β

cos2
(

a

fa

)
. (3.18)

On the other hand, if μ << H2
qcd the axion never moves,

since its mass is smaller than the Hubble constant H till the
QCD era. Initially it was in a maximum a ∼ 0. However,
when β went into a minimum, it follows from (3.18) that the
point a ∼ 0 became a minimum due to the appearance of
the minus sign. But since a never rolled it is clear that its
initial value at the QCD era is a ∼ 0. This contradicts the
hypothesis of [29,30] that a ∼ faπ at the QCD era, thus the
bound fa < 1012 GeV is neatly avoided. This is precisely
the goal of the present work.

In addition to the features described above, it would be
desirable to keep the standard QCD axion description almost
unchanged, and this impose further constraints for the param-
eter μ. Recall that, near the QCD era, the standard tempera-
ture dependent axion mass ma(T ) is turned on and the axion
potential in our model becomes

V (a) = −μ2 f 2
a

2m2
β

cos2
(

a

fa

)
+ m2

a(T ) f 2
a

[
1 − cos

(
a

fa

)]
.

(3.19)

The axion mass ma(T ) is the temperature dependent QCD
one, its explicit form is [16]

ma(T ) ∼ ma(0)b

(
�qcd

T

)4

, T > �qcd, (3.20)

with b a model dependent constant. The mass ma(0) is the
axion mass for temperatures T < �qcd, it is temperature
independent and its value is given by [7]

ma(0) ∼ mπ fπ
fa

∼ 10−21 GeV. (3.21)

The constraint to be imposed is that the effect of the
cos2(a/ fa) be smaller than the cos(a/ fa) one. In other words,
the idea is not to modify the standard QCD axion picture con-
siderably. This will be the case when

μ2 << m2
a(0)m2

β.

Although the expect mass axion (3.21) is expected to be very
tiny, the field β is allowed to have mass values mβ not far
from the GUT scale, so μ may take intermediate values of
the order of the eV2 or MeV2.

The last two paragraphs assume that χ is slow rolling and
that ρ rolls to its minima in the case of inflation. In order to
further justify this assumption, assume that both fields are
slow rolling have initial transplanckian values ρ0 and h0 of
the same order. By taking into account the definition (3.15)
it is seen that the contribution to H2 of the field h, under the
slow rolling assumption, is

H2
h = VhE

M2
p

∼ λ1M2
p

ξ2
1

(
1 − e

−
√

2
3

χ
Mp

)2

. (3.22)

On the other hand, as the value fa ∼ Mp it follows that the
ρ contribution to the Hubble constant is

H2
ρ = VρE

M2
p

∼ (c4 − 1)
e
−

√
2
3

χ
Mp λ2M2

p

ξ2
1

, (3.23)

with the constant c defined through ρ = c fa ∼ cMp. This
constant takes moderate values, of the order between the
unity and 102. Now, the kinetic plus the mass term for ρ

in (3.16) becomes

Lkρ = (∂μρ)2

2

(
1 + ξ1h2

M2
p

) + λ2v
2
2ρ2

(
1 + ξ1h2

M2
p

)2 ,

where again (3.15) has been taken into account. The kinetic
term of the last expression is not canonically normalized. The
canonical normalized field

ρ′ = ρ√
1 + ξ1h2

M2
p

,
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acquires the following mass:

m2
ρ′ = λ2v

2
2ρ2

1 + ξ1h2

M2
p

= e
−

√
2
3

χ
Mp λ2M

2
p. (3.24)

This mass is to be compared with H2
h in (3.22) or H2

ρ in
(3.23). When it is larger than the Hubble constant, the slow
rolling condition for ρ is spoiled. By comparing (3.23) and
(3.24) it follows that, when c4 < ξ2

1 , one has mρ > Hρ . In
addition, whenλ2M2

p >> λ1M2
pξ

−2
1 it is seen by comparison

(3.22) and (3.24) that, at the stages χ ∼ Mp, the following
inequality occurs:

m2
ρ′ > H2

h .

This shows that the assumption that ρ′ is slow rolling during
inflation is not quite right. It is reasonable to assume that the
Peccei–Quinn radial field ρ in fact goes to its mean value
ρ = fa ∼ Mp during inflation while χ keeps the universe
accelerating, as in ordinary Higgs inflation [35].

There exist scenarios with two fields evolving during infla-
tion, for which one of the fields might roll quickly to the
minimum of its potential and then the problem reduces to
single field inflation. Models of hybrid inflation [63–65] or
other models of first-order inflation [66–71] provide exam-
ples of this situation. The analogous holds for the model
presented here. Since the Peccei–Quinn symmetry is broken
inside inflation the topological defects that may be formed
are arguably diluted away by the rapid universe expansion.
This point will be discussed in detail in the next section.
Now, as the Peccei–Quinn rolls fast to the minima, the dom-
inant contribution for H2 is h. Thus, the same cosmolog-
ical bounds for ξ1 as in standard Higgs inflation [35] may
be imposed as approximations namely, ξ1 ∼ 5 · 104 and
Hinf = λ1Mpξ

−1/2
1 ∼ Mgut.

3.1 Detectability of the β scalar

The previous scenario introduces a field β which has a wide
mass range, Hqcd < mβ < Mgut. In view of this, it is of
importance to discuss if this particle can be detected in future
colliders. This aspect may be clarified by analyzing its cou-
plings to the other states of the model. An inspection of the
potential (3.13) shows that it has a coupling with the axion
field a and it mixes with the Peccei–Quinn field ϕ. This mix-
ture is very small and will be analyzed below. As is well
known, the hidden Higgs ϕ in the KSVZ model is coupled
to some hidden quark Q which is a singlet under the elec-
troweak interaction [9,10]. This coupling is given by

Ladd = iψγ μDμψ − (δψ RϕψL + δ∗ψ Lϕ∗ψR). (3.25)

Here ψ is the wave function of the hidden quark Q. The
first term iψγ μDμψ includes the kinetic energy of the new

Fig. 1 Decay of the mass eigenstate E2 into two gluons Gμ

quark and its coupling with the gluons; the parameter δ of the
Yukawa coupling between ϕ and ψ is an undetermined one.
The heavy quark mass is given by mψ = δϕ0. Note that the
axion coupling constant is related to the vacuum expectation
value according to fa = √

2ϕ0, and the axion mass goes as
ma ∼ f −1

a . On the other hand, the mass of the quark Q is
proportional to fa ; so the heavier the quark is, the lighter the
axion will be. The mass of the hidden quark is expected to
be very large, since in our model fa ∼ Mp. A reasonable but
not unique value may be that mQ ∼ Mgut, and we will use
this value for estimations in the following.

Now, if the field β is produced in an accelerator then it
may decay into the channel β → a + a or into two gluons
by the triangle diagram of Fig. 1. Let us focus in this triangle
diagram first. The potential (3.13) implies that β and ϕ mix,
their mass matrix is

M =
(
m2

ϕ μ

μ m2
β

)
. (3.26)

The parameter μ is very small, namely μ << m2
β << m2

Q ,

so the mass eigenvalues are essentiallym2
ϕ andm2

β . The mass
eigenstates are then approximated by

E1 � δϕ − μ

f 2
a

δβ, E2 � δβ + μ

f 2
a

δϕ.

Here δϕ are the radial excitations of the field ϕ and δβ the
vacuum excitations of the β field. The first eigenstate corre-
sponds to the mass mϕ and the second one to mβ . The small
mixing triggered by μ induces a Yukawa coupling for the
state E2 with numerical value δeff ∼ μδ f −2

a . On the other
hand, this second state is allowed to have a wide mass range,
in particular, it may be mβ ∼ 100 GeV, which is inside cur-
rent accelerator technology. The decay width of the Fig. 1
can be estimated in the limit mQ >> mβ as

�2 � δ2
effα

2
s m

3
β

m2
Q

�
(

μ

f 2
a

)2 δ2α2
s m

3
β

m2
Q

. (3.27)
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This value follows from dimensional analysis and from the
fact that such decays are proportional to m3

β [72–75]. If this
were the main decay channel and we assume that the acceler-
ator can reach the TeV scale, then the maximum probability
of decay corresponds to mβ ∼TeV. The mean life time will
then be

τ2 �
(

f 2
a

μ

)2 m2
Q

δ2α2
s m

3
β

≥ 1030 yrs.

Here it was assumed that αs ∼ 1 and δ ∼ 10−3. This life time
is enormous. The reason is that the triangle is very massive,
and the coupling between E2 and the fermions is of order
μ/ fa , which is extremely small. Thus, if the state E2 were
produced in an accelerator, its main decay channel would
be E2 → a + a, which is faster than the triangle diagram
channel. However, for this decay to take place, the state E2

has to be produced inside the accelerator. A simple though
convincing analysis shows that its main production channel is
given by gluon fusion. This process is described by a diagram
analogous to the one in Fig. 1. The cross section is given by
[72–75]

σ(gg → β) = 8π2�2

N 2
gmβ

δ(s − m2
β)

where �2 is given in (3.27) and Ng is the number of different
gluons. It follows then from (3.27) that

σ(gg → β) ∼
(

8π2μ

f 2
a

)2 δ2α2
s m

2
β

Ngm2
Q

.

This expression is fully suppressed since mβ << mQ and
μ << f 2

a . Thus, the state E2 cannot be produced in a modern
accelerator and is not dangerous from the phenomenological
point of view.

4 The issue of topological defects formation

In the previous sections, a model that solves the isocurva-
ture between axion and high energy inflationary models has
been constructed. In addition, it has been shown that, for
this scenario, the vacuum realignment mechanism does not
give a significant contribution to the present energy density.
However, there exist other possible sources of axions namely,
topological defects. In fact, this issue is a delicate one, since
a density value large enough of such defects may be in direct
conflict with observations. In the following this problem will
to some extent be considered in detail. The analysis below is
based on some standard references such as [19–25] and [56–
61], where some numerical features are largely discussed.

4.1 Generalities about defect formation

It may be convenient to discuss first some general knowledge
about topological defects formation, this knowledge will be
applied to our specific case later on.

Axion production by global strings Consider first the sim-
plest Peccei–Quinn model

L = 1

2
∂μ�∂μ�∗ + λ

2
(��∗ − fa)

2.

The global U(1) transformation � → eiα� is a symmetry for
the model. This scenario admits cosmic strings for which the
mean value < � > is different from fa only inside the string
core. The width of the core is of the order δs ∼ (λ fa)−1. For
long n = 1 strings one has < � >∼ faeiφ outside the string
core, with φ the azimutal angle and the string is assumed to
lie on the z axis. The energy of such strings is divergent, since
the U (1) symmetry of the model is a global one. However, a
natural cutoff is the typical curvature radius of the string or
a typical distance between two adjacent strings. By denoting
such cutoff as L it follows that the energy per length of the
string is

μ ∼ f 2
a log(L f −1

a λ−1).

Two strings with different values of 	θ attract one to another
with a force F ∼ μ/L . The scale of the string system at
cosmic time t is of the order of t .

The number of strings inside every horizon is of course an
unknown parameter. However, it is plausible that the values
of the axion a(x, t) are uncorrelated at distances larger than
the horizon. If this is the case, then by traveling around a path
going through a path with dimensions larger than the horizon
size one has 	a = 2π fa . This suggests the presence of a
string inside any horizon zone. These strings are stuck into a
primordial plasma and their density grow due to the universe
expansion a(t) ∼ √

t . However, the expansion dilutes the
plasma and at some point, the string starts to move freely.
The energy density of strings is know to be ρs ∼ μ/t2.
For matter instead, such density is ρm ∼ 1/GN t2 [58]. The
quotient between these contributions is

ρs

ρm
∼

(
fa
Mp

)2

log

(
t

λ fa

)
.

The density of axions produced by these strings has been
calculated in [56], the result is roughly

nsa(t) = ξr N 2

χ

fa
t2 , (4.28)

where ξ is a parameter of order of the unity, and the other
unknown parameters χ and r take moderate values. In partic-
ular, the parameter χ express our ignorance about the precise
value of the cutoff L . The contribution to the energy density
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coming from these strings is

ρs = ma
Lr

χ

N 2 f 2
a

t1

(
a1

a0

)3

. (4.29)

Here a1/a0 is the quotient between the scale factor at the
time t1 and the present one. This density should not be larger
than the critical density today, and this requirement usually
impose constraints for the models on consideration.

Defects produced by massive axions The other case to
be considered is that the Peccei–Quinn symmetry is only
approximated, which means that the axion is massive from
the very beginning [58]. In several axion models, this picture
holds for times larger than the age t1 defined byma(t1)t1 = 1.
However, in our case the axion is massive from the very
beginning. Now, in a generic situation, by assuming that the
radial oscillations of the Peccei–Quinn field are not large
enough, the effective lagrangian for the θ field is

Ls = f 2
a ∂μθ∂μθ + m2

a(cos θ − 1).

The equation of motion derived from this lagrangian is

∂μ∂μθ + m2
a sin θ = 0.

A domain wall solution for this equation is

θ = 4 tanh−1 exp(max), (4.30)

where x is the direction perpendicular to the wall. The thick-
ness of the wall is approximately δ ∼ 1

ma
. The energy den-

sity per unit area is exactly σ = 16m2
a fa . These defects are

formed as ma > t−1. At later time the system corresponds to
strings connected by domain walls. Their linear mass density
is

μ ∼ f 2
a log(maλ fa)

−1. (4.31)

These strings form the boundary of the walls and of the holes
in the wall. The particles and strings does not have an appre-
ciable friction on the wall. The force tension for a string of
curvature R is F ∼ μ

R , and this quantity is smaller than the
wall tension σ when

R <
μ

σ
. (4.32)

At t < μ/σ the evolution is analogous to the massless case.
In the opposite case t > μ/σ , the physics goes as follows.
The curvature radius R becomes large and the system is dom-
inated by the wall tension. The domain walls will shrink and
pull the strings together. As the wall shrinks, their energy is
transferred to the strings, and energetic strings pass one into
another and the walls connecting them shrinks. As a result
the system violently oscillates and intercommutes. Due to
this behavior, the strip of domain wall connecting the inter-
commuting string breaks into pieces. When the intersection
probability is p ∼ 1 the strings break into pieces μ/σ at

t ∼ μ/σ . A piece of the wall of size R loses its energy due
to oscillations,

dM

dt
∼ −GM2R4ω6 − GσM.

The decay time is

τ ∼ 1

Gσ
. (4.33)

For closed strings and infinite domain walls without strings
the mean life time is of the same order. This result is inde-
pendent on the size, thus the domain walls disappear shortly.
The contribution to the energy density is

nsa(t) = 6 f 2
a

γ t1

(
R1

R0

)3

. (4.34)

Here γ is an unknown parameter which in numerical simu-
lations seems to be close to 7. Usually the domain walls con-
tributions (4.34) are subdominant with respect to the string
contributions.

4.2 The formation of defects in our model

After discussing these generalities, the next point is to ana-
lyze the presence of topological defects in the our model. At
first sight, the axion we are presenting is massive at the early
universe and the direct application of (4.34) with fa ∼ Mp

gives an unacceptably large value for the energy density.
However, as discussed below (4.30), the domain walls are
formed when ma > t−1. This arguably never happens in our
case since the axion mass is fixed to be ma < H ∼ t−1

until the very late time t1ma(t1) = 1. On the other hand by
defining the “string” time

tc = μ

σ
� fa

m2
a
,

it follows that the condition t > μ/σ is not satisfied until
the universe age is close to t1. Before this era, as argued
below (4.32) the massless string description is the correct
one. The direct application of Eq. (4.29), which is valid for
the massless case, also gives a bad result. However, in our
case, the symmetry breaking occurs inside the inflationary
period. Thus the argument that there is at least one string
per horizon given above Eq. (4.28) is not necessarily true,
instead the axion value is arguably homogenized over an
exponentially large region, and the strings are diluted away.
The standard picture is that when t = t1 the strings are edges
of N domain walls, but we expect this dilution to be such
that the radiated axion density is not significant. Of course,
a precise numerical simulation for this may be very valuable
in a future. In any case, our suggestion is that the defects that
appear in our scenario are not dangerous from the cosmolog-
ical point of view due to the mentioned dilution.
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5 The consequences of the parameter λ5 of the model

In the previous sections, the parameter λ5 has been set to
zero in (3.17). One of the reasons is that a non-zero value for
this parameter induces a term proportional to cos(2θ) for the
axion. The factor 2 inside this cosine is problematic. Recall
that our model, as is customary in axion physics, assumes that
the axion a = faθ is initially at a maximum. But, due to the
factor 2, this maximum may be a ∼ 0 as before, or a ∼ π . If
the parameter λ5 is small enough, then the axion is frozen till
the QCD era. Near this era the term Vqcd(a) = m2

a(T ) f 2
a (1−

cos θ) is turned on. The value a ∼ 0 becomes a minimum
when this term appears. However, it is simple to check that
the value a ∼ π is still a maximum. The last situation is
within applicability of the hypothesis of [29,30], thus the
misalignment mechanism produces an extremely large value
for the axion density today. This density is larger than the
critical density, and this does not pass cosmological tests.

In addition, note that the λ5 part of the potential (3.17) at
the reheating period, for which χ ∼ 0, is

V (θ, h) = 1

4
λ5h

2ρ2 cos(2θ),

where the overall exponential e
−2

√
2
3

χ
Mp has been neglected

since 
2 ∼ 1. By taking into account (3.15) it follows that1

h2 ∼ M2
p

ξ1
(1 − e

−2
√

1
6

χ
Mp )e

−2
√

1
6

χ
Mp ∼ Mp|χ |

ξ1
,

for very small χ . Thus there is a coupling between the axion
a and the Higgs related field χ of the form

V (θ, h) = λ5Mp|χ |
4ξ1

f 2
a cos

(
2a

fa

)
,

which generates at first order a Yukawa coupling mass term

LY = 8λ5Mp|χ |√
6ξ1

e2, m2
a = 8λ5Mp|χ |√

6ξ1
(5.35)

with e = π−a the axion fluctuation from its initial minimum
a = π . The oscillations of χ may induce non-perturbative
generation of axions [35]. In fact, the equation of motion for
the kth Fourier component ek is then

d2ek
dt2 +

(
k2

a2 + m2
a

)
ek = 0.

This equation of motion is formally identical to the one
for the vector bosons Wk considered in [35]. This reference
shows that during the reheating period the scale factor goes
as a(t) ∼ t2/3 for t the coordinate time, and corresponds to

1 Note that the quantity χ is replaced by |χ |. This distinction is not
essential during inflation but it is during the reheating period [35].

a matter dominated period. In addition, the time behavior of
the field χ is approximated by

χ(t) ∼ χend

π j
sin(Mt), M = Mp

ξ1
, χend ∼ Mp.

The non-perturbative creation of particles takes place in the
non-adiabatic period for which ma satisfies

|dma

dt
| > m2

a .

In this region one may use the approximation sin(Mt) ∼ Mt
and the equation of motion becomes

d2ek
dτ 2 +

(
K 2 + |τ |

)
ek = 0,

where the quantities

τ = γ t, γ =
(

2
Mpλ5χendM√

6π jξ1

)1/3

, K = k

aγ

have been introduced, with a(t) taken as a constant for each
oscillation. Since this equation is already considered in [35]
we can take the results of that reference for granted. In these
terms, it is found that the number of axions generated in the
first oscillations is

n( j) = 1

2π2R3

∫ +∞

0
dkk2[|Tk |2 − 1] = qa

2
I M3, (5.36)

with

I = 0.0046, qa = Mpλ5χend

ξ1πM2 .

Since ξ1 ∼ 5 · 104 it follows that, in the first oscillation, the
mean axion number is n(1)

a ∼ λ · 1046 GeV3. The averaged
mass during the first oscillation is given by

m(1)
a ∼ 2Mpλ5χend

ξ1π
∼ λ5 · 1034 GeV.

Thus the axion density present at this early stage is

ρ(1)
a ∼ m(1)

a n(1)
a ∼ λ2

51080 GeV4.

From this it follows that for a value λ5 ∼ 10−7 the density
value is around ρ

(1)
a ∼ 1066 GeV4, which is two orders less

than the critical density at this stage namely,ρc ∼ 1068 GeV4.
The value λ5 < 10−7 is small but reasonable. However,

the addition of the λ5 term V5 = λ5�
2ϕ2 may generate a

large mass term for the Higgs � when the Peccei–Quinn field
ϕ goes to its mean value � ∼ faeiθ ∼ Mpeiθ . The resulting
additional mass is of the form m′

h ∼ λ5 f 2
a ∼ λ5M2

p. This
term should not affect the ordinary Higgs mass term and this
condition forces λ5 < 10−34. This value is extremely small
and the resulting energy density is suppressed at least by 27
orders of magnitude from the critical one.
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For all the reasons stated above, it is safe to assume that
the λ5 term should be strongly suppressed and, in fact, λ5

may be set equal to zero.

6 Discussion

The present work introduces a two field inflationary model
involving the KSVZ Peccei–Quinn hidden Higgs ϕ and the
ordinary Higgs �. This model is in agreement with the basic
cosmological constraints, and relaxes the tension between
axion and high energy inflationary models. Furthermore, the
presence of small but explicit Peccei–Quinn violating terms
induce a non-zero axion potential V (a), whose sign is oppo-
site to the standard one V (a) ∼ m2

π f 2
π (1 − cos(a/ fa)). This

interchanges minima with maxima at some point of the uni-
verse evolution and in particular, the point a = 0 is a maxima
at the beginning of the universe. This suggest that if here that
the dynamic of such axion is such that ma(t) < H(t) then it
never rolls from the top of the potential a ∼ 0. At large times
the contributionm2

π f 2
π is turned on, and the potential changes

the sign. However, the axion did not roll and it stays now near
the minimum a = 0. Under these circumstances the bounds
of [29,30] are avoided. Thus the axion constant is not forced
to be fa < 1012 GeV. In fact it can be fa ∼ Mp, which is in
harmony with high scale inflationary models. This implies
that the axion mass may be ma ∼ mπ fπ/ fa ∼ 10−21 GeV,
which is a very tiny value.

The model presented here introduces a real scalar β which
may have a mass below the TeV scale. However, we have
checked that this state is sterile from the accelerator point of
view, since its coupling with the Standard Model particles is
strongly suppressed.

We have also discussed the formation of topological
defects for the present model. Although our discussion is
not numerically precise, we suggest that the density of these
defects is not considerable and they do not constitute a prob-
lem from the cosmological point of view.

In the authors’ opinion, the model presented here comple-
ments the ones of Ref. [48], which corresponds to the DFSZ
axion model. In the later case, the isocurvature problem is
avoided in the context of several Higgs inflationary scenar-
ios [48]. The model that the authors of [48] consider contains
three Higgs Hu , Hd , and φ. The two fields Hu and Hd are
coupled to the curvature with couplings ξu and ξd , while φ

is not. All these three fields have Peccei–Quinn charges, and
the axion a is identified as a combination of the phases θu ,
θd , and θφ for these fields. The coefficients of this combi-
nation depend on the mean values of these fields. The main
point is that the mean effective values of the radial fields
have different values at the inflationary epoch than today. At
present universe these mean values satisfy vφ >> vu, vd ,
and the axion today is given predominantly by the phase φθ .

At the early universe instead, vφ << vu, vd , and the axion
is mainly a combination of the phases θu and θd . Based on
this the authors of [48] construct an ingenious mechanism for
which the isocurvature fluctuations are strongly suppressed.

The model described above for the DFSZ axion relies in a
mixing of phases, while there is only one phase in the standard
KSVZ axion model. Thus, the techniques employed in [48]
are not applied directly to this axion model. This is in part one
of the motivation for searching for alternative mechanisms
such as the ones presented here.

There is an aspect our model that deserves, in our opinion,
to be improved. The fact that the axion is performing small
oscillations on the minima of the potential V (a) implies that
its contribution to the present energy density of the universe
is not appreciable. Thus, our model solves the isocurvature
tension between the high energy inflationary models and the
axion ones, but at the cost of discarding the axion as the
main component of dark matter. It may be interesting to find
a variation of our scenario where the predicted density is of
the order of the critical one, but we suspect that this is not an
easy task. We leave this for future research.
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