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Abstract We present the extension of two general algo-
rithms for the treatment of infrared singularities arising in
electroweak corrections to decay processes at next-to-leading
order: the dipole subtraction formalism and the one-cutoff
slicing method. The former is extended to the case of decay
kinematics which has not been considered in the literature
so far. The latter is generalised to production and decay pro-
cesses with more than two charged particles, where new “sur-
face” terms arise. Arbitrary patterns of massive and massless
external particles are considered, including the treatment of
infrared singularities in dimensional or mass regularisation.
As an application of the two techniques we present the calcu-
lation of the next-to-leading order QCD and electroweak cor-
rections to the top-quark decay width including all off-shell
and decay effects of intermediate W bosons. The result, e.g.,
represents a building block of a future calculation of NLO
electroweak effects to off-shell top-quark pair (W+W−bb̄)
production. Moreover, this calculation can serve as the first
step towards an event generator for top-quark decays at next-
to-leading order accuracy, which can be used to attach top-
quark decays to complicated many-particle top-quark pro-
cesses, such as for tt̄ + H or tt̄ + jets.

1 Introduction

The calculation of radiative corrections to cross-section
predictions at next-to-leading order (NLO) saw tremen-
dous progress in the past decades leading to a high degree
of automation of calculations. This advancement was also
driven by the development of general techniques for the treat-
ment of infrared (IR) singularities. Such divergences arise in
the intermediate steps of the calculation involving massless
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states and cancel in the final result by virtue of the Kinoshita–
Lee–Nauenberg (KLN) and factorisation theorems. The var-
ious methods that were proposed in the literature can be
broadly classified into two types: the phase-space-slicing [1–
5] and the subtraction formalisms [6–20]. Both approaches
allow for the analytic cancellation of all IR singularities with-
out jeopardising the flexibility of a fully differential numer-
ical phase-space integration.

In the first part of the paper we consider the so-called
dipole subtraction formalism, which is one of the most estab-
lished subtraction methods. It was continuously extended
since its original formulation in Ref. [12], which was
restricted to the computation of NLO QCD radiative correc-
tions involving only massless partons, to cover all possible
cases that are relevant in scattering processes. In Ref. [16]
the dipole formalism was developed for the calculation of
NLO QED corrections where the emission of photons from
both massless and massive fermions was considered. The
extension of the original algorithm for NLO QCD calcula-
tions to the case with massive partons was worked out in
Refs. [17,18]. The treatment of non-collinear-safe observ-
ables in QED corrections was presented in Ref. [19] where
the formalism was further extended to cover the various
fermion–photon splittings not considered in Ref. [16].

For the case of decay processes, subtraction terms were
constructed in Ref. [21] for the calculation of NLO QCD cor-
rections to the radiative decay of the top-quark. These sub-
traction terms were based on the results of Ref. [22] and con-
structed to fit into the dipole subtraction formalism. Although
the discussion in Ref. [21] was restricted to the case of the
top-quark decay, the subtraction terms given there should in
principle be applicable to the decay of any strongly interact-
ing particle, however, with the restriction that only massless
partons appear in the final state.
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So far, no general algorithm exists for the calculation of
NLO QED corrections to decay processes using the dipole
subtraction formalism. In this paper we fill this gap by explic-
itly constructing such a process-independent subtraction term
considering both massless and massive final-state fermions
and work out its extension to the treatment of non-collinear-
safe observables. The further extension of the formalism to
treat massive partons in NLO QCD corrections to decay pro-
cesses is then fully straightforward.

The one-cutoff phase-space slicing (OCS) method, con-
sidered in the second part of the paper, was initially intro-
duced in Ref. [1] for the calculation of NLO QCD cor-
rections to the multi-jet production cross section in e+e−
annihilation. As such, its application was limited to the case
with only massless coloured partons in the final state. It was
later extended to allow for incoming partons [2] and mas-
sive quarks [4]. The OCS method is distinguished by the
feature that one single Lorentz-invariant cut is introduced to
isolate the soft and/or collinear regions in the real-emission
phase space. Another frequently used slicing method, which
is not considered in detail in this paper, is the so-called two-
cutoff slicing method [5,23]. As a consequence of introduc-
ing two independent cuts on energies and angles, however,
this approach is not manifestly Lorentz invariant.

In its original formulation, the OCS method is restricted
to amplitudes that involve only two sources (particles) of IR
singularities, a feature that is naturally supported by colour-
ordered QCD amplitudes, but neither by sub-leading colour
structures in QCD nor by IR singularities originating from
U (1) gauge bosons, such as the photon in QED. Furthermore,
no results employing mass regularisation are documented in
the literature, although it is a common choice in the calcu-
lation of electroweak radiative corrections. In this paper we
extend the OCS formalism in these two respects, i.e. present-
ing a formulation employing mass regularisation and dealing
with an arbitrary number of soft or collinear singularities. To
this end, we employ results from the aforementioned dipole
subtraction formalism to obtain an approximation of the real-
emission matrix elements in the singular regions together
with the associated phase-space parametrisations suitable for
the subsequent analytic integration. Furthermore, we discuss
the subtleties that arise in the case of processes that involve
arbitrary many sources of IR singularities.

At its design luminosity in Run 2, the LHC will be a top-
quark factory, copiously producing top-quarks in pairs, as
single particles, or in association with other particles. As the
heaviest elementary particle known to date, the top-quark is
a unique window to explore the mechanism of electroweak
symmetry breaking and to test the Standard Model (SM) on
the one hand, and to probe physics beyond the SM on the
other. Apart from the top-quark mass, key observables in the
top sector comprise the top-quark width and all accessible
production cross sections, for which precise theoretical pre-

dictions are required. In these predictions the top-quark width
�t plays a double role: as an observable in its own right and
as an ingredient in cross-section predictions that take into
account top-quark decays. In the latter case, �t enters the
Breit–Wigner propagator of the top-quark resonance, so that
it should be known to the same perturbative order as the cal-
culated cross section.

The corrections to the top-quark decay process t → bW+
are known at NLO [24–27] and next-to-next-to-leading order
(NNLO) [28–32] in QCD and up to NLO for the electroweak
(EW) corrections [33–38]. However, all prior calculations
either consider on-shell W bosons or only partially account
for off-shell effects by performing an expansion about the
intermediate W resonance. As an application of the tech-
niques introduced in this work, we present the fully differ-
ential calculation of the QCD and EW corrections at NLO
to the three-body decay of the top-quark, accounting for
off-shell effects of the intermediate W boson within the
complex-mass scheme [39–41] and retaining a finite bottom-
quark mass. We consider both the hadronic and the semi-
leptonic decay channels and further allow for non-collinear-
safe photon emission (“bare leptons”) for the latter. The pre-
sented calculation of the NLO EW corrections to the decays
t → bW+ → b�+ν�/bq̄q ′, thus, provides an ingredient to
the (not yet existing) calculation of NLO EW corrections to
the tt̄ production process pp → bb̄W+W− → 6 f including
top-quark decays, similar to the respective NLO QCD cor-
rections to the top-quark decay in the NLO QCD calculation
to pp → bb̄W+W− → 6 f [42–46].

On the experimental side, the first direct experimental
determination of the top-quark decay width was performed
by the experiments at the Tevatron collider [47,48]. It,
however, still suffered from large experimental uncertain-
ties. Recently, the first measurement at the LHC was pre-
sented by the CMS experiment with the data collected at√

s = 8 TeV [49], significantly improving on the previous
measurements, with a precision at the 10 % level.

This paper is organised as follows: In Sect. 2 we briefly
review the general structure of an NLO calculation to
decay processes to set up the notation and conventions used
throughout this work. Section 3 first outlines the dipole sub-
traction formalism in Sect. 3.1 and subsequently discusses its
extension to deal with decay kinematics. Massive final-state
fermions are treated in Sect. 3.2, and the special case of light
fermions is covered in Sect. 3.3, where we also discuss the
modifications for non-collinear-safe observables. The OCS
method is presented in Sect. 4 with a general overview of the
formalism in Sect. 4.1, explaining in particular the origin and
treatment of so-called “surface terms” which arise in the case
of processes with more than two sources of IR singularities.
The various cases that arise from the different combinations
of massless or massive particles in the initial or final states
are covered in Sect. 4.2. The application of the two tech-
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niques to the top-quark decay at NLO is presented in Sect. 5
while the calculational details are summarised in Sect. 5.1.
In Sects. 5.2 and 5.3 we present the numerical results for the
corrections to the decay width and the differential distribu-
tions, respectively. The conclusions and an outlook are given
in Sect. 6.

2 NLO corrections to decay processes – notation and
conventions

The leading-order (LO) partial decay width of a particle with
mass ma decaying into a specific final-state configuration
comprising n particles is given by

�(0) = 1

2p0
a

∫
d�n

1

S{n}

∑
|M0(�n)|2, (2.1)

where M0 is the lowest-order transition amplitude for the
1 → n decay process with

∑
representing the possible sum

(average) over the final (initial) state degrees of freedom and
S{n} is the symmetry factor for identical particles in the final
state. Here we have introduced the abbreviation

d�n ≡ dφ(pa; p1, . . . , pn)

=
(

n∏
i=1

d4 pi

(2π)3 θ(p0
i ) δ(p2

i − m2
i )

)

× (2π)4δ

(
n∑

i=1

pi − pa

)
(2.2)

for the n-particle phase-space measure, where pi and mi

denote the momentum and mass of the i th final-state particle,
respectively, and pa the momentum of the decaying particle,
with pμ

a = (ma, 0) in its centre-of-mass frame. Furthermore,
we have used the shorthand notation �n ≡ {p1, . . . , pn} for
the associated kinematics given by the set of momenta of the
particles.

At NLO, the decay width additionally receives contribu-
tions from radiative corrections,

�NLO = �(0) + �(1), (2.3)

with

�(1) = 1

2p0
a

∫
d�n

1

S{n}

∑
2 Re{δM(�n)(M0(�n))∗}

+ 1

2p0
a

∫
d�n+1

1

S{n+1}

∑
|M1(�n+1)|2, (2.4)

where δM and M1 denote the virtual and real-emission
matrix elements, respectively. Here we assume that the virtual
corrections already include the counterterm contributions, so

that all ultraviolet singularities are properly cancelled after
renormalisation.

The calculation of higher-order corrections involving the
emission of massless particles, in general, leads to the occur-
rence of IR singularities in both the virtual and the real cor-
rections which cancel in the sum of Eq. (2.4) by virtue of the
KLN theorem.1 Although the cancellation of IR singularities
is well understood, in practise, the procedure is non-trivial,
since the virtual and real corrections are defined on different
phase spaces. Moreover, the divergences contained in the real
corrections are implicitly hidden in the phase-space integra-
tion, whereas the singularities in the virtual corrections are
made explicit using regulators when performing the integra-
tion over the loop momentum. To accomplish an analytic can-
cellation of all IR singularities therefore requires one to make
the singularities of the real corrections explicit by means of
regulators. On the other hand, it is desirable to retain the
flexibility of a fully differential numerical approach for the
phase-space integration. Both the slicing and the subtraction
techniques provide a prescription to perform a fully differ-
ential calculation suitable for a numerical evaluation while
having the full analytic control over the IR singularities and
their cancellation. Both approaches exploit the factorisation
properties of the real-emission amplitude in the various sin-
gular limits which we briefly review in the following for the
case of photon radiation off fermions in order to set up our
notation. For further details we refer to Ref. [16] which we
follow closely. Throughout this work we regularise the IR
singularities using mass regularisation where an infinitesi-
mal photon mass mγ is introduced and the masses of the
light fermions m f are retained in the divergent logarithms.
A prescription for the conversion of the results obtained using
mass regularisation to the corresponding expressions using
dimensional regularisation is given in the “Appendix”.

The singular behaviour of emission amplitudes in the soft-
photon limit (k → 0) can be described by the well-known
eikonal approximation where the squared real-emission
amplitude, summed over the photon polarisations λγ , can
be written as follows:

∑
λγ

|M1(k)|2

˜k→0 −
∑
f, f ′

σ f Q f σ f ′ Q f ′ e2 p f p f ′

(p f k)(p f ′k)
|M0|2, (2.5)

where e is the elementary charge. Here the summation over
f, f ′ extends over all charged external particles (of any spin),

1 In case of processes with identified hadrons in the initial and/or final
state, collinear singularities arise for which the inclusiveness assump-
tions of the KLN theorem are not fulfilled. These universal singularities
can be absorbed into a redefinition of the corresponding (NLO) structure
functions given by the parton distribution functions and the fragmenta-
tion functions, respectively.
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and the reduced matrix element M0 is evaluated with the set
of momenta that is obtained by omitting the momentum k of
the soft photon. We have further introduced the sign factors
σ f = ±1 describing the charge flow, which are defined as
σ f = +1 for incoming particles and outgoing anti-particles
and σ f = −1 for incoming anti-particles and outgoing par-
ticles. Overall charge conservation can then be expressed as

∑
f

σ f Q f = 0. (2.6)

For the case of decay processes considered here, the
mass ma of the decaying particle represents the maximal
scale in the process and therefore will never be consid-
ered in the small-mass limit. As a consequence, only final-
state collinear singularities arise where the radiated photon
becomes collinear to a light fermion in the final state. The
asymptotic behaviour of the squared transition matrix in this
limit takes the form

∑
λγ

|M1(pi , k; κi )|2

˜pi k→0
Q2

i e2 g(out)
i,τ (pi , k)|M0(pi + k, τκi )|2, (2.7)

where κi denotes the helicity of particle i which might change
to any other spin value τκi . If i is a spin- 1

2 fermion, the spin
can only potentially change sign, i.e. there is just a sum over
τ = ±. In this case, the functions g(out)

i,τ are given by

g(out)
i,+ (pi , k) = 1

pi k

[
1 + z2

i

1 − zi
− m2

i

pi k

]
− g(out)

i,− (pi , k),

(2.8a)

g(out)
i,− (pi , k) = m2

i

2(pi k)2

(1 − zi )
2

zi
, (2.8b)

with the dimensionless variable

zi = p0
i

p0
i + k0

(2.9)

representing the momentum fraction carried away by the
fermion after the collinear splitting f → f + γ . For the
case of unpolarised fermions, Eq. (2.7) reduces to

∑
λγ

|M1(pi , k)|2
˜pi k→0

Q2
i e2 g(out)

i (pi , k) |M0(pi + k)|2,

(2.10)

with g(out)
i ≡ g(out)

i,+ + g(out)
i,− .

Note that Eq. (2.8a) and (2.8b) does not describe particles
with a spin other than 1

2 . However, any subtraction formalism
based on this asymptotics may still be used for particles with

another spin (such as a W boson) as long those particles are
heavy enough to avoid collinear singularities, because the
asymptotic behaviour (2.5) in the soft-photon limit is spin
independent.

3 The dipole subtraction formalism

As was pointed out in the introduction, so far, no general
formalism exists yet in the literature for the calculation of
NLO QED corrections to decay processes within the dipole
subtraction formalism. We present the construction of such
a general subtraction term in the following and begin in
Sect. 3.1 with a brief overview of the formalism and of
our approach for its generalisation to decay processes. The
explicit form of the corresponding radiator function and its
integrated counterpart is given in Sect. 3.2 for the case of a
massive final-state fermion. Section 3.3 considers the case of
light fermions and the extension to non-collinear-safe observ-
ables.

The described formalism was already successfully applied
in the evaluation of the NLO EW and mixed NNLO QCD/EW
corrections to Drell–Yan-like W- and Z-boson production in
the resonance region presented in Refs. [50,51], where the
corrections to the gauge-boson decay processes appear as
building blocks of the full calculation.

3.1 Overview of the method

The general idea of the subtraction formalism can be sum-
marised in the following formula:

∫
d�n+1

∑
λγ

|M1|2 =
∫

d�n+1

⎛
⎝∑

λγ

|M1|2 − |Msub|2
⎞
⎠

+
∫

d�̃n ⊗
(∫

[dk] |Msub|2
)

, (3.1)

where M1 denotes the transition amplitude of the
bremsstrahlung process. The auxiliary term |Msub|2 is
specifically tailored to act as a local counterterm to the real-
emission corrections. The subtraction term |Msub|2 point-
wise mimics the real-emission contributions in all its singular
limits, i.e. it satisfies the following properties:

|Msub|2 ˜
∑
λγ

|M1|2 for k → 0 or pi k → 0, (3.2)

where pi denotes the four-momentum associated with a light
fermion in the final state and

∑
λγ

indicates the summation
over the photon polarisation. The explicit asymptotics in the
respective limits are given in Eqs. (2.5) and (2.7). The prop-
erty (3.2) ensures that the first term on the r.h.s. of Eq. (3.1)
is free of IR singularities. As a result, the integration over
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Fig. 1 Schematic diagrams
illustrating the subtraction
function d(sub)

ia for the decay of a
particle a and a charged
final-state particle i . The decay
dipole merges the two
configurations associated with
photon radiation from the
final (left) and initial (right)
state into one subtraction term

d
(sub)
ia :

a
pa

ipi

γ

k

k1

kn−1

Pia = n−1
l=1 kl

+ a
pa

γ

k
ipi

k1

kn−1

Pia

the full real-emission phase space d�n+1 can be performed
without regulators which makes it suitable for the evaluation
using numerical methods. The singularities originally con-
tained in the real-emission corrections are now fully encap-
sulated in the second term of Eq. (3.1) which is constructed
in such a way to allow for a direct analytical integration of the
singular contributions. To this end, the real-emission phase
space is factorised into the singular subspace given by the
photonic part [dk] and the remaining phase space integration
d�̃n associated with the non-radiative process. The symbol
“⊗” indicates that this phase-space factorisation may contain
additional convolutions or summations. Performing the ana-
lytical integration over [dk] results in an expression where the
singularities are explicitly regularised in some appropriate
regularisation scheme. These divergences can then be analyt-
ically combined with the respective singularities appearing
in the virtual corrections, so that possible cancellations can
be made explicit. The remaining integration d�̃n is free of
singularities and can be evaluated numerically.

The dipole subtraction formalism exploits the factorisa-
tion of

∑
λγ

|M1|2 in the singular limits by partitioning the

subtraction term |Msub|2 into so-called dipoles
∣∣Msub, f f ′

∣∣2
according to

|Msub(�n+1)|2 =
∑
f, f ′

f �= f ′

∣∣Msub, f f ′(�n+1)
∣∣2

= −e2
∑
f, f ′

f �= f ′

σ f Q f σ f ′ Q f ′ g(sub)
f f ′,τ (p f , p f ′ , k)

× ∣∣M0(�̃n, f f ′ ; τκ f )
∣∣2 , (3.3)

where f and f ′ are called the emitter and spectator parti-
cles, respectively. The dipole terms are written as a product
of the auxiliary functions g(sub)

f f ′ and the squared matrix ele-

ment |M0|2, where the former represent universal functions
that encapsulate the singularity structure and can be inte-
grated analytically over the singular photon phase space once
and for all. The associated squared matrix element |M0|2
is evaluated on the reduced n-particle phase space �̃n, f f ′

that remains after isolating the singular one-particle sub-
space [dk] of the photon. These dipole mappings are required
to reproduce the appropriate kinematic configuration in the
singular regions and further respect exact momentum con-
servation as well as all mass-shell conditions.

A plain extension in the spirit of the dipole subtraction for-
malism for the decay process would construct two new sub-
traction terms: a dipole where the decaying particle a is the
emitter, g(sub)

ai , and second where a acts as the spectator g(sub)
ia .

However, since there are no collinear singularities associated
with the initial-state particle a, we combine the two subtrac-
tion terms to a single term called d(sub)

ia = g(sub)
ia + g(sub)

ai
which is illustrated in Fig. 1 in terms of the two schematic
diagrams that would be associated with g(sub)

ia and g(sub)
ai .

Such a combined treatment reduces the number of inde-
pendent dipoles that need to be computed and, moreover,
allows part of the calculation to be taken over from the scatter-
ing case with a final-state emitter and spectator described in
Ref. [16]. The asymptotic behaviour of the subtraction func-
tion d(sub)

ia differs from those of g(sub)
ia and g(sub)

ai of Ref. [16]
in the soft limit and explicitly reads

d(sub)
ia,+ (pi , pa, k)

˜k→0

2pi pa

(pi k)(pak)
− m2

i

(pi k)2 − m2
a

(pak)2 ,

d(sub)
ia,− (pi , pa, k)

˜k→0 O(1). (3.4)

In the limit of small fermion masses mi → 0 the asymp-
totic form in the collinear region is required to be

d(sub)
ia,τ (pi , pa, k)

˜pi k→0
g(out)

i,τ (pi , k) (3.5)

with the functions g(out)
i,± given in Eq. (2.8a) and (2.8b).

The subtraction term |Msub|2 in the dipole subtraction
formalism is then given by the following expression in the
case of decay processes, cf. Eq. (3.3):

|Msub(�n+1)|2
=
∑

i

∣∣Msub,ia(�n+1)
∣∣2 +

∑
i, j

i �= j

∣∣Msub,i j (�n+1)
∣∣2
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= −e2
∑

i

σi Qi

{
σa Qa d(sub)

ia,τ (pi , pa, k)
∣∣M0(�̃n,ia; τκi )

∣∣2

+
∑

j
j �=i

σ j Q j g(sub)
i j,τ (pi , p j , k)

∣∣M0(�̃n,i j ; τκi )
∣∣2
}
, (3.6)

where the summation over the indices i, j extends over all
charged particles in the final state, a denotes the decaying
particle, and g(sub)

i j are the known subtraction functions of
the dipoles with a final-state emitter–spectator pair given in
Ref. [16].

3.2 Subtraction function for massive final-state fermions

In the following we present the construction of the subtraction
function d(sub)

ia for the decay of a particle a of mass ma with
a massive final-state fermion i of mass mi . The special case
of light fermions can be obtained by a systematic expansion
in mi and will be discussed in the next section together with
the extension to non-collinear-safe observables.

In the construction of the phase-space mapping �̃n,ia for
the decay dipole it is convenient to keep the four-momentum
of the decaying particle a fixed. This constraint can be main-
tained by the deformation of the momenta kl of all parti-
cles that are not involved in the respective dipole term via a
Lorentz transformation. Such a transformation is necessary
in order to compensate the recoil induced by the radiated pho-
ton so that four-momentum conservation and all mass-shell
conditions are retained. To this end, we define the auxiliary
momentum Pia of the “recoiling system”, see Fig. 1,

Pμ
ia = pμ

a − pμ
i − kμ =

n−1∑
l=1

kμ
l , (3.7)

which absorbs the recoil of the radiated photon through the
transformation

P̃μ
ia =

√
λia√

λ((pi + k)2, m2
a, P2

ia)

(
Pμ

ia − Pia pa

m2
a

pμ
a

)

+ m2
a + P2

ia − m2
i

2m2
a

pμ
a , (3.8)

where

λia = λ(m2
i , m2

a, P2
ia), (3.9)

and λ(x, y, z) denotes the Källén function defined as

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz. (3.10)

We further introduce the quantity

P̄2
ia = m2

a − m2
i − P2

ia − m2
γ , (3.11)

where mγ denotes the infinitesimal photon mass that is intro-
duced as a regulator for the soft singularities for later conve-
nience. The phase-space mapping of the decay dipole then
explicitly reads

p̃μ
a = pμ

a , p̃μ
i = pμ

a − P̃μ
ia, k̃μ

l = �μ
ν kν

l , (3.12)

where kl denotes the momenta of all remaining particles
of the decay process, including all neutral particles. The
Lorentz transformation �μ

ν can be expressed in terms of
the momenta Pμ

ia and P̃μ
ia as follows:

�μ
ν = gμ

ν − (Pia + P̃ia)μ (Pia + P̃ia)ν

P2
ia + Pia P̃ia

+ 2 P̃μ
ia Pia,ν

P2
ia

.

(3.13)

This phase-space parametrisation is identical to the one
used in the scattering case with a final-state emitter and a
final-state spectator j of Ref. [16], where particle i plays the
role of the emitter and the recoiling system the role of the
spectator of mass m2

j = P2
ia = P̃2

ia . In detail, the following
substitutions have to be made in order to transfer the quan-
tities of Sect. 4.1 of Ref. [16] to the kinematics considered
here:

p j → Pia, m2
j → P2

ia, p̃ j → P̃ia, Pi j → pa,

P2
i j → m2

a, P̄2
i j → P̄2

ia . (3.14)

Introducing the dipole variables

yia = 2pi k

P̄2
ia

, zia = pi Pia

pi Pia + Piak
, (3.15)

we construct the subtraction functions d(sub)
ia,τ as follows:

d(sub)
ia,+ (pi , pa, k) = 1

(pi k) Ria(yia)

×
[

2

1 − zia(1 − yia)

(
1 + 2m2

i

P̄2
ia

)
− 1 − zia − m2

i

pi k

]

− m2
a

P̄4
ia Ria(yia)

4

[1 − zia(1 − yia)]2 − d(sub)
ia,− (pi , pa, k),

d(sub)
ia,− (pi , pa, k) = m2

i

2(pi k)2

(1 − zia)2

zia

ria(yia)

Ria(yia)
, (3.16)

where we have defined the auxiliary functions

Ria(yia) =
√

[2P2
ia + P̄2

ia(1 − yia)]2 − 4m2
a P2

ia√
λia

, (3.17)
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ria(yia) = 1 − 2P2
ia(2m2

i + P̄2
ia)

λia

yia

1 − yia
. (3.18)

Note the similarity of these subtraction terms to the final–final
dipoles g(sub)

i j of Ref. [16] up to modifications that establish
the appropriate behaviour in the soft limit (3.4). In detail, the
functions gi j,τ defined in Eq. (4.4) of Ref. [16] coincide with

d(sub)
ia,τ up to the first term in the second line of Eq. (3.16),

which is new, and by an additional factor of (1 + 2m2
i /P̄2

ia)

in the eikonal term (first term in the first line). As a con-
sequence, many parts of the calculations can be taken over
from Ref. [16], considerably simplifying the analytic inte-
gration over the photonic part of the phase space. It is easy to
verify that the radiator function d(sub)

ia defined in Eq. (3.16)
reproduces the correct asymptotic behaviour in the soft and
collinear limits given in Eqs. (3.4) and (3.5), respectively.

The analytic integration of the subtraction functions over
the photonic part of the phase space gives rise to the integrated
counterparts

D(sub)
ia,τ (�̃n) = 8π2

∫
[dk(m2

a, yia, zia)] d(sub)
ia,τ (pi , pa, k).

(3.19)

The integrated decay dipole can then be written as

∫
d�n+1

∣∣Msub,ia(�n+1)
∣∣2

= − α

2π
σi Qi σa Qa

∫
d�̃n D(sub)

ia,τ (�̃n)
∣∣M0(�̃n; τκi )

∣∣2 ,

(3.20)

with α = e2/(4π) and

D(sub)
ia,+ (�̃n) = 2 ln

(
m2

γ

P̄2
ia

)
+ 3 ln(a3) − 2 ln(1 − a2

3)

− 2 ln

⎛
⎝ (ma −

√
P2

ia)2 − m2
i

P̄2
ia

⎞
⎠+ a2

3

2
+ 3

2

+ P̄2
ia + 2m2

i√
λia

{
ln(a1) ln

(
m2

γ P2
ia

λiaa2

)
+ 2 Li2(a1)

+ 4 Li2

(
−
√

a2

a1

)

− 4 Li2
(−√

a1a2
)+ 1

2
ln2(a1) − ln(a1) − π2

3

}

− D(sub)
ia,− (�̃n),

D(sub)
ia,− (�̃n) = P̄4

ia

λia

{
2m2

i

P̄2
ia

ln(a3) + 4m2
i P2

ia

P̄4
ia

ln

(
1 + a2

3

2a3

)

+ m2
i P2

ia

(P̄2
ia + m2

i )
2

ln

(2mi

√
P2

iaa3

P̄2
ia

)

+
mi

√
P2

ia

(
P̄2

ia + 2m2
i

)
P̄4

ia

[4 arctan(a3) − π ]

+ (1 − a2
3)

[
1

2
+ m2

i m2
a

P̄2
ia(P̄2

ia + m2
i )

+
2m3

i

√
P2

ia

a3 P̄4
ia

]}
,

(3.21)

and the abbreviations

a1 = P̄2
ia + 2m2

i − √
λia

P̄2
ia + 2m2

i + √
λia

, a2 = P̄2
ia − √

λia

P̄2
ia + √

λia
,

a3 = mi

ma −
√

P2
ia

. (3.22)

3.3 Light fermions and non-collinear-safe observables

The subtraction functions d(sub)
ia,τ given in Eq. (3.16) are

already defined in such a way to correctly reproduce the
asymptotic form in the collinear limit as demanded in
Eq. (3.5) for the special of case of small fermion masses
mi → 0. The corresponding expressions for the integrated
dipoles are obtained by expanding Eq. (3.21) for small mi

and omitting mass-suppressed terms,

D(sub)
ia,+ (�̃n) = L(P̄2

ia, m2
i ) + L(P̄2

ia, m2
a)

+ 4 Li2

⎛
⎝−

√
P2

ia

ma

⎞
⎠+ ln2

(
P̄2

ia

m2
a

)

+ 2 ln

⎛
⎝ma +

√
P2

ia

ma −
√

P2
ia

⎞
⎠+ 3 ln

⎛
⎝ma +

√
P2

ia

ma

⎞
⎠

− π2

3
+ 3

2
− D(sub)

ia,− (�̃n),

D(sub)
ia,− (�̃n) = 1

2
, (3.23)

where we made use of the auxiliary function

L(P2, m2) = ln

(
m2

P2

)
ln

(
m2

γ

P2

)
+ ln

(
m2

γ

P2

)

− 1

2
ln2
(

m2

P2

)
+ 1

2
ln

(
m2

P2

)
, (3.24)

which was introduced in Eq. (3.8) of Ref. [16] to describe
the universal singular behaviour of the integrated dipole func-
tions G(sub).

The corresponding result where the IR singularities are
regularised using dimensional regularisation can be obtained
from Eq. (3.23) by performing a transition between the reg-
ularisation schemes using the results of Ref. [52] which is
briefly summarised in the “Appendix”.
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In non-collinear-safe observables, photons arbitrarily
close to an outgoing charged particle are not treated inclu-
sively, but it is assumed that such a configuration can be
experimentally resolved. This is, for instance, the case for
muons in the final state, which are observed in the muon
chambers further out in the detector, whereas the photons
are detected independently in the electromagnetic calorime-
ter. Such an observable definition is sensitive to the details
of the collinear f → f + γ splitting. The subtraction for-
malism can be extended to cover this case by exploiting the
information on the dipole variable zia which corresponds to
the momentum fraction zi of Eq. (2.9) carried away by the
emitter fermion in the collinear limit. This is accomplished
by treating the n-particle kinematics of the dipole phase space
�̃n,ia as an (n +1)-particle event with momenta pi → zia p̃i

and k → (1− zia) p̃i . For further details we refer to Ref. [19]
where this extension was introduced. Owing to the explicit
dependence of the observables on the dipole variable, the
integration over zia ≡ z cannot be performed analytically,
but is left open for a numerical evaluation. Employing a plus
prescription, the singular endpoint part can be isolated so
that the extension to the non-collinear-safe case amounts to
an additional term which vanishes for inclusive observables,

∫
d�n+1

∣∣Msub,ia(�n+1)
∣∣2

× �cut(pi = zia p̃i , k = (1 − zia) p̃i , {k̃l})
= − α

2π
σi Qi σa Qa

∫
d�̃n

×
∫ 1

0
dz {D(sub)

ia,τ (�̃n)δ(1 − z) + [D̄(sub)
ia,τ (�̃n, z)]+}

× ∣∣M0(�̃n; τκi )
∣∣2 �cut(pi = z p̃i , k = (1 − z) p̃i , {k̃l}),

(3.25)

where the plus prescription is defined by

∫ 1

0
dx [ f (x)]+g(x) =

∫ 1

0
dx f (x)[g(x) − g(1)] (3.26)

for any smooth test function g(x). The function D̄(sub)
ia is

obtained after carrying out the analytical integration over the
dipole variable yia and explicitly reads

D̄(sub)
ia,+(z) = −

(
1 + z2

1 − z

)
ln

(
m2

i

z P̄2
ia

[1 − η(z)]
)

+ (1 + z) ln(1 − z) − 2z

1 − z

+ (1 + z) ln

(
1 + μ2

ia

η(z)

)

− 2

(1 − z)σ (z)

{
ln

(
1 + η(z)[1 − zη(z)]

μ2
ia(1 − z)

)

− 2 ln

(
1 − 2zη(z)

1 + σ(z)

)
+ σ(z) ln

(
μ2

ia

η(z)
(1 − z)

)}

+ 2m2
a

P̄2
iaσ(z)2

{
2μ2

ia(1 − 2z)

σ (z)

× ln

(
2μ2

ia(1 − z) + η(z)[1 + σ(z)]
2μ2

ia(1 − z) + η(z)[1 − σ(z)]
)

− η(z)

1 − z[1 − y+(z)]
(

2 + 1 − η(z)(
μ2

ia + η(z)
)
(1 − z)

)}

− D̄(sub)
ia,−(z),

D̄(sub)
ia,−(z) = 1 − z, (3.27)

where y+(z) denotes the upper boundary of the yia integra-
tion and is given by

y+(z) =
[
ξ(z) + 1 +√ξ(z)[ξ(z) + 2]

]−1
, ξ(z) = μ2

ia

2z(1 − z)
.

(3.28)

We have further introduced the dimensionless variable

μ2
ia = P2

ia

P̄2
ia

, (3.29)

and the auxiliary functions

σ(z) =
√

1 + 4μ2
ia z(1 − z),

η(z) =
{

[1 − y+(z)] z for z < 1
2 ,

[1 − y+(z)] (1 − z) for 1
2 < z.

(3.30)

4 The one-cutoff phase-space slicing method

The main idea of the phase-space slicing approach is the
isolation of resolved hard emissions from the unresolved
soft and/or collinear regions in the real-emission phase
space upon introducing a technical cut parameter. The hard-
emission contributions are free of singularities, so that the
corresponding phase-space integration can be performed
numerically using Monte Carlo methods. The contributions
from the unresolved regions encapsulate the IR singulari-
ties of the real corrections, and the integrations over the
subspaces containing the singularities are performed ana-
lytically, exploiting the universal factorisation properties of
amplitudes in the soft or collinear limits. This makes the
IR singularities that were implicitly contained in the real-
emission phase space explicit by means of regulators and
allows for an analytic cancellation of all IR singularities.
Various approaches have been proposed for the introduc-
tion of the technical cut. The OCS method considered in
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this work imposes a single cut 2pi p j > �s on the invari-
ant scalar products of the momenta pi , p j of two particles
that can cause a soft singularity (pi → 0 or p j → 0) or a
collinear singularity (pi p j → 0). The method, thus, isolates
soft and collinear singularities simultaneously and results in
a formalism that is manifestly Lorentz invariant. The tech-
nical cut parameter �s should be chosen small enough to
suppress all effects of order O(�s) to a numerically irrele-
vant level. Despite the drawback of introducing an arbitrary
resolution parameter, such as �s, slicing methods offer the
possibility to widely suppress negative weights and to avoid
unbounded weights in Monte Carlo integrations, which con-
siderably simplifies a later extension of the Monte Carlo inte-
grator to a Monte Carlo event generator with unweighted
events.

Although the OCS method has been extensively studied
in NLO QCD calculations involving massless [1,2] or mas-
sive [4,23,53] cases, there is so far no exhaustive survey of
results covering all relevant configurations of massive par-
ticles in production and decay processes. The OCS method
is particularly suited to NLO QCD calculations in leading-
colour approximation where the corrections are decomposed
into colour-ordered contributions that naturally involve only
singularities associated with the two neighbouring hard radi-
ators of the unresolved parton in the colour ordering. If more
than two collinear singularities appear in one contribution,
as for instance in the sub-leading colour contributions, the
application of OCS becomes subtle. In this case, process-
specific treatments are required, such as reconstructing the
IR singularities from the leading-colour building blocks as
described in Refs. [1,2].

In the following, we describe a generic method to apply
OCS in the presence of arbitrarily many collinear singulari-
ties in phase space. Moreover, we are not aware of any appli-
cation of the OCS method to QED radiation processes, where
e.g. no “colour ordering” exists leading to amplitude contri-
butions with only two collinear singularities. Furthermore,
the results in the literature all employ dimensional regular-
isation with either vanishing masses or large mass param-
eters; in QED applications, however, the case of small, but
finite masses frequently occurs as well (e.g. for electrons or
muons emitting photons). It should be noted that the case
of a small mass m cannot be obtained upon simply taking
the limit m → 0 in the OCS method, since the hierarchy
�s 	 m2 is used in the integration over the unresolved
regions for a radiating particle of mass m. In order to iso-
late the mass singularity regulated by a small mass m (which
defines a mass regularisation), however, the inverted hier-
archy m2 	 �s is required. In the following we describe
OCS for QED radiation covering all relevant mass configu-
rations (with large and small masses). The transfer to QCD
calculations is straightforward and merely requires the rein-

troduction of colour charges known from the massless QCD
case.2

4.1 Overview of the method

The photonic real-emission corrections are divided into the
finite “hard” contribution IH and the singular “soft–collinear”
contribution ISC as follows:

∫
d�n+1

∑
λγ

|M1(�n+1)|2 = IH + ISC. (4.1)

The two regions are separated with the resolution parameter
�s imposing conditions s f γ ≶ �s on the Lorentz-invariant
quantities s f γ defined as

s f γ ≡ 2p f k, (4.2)

where p f and k are the momenta of a charged fermion
f and the photon, respectively. The definition (4.2) holds
irrespective whether the fermion is massless or massive. In
order to formally partition the phase space into hard and
soft–collinear regions, we introduce shorthands for the θ -
functions

θ f ≡ θ(s f γ − �s), θ̄ f ≡ 1 − θ f = θ(�s − s f γ ). (4.3)

For the hard region we require s f γ > �s for all charged
fermions f of the process, so that the corresponding contri-
bution to the real correction reads

IH =
∫

d�n+1

∑
λγ

|M1(�n+1)|2 �, � =
∏

f

θ f .

(4.4)

The phase-space integration in IH can be performed numer-
ically, producing a result that depends on �s via terms pro-
portional to ln �s or ln2 �s for small �s.

The integral over the soft–collinear region is given by

ISC =
∫

d�n+1

∑
λγ

|M1(�n+1)|2 (1 − �). (4.5)

In this integral, at least one of the invariants s f γ is small,
i.e. s f γ < �s. This means that in the limit �s → 0, non-

2 In this paper, we consider only photon bremsstrahlung in detail, which
up to colour factors literally translates into gluon radiation off massless
or massive quarks in QCD (with splittings q → q∗g, q∗ → qg and
likewise for q̄). Other QCD splittings, such as g → g∗g, g → q∗q,
etc., either are covered by the known results for massless quarks or do
not need any special treatment for massive quarks, because no soft or
collinear singularity exists in those cases.
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ISC,ff ′

sf ′γ < Δs
sf ′γ > Δs

sfγ < Δs

sf ′γ < Δs
sf ′γ > Δs

sfγ > Δs

IC,ff ′
IS,ff ′

(sfγ < Δs ∨ sf ′γ < Δs)

� Ising,ff ′

sf1γ < Δs

sf2γ < Δs

sfn−2γ < Δs sfn−2γ > Δs

sf2γ > Δs

sf1γ > Δs

(sfγ > Δs ∧ sf ′γ > Δs)

(∃ f ′′ �= f, f ′ : sf ′′γ < Δs)

� IQS,ff ′

(sf ′′γ > Δs ∀ f ′′)

part of IH

Fig. 2 Schematic representation of the different contributions to the soft–collinear region for a single pair of particles, f f ′

vanishing contributions from the soft–collinear region to the
cross section originate entirely from those terms in the matrix
element that lead to soft or collinear singularities, because
regular contributions tend to zero with �s → 0. Thus, in the
calculation of soft–collinear contributions to the cross section
we can employ the universal factorisation form of the squared
amplitude, as for instance described in Sect. 3. In fact it is
convenient to directly use |Msub|2 =∑ f �= f ′ |Msub, f f ′ |2 as
defined in dipole subtraction in terms of emitter–spectator
pairs. We, thus, can evaluate ISC as follows:

ISC =
∫

d�n+1

∑
f �= f ′

|Msub, f f ′ |2(1 − �). (4.6)

For each emitter–spectator pair f f ′ we can write � as

� =
∏
f ′′

θ f ′′ = θ f θ f ′(1 − �̃ f f ′),

�̃ f f ′ =
{

1 if at least one s f ′′γ < �s for f ′′ �= f, f ′,
0 otherwise.

(4.7)

Using θ f + θ̄ f = 1, we can rewrite the factor (1 − �) to

1 − � = (θ f + θ̄ f )(θ f ′ + θ̄ f ′) − θ f θ f ′(1 − �̃ f f ′)

= θ̄ f θ̄ f ′ + θ̄ f θ f ′ + θ̄ f ′θ f + θ f θ f ′�̃ f f ′ (4.8)

and decompose ISC into soft (S), collinear (C), and quasi-soft
(QS) contributions as follows:

ISC =
∑
f �= f ′

ISC, f f ′ =
∑
f �= f ′

(IS, f f ′ + IC, f f ′ + IQS, f f ′),

(4.9)

IS, f f ′ =
∫

d�n+1|Msub, f f ′ |2θ̄ f θ̄ f ′ , (4.10)

IC, f f ′ =
∫

d�n+1|Msub, f f ′ |2(θ̄ f θ f ′ + θ̄ f ′θ f ), (4.11)

IQS, f f ′ =
∫

d�n+1|Msub, f f ′ |2θ f θ f ′�̃ f f ′ . (4.12)

The definition of the various sub-contributions is schemati-
cally illustrated in Fig. 2.

The integrals IS, f f ′ and IC, f f ′ are confined to the soft and
collinear regions, respectively, and involve only the technical
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cuts on the invariants s f γ and s f ′γ of the emitter and spec-
tator fermions. For this reason, the integrations in IS, f f ′ and
IC, f f ′ over the singular subspaces can be performed analyt-
ically for small �s, as outlined below. On the other hand,
the quasi-soft integrals IQS, f f ′ involve cuts on all charged
particles, rendering a process-independent analytical treat-
ment impossible; nevertheless their numerical evaluation is
straightforward, as outlined at the end of this section. Note
that the quasi-soft integrals IQS, f f ′ do not occur if only two
sources of collinear singularities exist in the bremsstrahlung
phase space. It is the occurrence of these subtle terms that
requires process-specific and non-generic manipulations of
the formalism as described in Refs. [1,2] for the sub-leading
colour contributions.

The analytical calculation of the singular phase-space inte-
grals in IS, f f ′ and IC, f f ′ starts by using the factorised matrix
element of Eq. (3.3) and the corresponding factorised (n+1)-
particle phase space, the construction of which is described
in Ref. [16] in detail. It is convenient to directly calculate the
sum of the two contributions,

Ising, f f ′ = IS, f f ′ + IC, f f ′

= −e2σ f Q f σ f ′ Q f ′
∫

d�̃n, f f ′

⊗
∫

d[k] g(sub)
f f ′ (p f , p f ′ , k)

∣∣M0(�̃n, f f ′)
∣∣2

× (θ̄ f θ̄ f ′ + θ̄ f θ f ′ + θ̄ f ′θ f ). (4.13)

In the following we restrict ourselves to the case of unpo-
larised fermions with the radiator functions

g(sub)
f f ′ = g(sub)

f f ′,+ + g(sub)
f f ′,−. (4.14)

Note that the spin information of a massive decaying par-
ticle is still fully accessible in spite of this choice, because
the introduction of a separate spin-flip function g(sub)

f f ′,− was
motivated by the massless limit for an emitter fermion, which
is discontinuous. For collinear singularities of initial-state
fermions, the multiplication symbol “⊗” in Eq. (4.13) indi-
cates that a convolution over the collision energy after pho-
ton emission is involved in the phase-space factorisation. In
this case, the analytical integration over d[k] can only be per-
formed partially, as described in Sects. 4.2.2 and 4.2.3 below.
For final-state singularities, however, the squared matrix ele-
ment

∣∣M0(�̃n, f f ′)
∣∣2 is constant in the integration over d[k],

so that the singular integration is entirely contained in the
universal factor

G f f ′(s f f ′ ;�s) = 8π2
∫

d[k] g(sub)
f f ′ (p f , p f ′ , k)

× (θ̄ f θ̄ f ′ + θ̄ f θ f ′ + θ̄ f ′θ f ). (4.15)

For initial-state singularities, this factor comprises an essen-
tial ingredient as well. Results on G f f ′ for all relevant mass
configurations are provided in the following sections.

Finally, we describe a simple way to numerically evalu-
ate the quasi-soft integrals IQS, f f ′ . Recall that the integral
receives only support outside the soft–collinear region of
the emitter–spectator pair f f ′ on a phase-space volume of
O(�s), because the photon has to be collinear to at least
one other charged fermion. Non-vanishing contributions to
IQS, f f ′ in the limit �s → 0 can, thus, only result from an
enhancement in the integrand lifting the �s suppression in
phase space. Power-counting in the photon momentum in
the integrand reveals that this can only happen if the photon
momentum becomes soft, i.e. the photon momentum has to
be of order O(�s) in order to lie outside the soft–collinear
region of f f ′. The integral IQS, f f ′ is therefore effectively a
surface integral of the soft–collinear region of f f ′ and can
be evaluated upon taking into account only those parts in
the integrand that produce soft singularities, i.e. the “eikonal
terms” in g(sub)

f f ′ (p f , p f ′ , k) are sufficient,

g(sub,eik)
f f ′ (p f , p f ′ , k) = 1

p f k

[
2p f p f ′

p f k + p f ′k
− m2

f

p f k

]
.

(4.16)

After symmetrizing with respect to the interchange f ↔
f ′, we can identify the usual eikonal factor

g(eik)
f f ′ (p f , p f ′ , k) = 1

2

[
g(sub,eik)

f f ′ (p f , p f ′ , k)

+ g(sub,eik)
f ′ f (p f ′ , p f , k)

]

= p f p f ′

(p f k)(p f ′k)
− m2

f

2(p f k)2 − m2
f ′

2(p f ′k)2 .

(4.17)

Since only the symmetric combination of g(sub)
f f ′ (p f ,

p f ′ , k) is relevant in the overall quasi-soft contribution
(summed over all emitter–spectator combinations), IQS, f f ′
can be evaluated via

IQS, f f ′ = −e2 σ f Q f σ f ′ Q f ′
∫

d�n+1 g(eik)
f f ′ (p f , p f ′ , k)

× ∣∣M0(�̃n, f f ′)
∣∣2 θ f θ f ′�̃ f f ′ . (4.18)

Note that this form is valid for any combination of incom-
ing and outgoing emitters and spectators. In the form given
in Eq. (4.18), each term IQS, f f ′ involves the phase-space
embedding �n+1 → �̃n, f f ′ that is specific to each emitter–
spectator pair. Since, however, the integral receives contribu-
tions only from soft photon momenta k, we can simplify the
evaluation even further. For the relevant contribution we can
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ipi

γk

jpj

Fig. 3 Generic diagram with a final-state emitter i and a final-state
spectator j

factorise the (n+1)-particle phase space into the correspond-
ing n-particle phase space for all particles but the photon and
the 1-particle photon phase space, leading to the alternative
form

IQS, f f ′ = −e2σ f Q f σ f ′ Q f ′
∫

d�n |M0(�n)|2

×
∫

d3k
(2π)32k0 g(eik)

f f ′ (p f , p f ′ , k) θ f θ f ′�̃ f f ′ ,

(4.19)

which does not make use of any special phase-space mapping
for f f ′ pairs and is, thus, much simpler to evaluate than
Eq. (4.18). In this approximation, some care has to be taken
with respect to the upper bound of the photon energy k0,
which has to be large enough to cover the full relevant soft
region, but still small enough to avoid artefacts from terms
of the order O(�slnk0

max).
In the following section we carry out the integrations over

the soft–collinear regions in Ising, f f ′ for the various emitter–
spectator pairs f f ′ in the initial/final states.

4.2 Integration over the singular regions

4.2.1 Final-state emitter and final-state spectator

Following the notation and conventions of Refs. [16,19], in
the case of a final-state emitter i and a final-state spectator j
(illustrated in Fig. 3) the full integral over the soft–collinear
regions is given by

Gi j (P2
i j ,�s) = P̄4

i j

2
√

λi j

∫ y2

y1

dyi j (1 − yi j )

×
∫ z2(yi j )

z1(yi j )

dzi j g(sub)
i j (pi , p j , k) (θ̄i θ̄ j + θ̄iθ j + θi θ̄ j ),

(4.20)

where

Pi j = pi + p j + k, P̄2
i j = P2

i j − m2
i − m2

j − m2
γ ,

λi j = λ(P2
i j , m2

i , m2
j ), (4.21)

with λ(a, b, c) defined in Eq. (3.10). The variables

yi j = pi k

pi p j + pi k + p j k
, zi j = pi p j

pi p j + p j k
(4.22)

parametrise the photon phase space. Their boundaries are
given by

y1 = 2mi mγ

P̄2
i j

, y2 = 1 −
2m j

(√
P2

i j − m j

)

P̄2
i j

,

z1,2(y) =
(1 − y)(2m2

i + P̄2
i j y) ∓

√
y2 − y2

1

√
λi j Ri j (y)

2(1 − y)(m2
i + m2

γ + P̄2
i j y)

,

(4.23)

where

Ri j (y) =
√

(2m2
j + P̄2

i j − P̄2
i j y)2 − 4P2

i j m
2
j√

λi j
. (4.24)

Note that the infinitesimal photon mass mγ acts as reg-
ulator for the soft singularity appearing at yi j → 0. The

integrand g(sub)
i j (pi , p j , k) is given by

g(sub)
i j (pi , p j , k) = 1

(pi k)Ri j (yi j )

×
[

2

1 − zi j (1 − yi j )
− 1 − zi j − m2

i

pi k

]

(4.25)

and the soft and collinear regions are characterised as follows:

soft region: k → 0

{
siγ < �s ⇒ yi j < �y,

s jγ < �s ⇒ zi j > 1 − �z,

(4.26a)

i-collinear region: k � 0, k ‖ pi

{
siγ < �s ⇒ yi j < �y,

s jγ > �s ⇒ zi j < 1 − �z,

(4.26b)

j-collinear region: k � 0, k ‖ p j

{
siγ > �s ⇒ yi j > �y,

s jγ < �s ⇒ zi j > 1 − �z,

(4.26c)

where

�y = �s

P̄2
i j

, �z = �y

1 − yi j
. (4.27)

Depending on the masses of the final-state particles (mas-
sive or light emitter/spectator), we obtain different results for
Gi j (P2

i j ,�s), which are listed below.
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The full integral over the soft–collinear regions, as defined
in Eq. (4.20), is sufficient to cover all kinematic configu-
rations in which the photon is recombined with collinear
fermions in the event selection, i.e. in the case of collinear-
safe observables. If the photon and the emitter i become
collinear, this photon recombination ensures that all i-
collinear configurations integrated over in Gi j (P2

i j ,�s) are
treated inclusively, i.e. either the full contribution represented
by Gi j (P2

i j ,�s) contributes or it is completely excluded by

cuts. This even holds true for contributions in Gi j (P2
i j ,�s)

where the photon is collinear to the spectator j , since the
photon has to be soft in this case, i.e. s jγ = O(�s). In
non-collinear-safe observables, however, the photon can be
separated from collinear fermions, which is for instance the
case for muons detected in the muon chambers. In this case
the differential information on the energy flow inside the
i-collinear cone should be kept in the phase-space integral
(4.20). This energy flow in the soft–collinear region is con-
trolled by the variable zi j , where it is effectively given by
zi = p0

i /(p0
i + k0). In this situation, the integration over zi j

in Eq. (4.20) should be included in the numerical phase-space
integration, so that instead of the full integral Gi j (P2

i j ,�s)
the following function of z = zi j appears:

Ḡi j (P2
i j , �s, z) =

P̄4
i j

2
√

λi j

×
∫ y2(z)

y1(z)
dyi j (1 − yi j ) g(sub)

i j (pi , p j , k) (θ̄i θ̄ j + θ̄i θ j + θ̄ j θi ),

(4.28)

where the functions y1,2(z) result from inverting the
parametrisation of the integral boundary defined in Eq. (4.23).
The evaluation of Ḡi j (P2

i j ,�s, z) essentially follows the anal-
ogous treatment described for dipole subtraction in the case
of non-collinear observables in Ref. [19]. The procedure is
greatly simplified upon introducing a plus distribution for the
z-integration,

Ḡi j (P2
i j ,�s, z)=

[
Ḡi j (P2

i j ,�s, z)
]
++δ(1−z)Gi j (P2

i j ,�s),

(4.29)

which isolates the soft singularity in the endpoint function
Gi j (P2

i j ,�s), so that [Ḡi j (P2
i j ,�s, z)]+ can be evaluated for

mγ = 0. The explicit evaluation of Ḡi j (P2
i j ,�s, z) and of

the full integral Gi j (P2
i j ,�s) requires a discrimination of

the different mass patterns in the emitter–spectator pairs.
(i) Massive emitter and massive spectator
For massive emitter and spectator fermions, we have the

following hierarchy of parameters:

m2
γ 	 �s 	 m2

i , m2
j , P2

i j . (4.30)

The full integral Gi j (P2
i j ,�s) is tedious, but straightforward.

The result involves a discrimination between the variables
m2

i , m2
j , P2

i j and is given by

Gi j (P2
i j , �s) = P̄2

i j√
λi j

×
[

ln a1 ln

(
m2

γ λi j

�s2 P2
i j

)
+ 2 Li2(a1) − π2

3
+ 1

2
ln2 a1

]

− 2 ln

(
�s

mγ mi

)
+ 2

+ fi j,+(P2
i j ) ∓ θ(m2

i + m2
j − P̄2

i j ) fi j,±(P2
i j ) for mi ≶ m j ,

(4.31)

with the auxiliary functions

fi j,±(P2
i j ) = ± P̄2

i j√
λi j

[
2 ln

( P̄2
i j ±√λi j + 2m2

j

P̄2
i j ±√λi j

)

× ln

( 2m2
j

P̄2
i j ±√λi j

)
+ 2 Li2

(
− 2m2

j

P̄2
i j ±√λi j

)

+ π2

6
− P̄2

i j ∓√λi j

P̄2
i j

ln

( 2m2
j

P̄2
i j ±√λi j

)

+ 1 ∓
√

λi j

P̄2
i j

− 2m2
i

P̄2
i j

]
(4.32)

and the variable

a1 = P̄2
i j + 2m2

i −√λi j

P̄2
i j + 2m2

i +√λi j
. (4.33)

To calculate the function Ḡi j (P2
i j ,�s, z) for non-

collinear-safe observables, we have to invert the functions
z1,2(y) of Eq. (4.23) using the hierarchy (4.30). Making use
of the fact that only yi j values of O(�y) with �y 	 1 are
relevant, the functions y1,2(z) are given by

y1(z) = 2m2
i

P̄2
i j −√λi j

(1 − z), y2(z) = 2m2
i

P̄2
i j +√λi j

(1 − z).

(4.34)

This shows that for mi , m j obeying Eq. (4.30) all z values
in the soft–collinear region are of the order 1 −O(�y). The
integral Gi j (P2

i j ,�s), thus, only receives contributions from
a tiny neighbourhood of the point (yi j , zi j ) = (0, 1), i.e. it
does not involve an integration over the momentum flow in
the collinear regions. In this case non-collinear-safe observ-
able can be calculated using Gi j (P2

i j ,�s) without the need

to introduce Ḡi j (P2
i j ,�s, z).
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(ii) Massive emitter i and light spectator j
Due to the small mass of the spectator, the hierarchy

between the parameters is

m2
γ 	 �s 	 m2

i , P2
i j , m j = 0. (4.35)

The spectator mass can be set to zero, since no collinear
singularity exists for the spectator. In fact the integral
Gi j (P2

i j ,�s) can be obtained upon taking the limit m j → 0
from the result of the previous section,

Gi j (P2
i j ,�s) = L(P2

i j , m2
i ) − 2 ln

(
�s

P̄2
i j

)
ln

(
m2

i

P2
i j

)

− 2 ln

(
�s

P̄2
i j

)
− 3

2
ln

(
m2

i

P2
i j

)

+ θ(P̄2
i j − m2

i )

[
2 Li2

(
m2

i

P2
i j

)
− π2

6
+ 2 − 2m2

i

P̄2
i j

+ ln2

(
m2

i

P2
i j

)
− 2 ln

(
P̄2

i j

m2
i

)]
, (4.36)

with the function L from Eq. (3.24). Similarly to the case of
non-vanishing m j , Gi j (P2

i j ,�s) does not comprise an inte-
gral over the energy flow in the collinear regions, so that the
quantity Ḡi j (P2

i j ,�s, z) is not needed either.

(iii) Light emitter i and massive spectator j
For a light emitter with mass mi we have to consider the

hierarchy

m2
γ 	 m2

i 	 �s 	 m2
j , P2

i j . (4.37)

Since the two limits m2
i 	 �s and �s 	 m2

i do not com-
mute, the integral Gi j (P2

i j ,�s) does not result from the sim-
ple limit mi → 0 applied to the previous cases. An explicit
integration yields the result

Gi j (P2
i j ,�s) = L

(
P̄4

i j

P2
i j

, m2
i

)
− ln2

(
�s P2

i j

P̄4
i j

)

− 3

2
ln

(
�s P2

i j

P̄4
i j

)
− 2π2

3
+ 3

2

+ θ(P̄2
i j − m2

j )

[
π2

6
+ 2 Li2

(
− m2

j

P̄2
i j

)

+2 ln

(
m2

j

P̄2
i j

)
ln

(
P2

i j

P̄2
i j

)]
. (4.38)

It contains a term ln2 �s that results from a combination
of the soft and the i-collinear singularities, which are both
isolated by the cut parameter �s in the integration over the

hard photon emission which is based on matrix elements with
mi = 0.

In order to calculate Ḡi j (P2
i j ,�s, z) for non-collinear-safe

observables, we first derive the functions y1,2(z) for the inte-
gration boundary of the yi j -integration in Eq. (4.28). The
relevant range in yi j is characterised by O(m2

i /P̄2
i j ) � yi j �

O(�y), leading to the region defined by

y1(z) = m2
i

P̄2
i j

1 − z

z
, y2(z) = �y. (4.39)

The function Ḡi j (P2
i j ,�s, z) for the non-collinear-safe con-

tribution is easily calculated to

Ḡi j (P2
i j ,�s, z) = 1 + z2

1 − z
ln

(
�sz

m2
i (1 − z)

)
− 2z

1 − z
. (4.40)

(iv) Light emitter i and light spectator j
In this case Gi j (P2

i j ,�s) can be calculated upon taking
the massless limit m j → 0 of the previous case. The final
result is

Gi j (P2
i j ,�s) = L(P2

i j , m2
i ) − ln2

(
�s

P2
i j

)

− 3

2
ln

(
�s

P2
i j

)
− π2

2
+ 3

2
, (4.41)

with Ḡi j (P2
i j ,�s, z) as given in Eq. (4.40).

4.2.2 Final-state emitter and initial-state spectator, and
vice versa

In the cases of a final-state emitter i and an initial-state spec-
tator a, and of an initial-state emitter a and a final-state spec-
tator i (depicted on the left- and on the right-hand sides of
Fig. 4, respectively), again the variables and abbreviations of
Ref. [16] are used.

The integrals over the full soft–collinear regions are
defined as

Gia(P2
ia,�s) =

∫ x1

x0

dxia
P̄4

ia

2
√

λia Ria(xia)

×
∫ z2(xia)

z1(xia)

dzia g(sub)
ia (pi , pa, k) (θ̄i θ̄a + θ̄iθa + θi θ̄a),

(4.42)

Gai (P2
ia,�s) =

∫ x1

x0

dxia
P̄4

ia

2
√

λia Ria(xia)

×
∫ z2(xia)

z1(xia)

dzia g(sub)
ai (pa, pi , k) (θ̄i θ̄a + θ̄iθa + θi θ̄a),

(4.43)
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Fig. 4 Generic diagrams with a final-state emitter i and an initial-state spectator a (left), and with an initial-state emitter a and a final-state spectator
i (right)

where the variables

xia = pa pi + pak − pi k

pa pi + pak
, zia = pa pi

pa pi + pak
. (4.44)

are confined to the boundary determined by the variables

z1,2(x) =
P̄2

ia [P̄2
ia − x(P̄2

ia + 2m2
i )] ∓

√
P̄4

ia(1 − x)2 − 4m2
i m2

γ x2
√

λia Ria(x)

2 P̄2
ia [P̄2

ia − x(P2
ia − m2

a)] ,

x1 = 1 + 2mi mγ

P̄2
ia

, (4.45)

with x0 being set by the least energy to trigger the process
without photon emission.3 Here we use

Pia = pi + k − pa, P̄2
ia = P2

ia − m2
a − m2

i − m2
γ ,

λia = λ(P2
ia, m2

i , m2
a) (4.46)

with λ(a, b, c) defined in Eq. (3.10) and

Ria(x) =
√

(P̄2
ia + 2m2

a x)2 − 4P2
iam2

a x2

√
λia

. (4.47)

Note that we always have P̄2
ia < 0, but P2

ia is not necessarily
negative for massive particles i and a. The soft and collinear
regions are characterised as follows:

soft region: k → 0

⎧⎨
⎩

siγ < �s ⇒ xia > (1 + �x)−1,

saγ < �s ⇒ zia > 1 − �z,

(4.48a)

i-collinear region: k � 0, k ‖ pi

⎧⎨
⎩

siγ < �s ⇒ xia > (1 + �x)−1,

saγ > �s ⇒ zia < 1 − �z,

(4.48b)

a-collinear region: k � 0, k ‖ pa

⎧⎨
⎩

siγ > �s ⇒ xia < (1 + �x)−1,

saγ < �s ⇒ zia > 1 − �z,

(4.48c)

3 For P2
ia > 0 and 0 <

√
P2

ia < ma − mi , the lower limit has to obey

x0 > x̂ = −P̄2
ia

2ma (ma−
√

P2
ia )

, see Ref. [16].

where

�x = �s

−P̄2
ia

, �z = xia�x . (4.49)

By construction, the limits x0,1 respect the condition x0 <

1/(1+�x) < x1. Results for the integrals Gia(P2
ia,�s) and

Gai (P2
ia,�s) for the various mass configurations of emitter–

spectator pairs are listed in the following sections.
Similar to the previous case of both emitter and spectator

in the final state, the full integrals (4.42) and (4.43) are not
sufficient to deal with non-collinear-safe observables if the
emitter particle f = i or f = a is light, where m2

f 	 �s.
To keep track of the momentum flow in the collinear region
of the emitter, the zia or the xia integration has to be done
numerically in the respective cases. To this end, we define

Ḡia(P2
ia,�s, z) =

∫ x2(z)

x1(z)
dxia

P̄4
ia

2
√

λia Ria(xia)

× g(sub)
ia (pi , pa, k) (θ̄i θ̄a + θ̄iθa + θi θ̄a),

(4.50)

Gai (P2
ia,�s, x) = P̄4

ia

2
√

λia Ria(x)

∫ z2(x)

z1(x)

dzia

× g(sub)
ai (pa, pi , k) (θ̄i θ̄a + θ̄iθa + θi θ̄a),

(4.51)

using x = xia and z = zia as shorthands. In the case of a final-
state emitter, zpi is the fermion momentum after collinear
photon emission from the final state; in the case of an initial-
state emitter, xpa is the fermion momentum after collinear
photon emission from the initial state, i.e. the momentum xpa

enters the hard non-radiative process. The functions x1,2(z)
appearing in Eq. (4.50) result from interchanging the order in
the integrations over xia and zia and are derived below for the
relevant cases. The soft singularities in the integrals again are
extracted from the numerical integration upon introducing
plus distributions in the integrals,

Ḡia(P2
ia, �s, z) = [Ḡia(P2

ia, �s, z)]+ + δ(1 − z)Gia(P2
ia, �s),

(4.52)

Gai (P2
ia,�s, x) = [Gai (P2

ia, �s, x)]+ + δ(1 − x)Gai (P2
ia, �s).

(4.53)
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(i) Massive final-state emitter i and massive initial-state
spectator a, and vice versa

The case of massive initial-state particles is mostly inter-
esting for decay processes, since the masses of colliding par-
ticles are typically much smaller than the scattering energies
in high-energy collisions. If both final-state emitter i and
initial-state spectator a (or vice versa) are massive, we have
to respect the following hierarchy of parameters:

m2
γ 	 �s 	 m2

i , m2
a, |P2

ia |, |P̄2
ia |. (4.54)

No collinear singularities are encountered, and the effec-
tive integration region in Gia,ai (P2

ia,�s) is a neighbour-
hood of the point (xia, zia) = (1, 1), so that the functions
Ḡia(P2

ia,�s, z) and Gai (P2
ia,�s, x) are not required. The

full integrals read

Gia(P2
ia,�s) = P̄2

ia√
λia

{
ln(b1) ln

(
�s2(m2

a + m2
i − P̄2

ia)

m2
γ λia

)

− 2 Li2(b1) + π2

3
− 1

2
ln2(b1)

}

+ 2 ln
(mγ mi

�s

)
+ 2 + fia,+(P2

ia) ∓ θ(P2
ia) fia,±(P2

ia)

for mi ≶ ma, (4.55)

Gai (P2
ia,�s) = P̄2

ia√
λia

{
ln

(
b1

c0

)
ln

(
m2

γ λia

m2
a�s2

)

+ 1

2
ln(c0b1) ln

(
b1

c0

)

− ln

(
m2

a + m2
i − P̄2

ia

m2
a

)
ln(b1) − 2 Li2(c0) + 2 Li2(b1) + ln(c0)

}

+ 2 ln
(mγ mi

�s

)
+ fai,+(P2

ia) ∓ θ(P2
ia) fai,±(P2

ia)

for mi ≶ ma, (4.56)

with the auxiliary functions

fia,±(P2
ia) = ± P̄2

ia√
λia

{
− ln2

(
2m2

i

2m2
i − P̄2

ia ∓ √
λia

)

− 2 Li2

(
2m2

i

2m2
i − P̄2

ia ∓ √
λia

)
+ π2

6

− P̄2
ia ± √

λia

P̄2
ia

ln

(
2m2

i

−P̄2
ia ∓ √

λia

)
− 1 − 2m2

i

P̄2
ia

∓
√

λia

P̄2
ia

}
,

(4.57)

fai,±(P2
ia) = ± P̄2

ia√
λia

{
2 ln

( −P̄2
ia ∓ √

λia

2m2
i − P̄2

ia ∓ √
λia

)

× ln

(
2m2

i

−P̄2
ia ∓ √

λia

)
− 2 Li2

(
2m2

i

P̄2
ia ± √

λia

)

− π2

6
+ P̄2

ia ∓ √
λia

P̄2
ia

ln

(
2m2

i

−P̄2
ia ∓ √

λia

)
− 1 − 2m2

a

P̄2
ia

±
√

λia

P̄2
ia

}
.

(4.58)

Here we partially used the results of Ref. [16], where we
have identified (1 − x0) with �x in the limit �x → 0, and

b1 = 2m2
i − P̄2

ia − √
λia

2m2
i − P̄2

ia + √
λia

, c0 = P̄2
ia + √

λia

P̄2
ia − √

λia
. (4.59)

(ii) Light particle i and massive particle a
If particle i is light and particle a is heavy, we have to

consider the hierarchy

m2
γ 	 m2

i 	 �s 	 m2
a, |P2

ia |, |P̄2
ia |, (4.60)

so that we encounter a collinear singularity in the function
Gia(P2

ia,�s), but not in Gai (P2
ia,�s). Therefore, we can

obtain Gai (P2
ia,�s) from Eq. (4.56) upon taking the limit

mi → 0, but to obtain Gia(P2
ia,�s) for small mi we have to

perform a new integration. The explicit results are

Gia(P2
ia, �s) = L

(
P̄4

ia

m2
a − P̄2

ia

, m2
i

)
− ln2

(
�s(m2

a − P̄2
ia)

P̄4
ia

)

− 3

2
ln

(
�s(m2

a − P̄2
ia)

P̄4
ia

)
− 2π2

3
+ 3

2

+ θ(−P2
ia)

[
ln2

(
m2

a − P̄2
ia

−P̄2
ia

)
+ 2 Li2

( −P̄2
ia

m2
a − P̄2

ia

)
− π2

6

]
,

(4.61)

Gai (P2
ia, �s) = L(m2

a − P̄2
ia, m2

a)

− 2 ln

(
�s

−P̄2
ia

)
ln

(
m2

a

m2
a − P̄2

ia

)
− 2 ln

(
�s

−P̄2
ia

)

− 3

2
ln

(
m2

a

m2
a − P̄2

ia

)

+ θ(−P2
ia)

[
2 Li2

(
P̄2

ia

m2
a

)
+ 2 ln

(
m2

a

m2
a − P̄2

ia

)
ln

(
m2

a

−P̄2
ia

)

+ π2

6
+ 2 ln

(
m2

a

−P̄2
ia

)
+ 2 + 2m2

a

P̄2
ia

]
. (4.62)

In order to calculate the function Ḡia(P2
ia,�s, z) for the non-

collinear-safe contribution we have to perform the integration
in Eq. (4.50) over the xia range, which is bounded by

1 − �x + O(�x2) < xia < 1 + m2
i (1 − z)

P̄2
ia z

+ O(m2
i /P̄2

ia).

(4.63)

A simple integration yields

Ḡia(P2
ia,�s, z) = 1 + z2

1 − z
ln

(
�sz

m2
i (1 − z)

)
− 2z

1 − z
.

(4.64)

(iii) Light particle a and massive particle i
If particle a is light and particle i is heavy, we have to

consider the hierarchy

m2
γ 	 m2

a 	 �s 	 m2
i , |P2

ia |, |P̄2
ia |, (4.65)
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so that we encounter a collinear singularity in the func-
tion Gai (P2

ia,�s), but not in Gia(P2
ia,�s). We can obtain

Gia(P2
ia,�s) from Eq. (4.55) upon taking the limit ma → 0,

but to obtain Gai (P2
ia,�s) for small ma we have to perform

another integration. The explicit results are

Gia(P2
ia,�s) = L(m2

i − P̄2
ia, m2

i ) − 2 ln

(
�s

−P̄2
ia

)
ln

(
m2

i

m2
i − P̄2

ia

)

− 2 ln

(
�s

−P̄2
ia

)
− 3

2
ln

(
m2

i

m2
i − P̄2

ia

)

+ θ(−P2
ia)

[
ln2
(

m2
i

m2
i − P̄2

ia

)
+ 2 Li2

(
m2

i

m2
i − P̄2

ia

)

− π2

6
+ 2 ln

(
m2

i

−P̄2
ia

)
+ 2m2

i

P̄2
ia

+ 2

]
, (4.66)

Gai (P2
ia,�s) = L

(
P̄4

ia

m2
i − P̄2

ia

, m2
a

)
− ln2

(
�s(m2

i − P̄2
ia)

P̄4
ia

)

− 3

2
ln

(
�s(m2

i − P̄2
ia)

P̄4
ia

)
− π2

3
+ 1

4

+ θ(−P2
ia)

[
ln2
(

m2
i − P̄2

ia

−P̄2
ia

)
+ 2 Li2

( −P̄2
ia

m2
i − P̄2

ia

)
− π2

6

]
.

(4.67)

In order to calculate the functionGai (P2
ia,�s, x) for the non-

collinear-safe contribution we have to perform the integration
in Eq. (4.51) over the zia range, which is bounded by

1 − x�x < zia < 1 + m2
a

P̄2
ia

x(1 − x). (4.68)

A simply integration yields

Gai (P2
ia,�s, x) = 1 + x2

1 − x
ln

(
�s

m2
a(1 − x)

)
− 2x

1 − x
.

(4.69)

(iv) Light particles a and i
Finally, we consider the case of both a and i being light,

so that the mass hierarchy is

m2
γ 	 m2

a, m2
i 	 �s 	 |P2

ia |. (4.70)

Here we always have P2
ia <0. The full integrals Gia(P2

ia,�s)
and Gai (P2

ia,�s) can be obtained from the results above
where the respective emitter is light upon taking the limit of
a massless spectator, i.e. upon taking ma → 0 in Eq. (4.61)
and mi → 0 in Eq. (4.67). The results are

Gia(P2
ia,�s) = L(−P2

ia, m2
i ) − ln2

(
�s

−P2
ia

)

− 3

2
ln

(
�s

−P2
ia

)
− π2

2
+ 3

2
, (4.71)

a

pa

γ

k

b pb

Fig. 5 Generic diagram with an initial-state emitter a and an initial-
state spectator b

Gai (P2
ia,�s) = L(−P2

ia, m2
a) − ln2

(
�s

−P2
ia

)

− 3

2
ln

(
�s

−P2
ia

)
− π2

6
+ 1

4
. (4.72)

The corresponding functions Ḡia(P2
ia,�s, z) andGai (P2

ia,�s, x)

for non-collinear-safe observables are the same as given in
Eqs. (4.64) and (4.69), respectively.

4.2.3 Initial-state emitter and spectator

Although not needed for the treatment of decays, for com-
pleteness here we collect the formulae with both emitter a
and spectator b in the initial state with masses ma and mb. The
corresponding structural diagram is shown in Fig. 5. Using
again the kinematical variables introduced in Ref. [16],

xab = pa pb − pak − pbk

pa pb
, yab = pak

pa pb
(4.73)

and

s = (pa + pb)
2, s̄ = s − m2

a − m2
b, λab = λ(s, m2

a, m2
b),

(4.74)

the integrals over the full soft–collinear region is defined as

Gab(s,�s) =
∫ x1

x0

dxab
xabs̄2

2
√

λab

×
∫ y2(xab)

y1(xab)

dyab g(sub)
ab (pa, pb, k)(θ̄a θ̄b + θ̄aθb + θa θ̄b)

(4.75)

with the integration boundary defined by

y1,2(x) = s̄ + 2m2
a

2s
(1 − x) ∓

√
λab

2s

√
(1 − x)2 − 4m2

γ s

s̄2

x1 = 1 − 2mγ

√
s

s̄
, (4.76)

where again x0 is the lowest kinematically allowed value.
The soft and collinear regions are characterised as follows:
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soft region: k → 0

⎧⎨
⎩

saγ < �s ⇒ yab < �y,

sbγ < �s ⇒ xab > 1 − yab − �y,

(4.77a)

a-collinear region: k � 0, k ‖ pa

⎧⎨
⎩

saγ < �s ⇒ yab < �y,

sbγ > �s ⇒ xab < 1 − yab − �y,

(4.77b)

b-collinear region: k � 0, k ‖ pb

⎧⎨
⎩

saγ > �s ⇒ yab > �y,

sbγ < �s ⇒ xab > 1 − yab − �y,

(4.77c)

where

�y = �s

s̄
. (4.78)

Similar to the previous cases of emitter/spectator configura-
tions, in addition to the full integral (4.75) we have to intro-
duce the partial integral

Gab(s,�s, x) = xs̄2

2
√

λab

∫ y2(x)

y1(x)

dyab g(sub)
ab (pa, pb, k)

× (θ̄a θ̄b + θ̄aθb + θa θ̄b) (4.79)

to keep track of the momentum flow in the collinear region of
the emitter. Again we used x = xab to shorten the notation.
The momentum xpa is the fermion momentum after collinear
photon emission from the initial state, i.e. the momentum xpa

enters the hard non-radiative process. The soft singularities
in the integrals again are extracted from the numerical inte-
gration upon introducing plus distributions in the integrals,

Gab(s,�s, x) = [Gab(s,�s, x)]+ + δ(1 − x)Gab(s,�s).
(4.80)

(i) Massive initial-state emitter a and spectator b
If both initial-state emitter a and initial-state spectator b

are massive, we have to respect the following hierarchy of
parameters:

m2
γ 	 �s 	 m2

a, m2
b, s, s̄. (4.81)

No collinear singularities are encountered, and the effective
integration region in Gab(s,�s) is a neighbourhood of the
point (xab, yab) = (1, 0), so that the function Gab(s,�s, x)

is not required. The full integral reads

Gab(s,�s) = s̄√
λab

{
ln(d1) ln

(
m2

γ λab

�s2s

)

+ 2 Li2(d1) − π2

3
+ 1

2
ln2(d1)

}
+ 2 ln

(mγ ma

�s

)
+ 2

+ fab,+(s) ∓ θ(2m2
a + 2m2

b − s) fab,±(s)

for ma ≶ mb, (4.82)

with the auxiliary functions

fab,±(s) = ± s̄√
λab

{
ln2
(

s̄ + 2m2
a ± √

λab

2s

)

− 2 ln

(
s̄ + 2m2

a ± √
λab

2s

)
ln

(
s̄ + 2m2

b ∓ √
λab

2s

)

− 2 Li2

(
s̄ + 2m2

b ∓ √
λab

2s

)
+ π2

6

+ s̄ ∓ √
λab

s̄
ln

(
s̄ + 2m2

a ± √
λab

s̄ + 2m2
b ∓ √

λab

)

+ 1 − 2m2
a

s̄
∓

√
λab

s̄

}
, (4.83)

Here we partially used the results of Ref. [16], where we have
identified (1 − x0) with 2�y in the limit �y → 0, and

d1 = s̄ + 2m2
a − √

λab

s̄ + 2m2
a + √

λab
. (4.84)

There is no need to introduce the function Gab(s,�s, x) if
the emitter particle is massive.

(ii) Massive emitter a and light spectator b
The hierarchy between the parameters is

m2
γ 	 �s 	 m2

a, s, s̄, mb = 0. (4.85)

Similar to the previous cases, the integral Gab(s,�s) can be
obtained upon taking the limit mb → 0 from the result of the
previous section,

Gab(s,�s) = L(s, m2
a) − 2 ln

(
�s

s̄

)
ln

(
m2

a

s

)

− 2 ln

(
�s

s̄

)
− 3

2
ln

(
m2

a

s

)

+ θ(s − 2m2
a)

{
ln2
(

m2
a

s

)
+ 2 Li2

(
m2

a

s

)
− π2

6

+ 2 ln

(
m2

a

s̄

)
+ 2 − 2m2

a

s̄

}
. (4.86)

Similarly to the case of non-vanishing ma and mb, Gab(s,�s)
does not comprise an integral over the energy flow in the
collinear regions, so that the quantity Gab(s,�s, z) is not
needed either.

(iii) Light emitter a and massive spectator b
If the emitter a is light and the spectator b is heavy, we

have to consider the hierarchy

m2
γ 	 m2

a 	 �s 	 m2
b, s, s̄. (4.87)
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We encounter a collinear singularity in the function
Gab(s,�s), i.e. we have to perform another integration to
obtain Gab(s,�s) for small ma . The explicit result is

Gab(s,�s) = L
(

s̄2

s
, m2

a

)
− ln2

(
�ss

s̄2

)

− 3

2
ln

(
�ss

s̄2

)
− π2

3
+ 1

4

+ θ(s − 2m2
b)

[
ln2
(

s̄

s

)
+ 2 Li2

(
s̄

s

)
− π2

6

]
.

(4.88)

In order to calculate the function Gab(s,�s, x) we have to
perform the integration in Eq. (4.79) over the yab range,
which is bounded by

m2
a

s̄
(1 − x) < yab < �y. (4.89)

A simple integration yields

Gab(s,�s, x) = 1 + x2

1 − x
ln

(
�s

m2
a(1 − x)

)
− 2x

1 − x
. (4.90)

(iv) Light emitter a and spectator b
Finally, we consider the case of both a and b being light,

so that the mass hierarchy is

m2
γ 	 m2

a, m2
b 	 �s 	 s. (4.91)

The full integral Gab(s,�s) can be obtained from the pre-
vious case upon taking the limit of a massless spectator, i.e.
upon taking mb → 0 in Eq. (4.88). The result is

Gab(s,�s) = L(s, m2
a) − ln2

(
�s

s

)

− 3

2
ln

(
�s

s

)
− π2

6
+ 1

4
. (4.92)

The corresponding function Gab(s,�s, x) is the same as
given in (4.90).

5 Application to the top-quark decay

As an application of the techniques described in Sects. 3 and
4, in the following we present the calculation of the QCD and
EW radiative corrections to the top-quark decay at NLO.
First, we summarise our calculational setup in Sect. 5.1.
Then, we discuss the different contributions to the top-quark
decay width in Sect. 5.2. Finally, in Sect. 5.3 we present dif-
ferential distributions in the top-quark rest frame for a set of
kinematic observables.

5.1 Calculational setup and input parameters

Following Ref. [54], the set of input parameters used in our
numerical evaluation is given by

mt = 173.34 GeV, mb = 4.78 GeV,

MOS
W = 80.385 GeV, �OS

W = 2.085 GeV,

MOS
Z = 91.1876 GeV, �OS

Z = 2.4952 GeV,

mμ = 105.6583715 MeV, MH = 125.9 GeV,

Gμ = 1.1663787 · 10−5 GeV−2, αs(MZ) = 0.119, (5.1)

with the masses mt and MH taken from Refs. [55] and [50],
respectively. The same constant value for the strong coupling
constant (5.1) is used throughout the computation, both for
the LO and NLO predictions. Light fermions, i.e. all fermions
but the top and bottom quarks, are considered massless. Fur-
ther, we do not consider any mixing among the quark flavours
in our calculation, i.e. we set the CKM matrix equal to the unit
matrix. This approximation is justified because flavour transi-
tions involving the third generation are practically forbidden
(Vtb ≈ 1). Furthermore, any impact of a mixing among the
first two generations cancels in the final result after taking
the flavour sums owing to the unitarity of the CKM matrix
and the approximation of vanishing quark masses for the first
two generations.

In order to describe the W-boson resonance, we employ
the complex-mass scheme [39–41], a method that takes into
account the effects of the instability and the off-shellness of
the unstable particle in a gauge-invariant way, providing a
consistent procedure at the one-loop level. The main idea of
the complex-mass scheme is to consider the squared boson
masses as complex quantities, defined through the gauge-
invariant pole mass MV and width �V ,

μ2
V = M2

V − iMV �V , V = W, Z, (5.2)

and to introduce them directly at the level of the Lagrangian
density. To apply the complex-mass scheme, the on-shell
masses of the W and Z bosons given in Eq. (5.1) are converted
to the corresponding pole masses according to [56–58]

MV = MOS
V

cV
, �V = �OS

V

cV
, cV =

√√√√1 +
(

�OS
V

MOS
V

)2

.

(5.3)

To preserve gauge invariance, the complex masses have
to be introduced in a consistent manner. In particular, this
implies a complex definition of the weak mixing angle,

s2
w ≡ 1 − μ2

W

μ2
Z

, (5.4)
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and a generalisation of the renormalisation procedure for
unstable particles. Further details of the complex-mass
scheme can be found in Refs. [40,41].

The dependence on the bottom-quark mass is fully
accounted for without approximation. The value of mb given
in Eq. (5.1) corresponds to the pole mass through the two-
loop conversion formula given in Ref. [54]. Although all
fermions with the exception of the top and bottom quarks
are treated as massless in our calculation, a dependence on
the mass of the light fermion arises when non-collinear-safe
observables are considered (see Sect. 3.3). In the follow-
ing, they are only considered for final-state muons where
the experimental discrimination of a collinear muon–photon
configuration is possible. Note that no event selection cuts
are applied, so that the issue of collinear safety only arises in
the event reconstruction. Thus, only differential distributions
are concerned with this issue, while the integrated results, i.e.
the (partial) decay widths, are collinear safe.

The EW coupling constant α is derived from the muon
decay constant Gμ via the relation

αGμ =
√

2M2
W

π
Gμ

(
1 − M2

W

M2
Z

)
. (5.5)

This definition corresponds to the so-called Gμ-scheme,
which avoids large logarithms induced by the running of
α from the Thomson limit (Q2 = 0) to the EW scale
(Q2 ∼ M2

W) and further absorbs dominant corrections to the
ρ parameter into the coupling definition. Using αGμ instead
of α in LO predictions changes the charge-renormalisation
constant by a term containing the quantity �r [34,59] which
quantifies the radiative corrections to muon decay (see, e.g.,
Ref. [60] for further details). For the strong coupling αs we
employ the fixed value given in Eq. (5.1).

5.1.1 Details on the calculations

The implementation employing the slicing method of Sect. 4
was performed using matrix elements that were calculated
using the Weyl–van-der-Waerden spinor formalism (as for-
mulated in Ref. [61]) for the tree-level amplitudes and in-
house Mathematica routines for the virtual one-loop cor-
rections. Optimised phase-space parametrisations, based on
Refs. [39,62], were chosen for each of the pronounced
structures in the integrand induced by collinear poles or
Breit–Wigner resonances. The numerical integration was
performed using the Vegas algorithm [63,64].

A second independent calculation was performed using
the subtraction method described in Sect. 3. Here, the
matrix elements were obtained with the combined pack-
ages FeynArts [65] and FormCalc [66,67]. An indepen-
dent implementation of routines for the phase-space genera-

tion was employed. As in the calculation based on the slic-
ing approach, the numerical integration was performed with
Vegas.

Both implementations resort to theCollier library [68],
which is mainly based on the results of Refs. [69,70] for
the numerical evaluation of loop integrals and supports both
dimensional and mass regularisation for the treatment of IR
singularities.

5.2 NLO corrections to the top-quark decay width

In Table 1 we collect the numerical results on the various con-
tributions to the top-quark decay width, providing separate
results on the semi-leptonic and hadronic decay channels.

The relative correction factors δ are defined with respect
to the corresponding LO prediction �LO

t ,

δαs = �
NLO QCD
t − �LO

t

�LO
t

, δα = �NLO EW
t − �LO

t

�LO
t

, (5.6)

where �
NLO QCD/EW
t denotes the NLO prediction taking into

account only QCD/EW corrections, while the full NLO
QCD+EW result is denoted �NLO

t . The QCD corrections
to the semi-leptonic decay of the top-quark are known in
semi-analytic form [24] and are in full agreement with
our numerical result.4 The full NLO prediction5 �NLO

t =
1.3693(2)GeV for the total width (see Table 1) can be com-
pared to the most recent CMS measurement [49] of

�t = 1.36 ± 0.02 (stat) +0.14
−0.11 (syst) GeV, (5.7)

assuming mt = 172.5 GeV, revealing good agreement
between theory and experiment at the current accuracy level.

A comparison between the results obtained with OCS and
dipole subtraction is shown in Fig. 6.

As discussed in Sect. 4, the slicing approach introduces
a cut parameter �s in order to isolate the singular region
of the real-emission phase space. The dependence on this
cut parameter cancels between the individual parts of the
calculation in a non-trivial manner when combined to the
final result, constituting a powerful check on the correctness
of the calculation. Although this implies a certain degree
of arbitrariness in the choice of the specific value for the
cut parameter, in practice, sensible values for �s are con-
strained to a certain range. This interval of validity is lim-
ited by the approximation used in the analytic integration

4 A readjustment of the prefactor of the result given in Ref. [24] accord-
ing to Gμ → Gμ · Re(s2

w)/s2
w is required in order to be consistent with

the complex-mass scheme employed in our calculation.
5 The total width is calculated using lepton universality, i.e. the τ mass
mτ is neglected, since those effects are of O(m2

τ /M2
W).
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Table 1 Contributions to the
decay width of the top-quark at
NLO in αs and α, divided into
the semi-leptonic and hadronic
decay channels. Results using
the narrow-width approximation
(NWA) are given for
comparison

�LO
t (GeV) �NLO

t (GeV) δαs (%) δα(%)

Semi-leptonic Off-shell 0.161065(1) 0.148109(2) −9.38 +1.34

NWA 0.163634 0.150504 −9.38 +1.35

Hadronic Off-shell 0.483194(1) 0.46242(3) −5.59 +1.29

NWA 0.490902 0.46987 −5.59 +1.31

Total Off-shell 1.449582(4) 1.36918(6) −6.85 +1.30

NWA 1.472707 1.39126 −6.85 +1.32
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Fig. 6 Dependence of the relative correction factor on the cut value �s
in the OCS method (red integration error bars) and comparison to the
results obtained using the dipole subtraction method (band indicated
by blue lines). The upper and lower borders correspond to one standard

deviation of the numerical integration. The relative EW (left) and QCD
(right) corrections are exemplarily shown for the case of a top-quark
decaying semi-leptonically and hadronically, respectively

on the upper, and by the stability of the numerical evalua-
tion on the lower end. It is therefore necessary to perform
a scan over the cut parameter to identify the region where
both restrictions are simultaneously fulfilled and where the
result can be trusted. Figure 6 illustrates such a variation
of �s covering three orders of magnitude, clearly depicting
the on-set of the aforementioned breakdown of the calcula-
tion. Furthermore, we observe good agreement between the
results obtained by the two techniques which overlap within
their Monte Carlo errors where the �s variation develops
a plateau. The OCS results presented in the following are
obtained for a specific value of �s where a point in the middle
of the plateau was chosen after performing such a scan. This
procedure is repeated for each decay mode (semi-leptonic
and hadronic) and each type of correction (QCD and EW).

At this point, a comment on the relative performance of
the two methods is in order: Although the OCSM has the
advantage of avoiding negative weights to a large extent, the
additional variation of the slicing cut that is required to locate
the plateau constitutes an additional computational overhead.
Furthermore, we require a higher degree of optimisation in
the integrator to sample the regions of the real-emission phase
space close to the technical cut to high accuracy, which

is then cancelled against the large contribution that arises
from the analytically integrated soft–collinear contributions.
These are the well-known drawbacks of slicing approaches
compared to local subtraction methods such as the dipole
formalism which generally display better numerical conver-
gence and stability. More specifically, in order to reach a
comparable Monte Carlo error between the two implemen-
tations, the dipole subtraction formalism roughly requires an
order of magnitude less statistics in the integration compared
to the OCSM method.

Finally, we have compared the results of our calculation
with off-shell W bosons to a narrow-width approximation
(NWA) based on on-shell intermediate W bosons, which is
defined by

�NWA
t→b f f̄ ′ = �t→Wb × BRW→ f f̄ ′ , BRW→ f f̄ ′ = �W→ f f̄ ′

�W
(5.8)

at LO, where BRW→ f f̄ ′ is the branching ratio of the
W boson. Note that we take the experimental result from
Eqs. (5.1) and (5.3) as input for the total W width �W, while
the partial widths are calculated, in order to match the input
procedure for the full top-quark decays with intermediate
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W bosons. At NLO, we linearise the corrections to �NWA
t→b f f̄ ′

in the corrections to the partial decay widths, in order not to
spoil the proper comparison to the results for the full top-
quark decays. Table 1 shows that the off-shell result and the
NWA for the top decay widths differ by about 1.6 %, in good
agreement with the naive expectation of O(�W/MW), which
quantifies typical off-shell effects of the W boson in inte-
grated quantities. The relative corrections are influenced by
the off-shell effects only at the sub per-mille level. Off-shell
effects of the W boson will, however, play a more important
role in differential distributions.

5.3 Differential distributions in the top-quark rest frame

In the following, we present differential distributions for the
decay of the top-quark in its rest frame. After describing the
event reconstruction in Sect. 5.3.1, we present the numeri-
cal results for the semi-leptonic and hadronic decay chan-
nels in Sects. 5.3.2 and 5.3.3, respectively. The differential
distributions and their corrections are shown as plots that are
subdivided into three frames with the following conventions:
The upper panel depicts the absolute distributions, while the
bottom two frames show the relative EW (middle panel) and
QCD (bottom panel) corrections.

5.3.1 Event reconstruction

It is not always possible to fully distinguish the particles of
the process in the soft and collinear configurations. In our cal-
culation, we try to be as close as possible to an experimental
situation and distinguish the following scenarios:

(i) Electroweak corrections to the semi-leptonic decay
“Dressed leptons”: The EW corrections contain IR sin-

gularities originating from soft photons and configurations
where the photon becomes collinear to the final-state charged
lepton. For sufficiently inclusive observables these singu-
larities cancel in the final result. To this end, we apply
the photon-recombination procedure described in Ref. [71]
which attributes the momentum of a collinear photon to the
charged lepton when close to it, i.e., when �R(�, γ ) =√

�y(�, γ )2 + �φ(�, γ )2 < 0.1, where �y (�φ) is the
rapidity (azimuthal angle) difference between two objects.
Such a recombination procedure is mandatory for a realis-
tic experimental description in the case of electrons. “Bare
muons”: In the case of muons, a collinear muon–photon pair
can be experimentally resolved, so that no photon recombi-
nation is required. This results in non-collinear-safe observ-
ables, which are treated following the procedures described
in Sects. 3.3 and 4.2.

(ii) QCD corrections to the semi-leptonic and hadronic
decays

In contrast to the semi-leptonic case, where we assume that
the bottom quark could be directly identified with a bottom

jet, in the hadronic case we are confronted with the situation
that experimentally indistinguishable partons are present in
the final state. It is therefore necessary to define an IR-safe
observable which groups soft and/or collinear partons into
jets. In our calculation we adopt the inclusive generalised
anti-kT algorithm [72,73] for two values of the clustering
parameter, R = 0.6 and R = 1.0. The first value corre-
sponds to the ATLAS default choice [74], the second one
will be motivated in Sect. 5.3.3. We assume a bottom-tagging
efficiency of 100 % and identify the jet containing the b quark
as the b-tagged jet. In the following, we refer to the jet candi-
date with the highest transverse momentum6 as the leading
jet.

(iii) Electroweak corrections to the hadronic decay
When computing the EW corrections to the hadronic

decay, we do not distinguish the photon from the other QCD
partons and apply the same jet algorithm as described in the
previous paragraph.

5.3.2 Semi-leptonic decay of the top-quark

The numerical results for the NLO corrections to the semi-
leptonic decay of the top-quark, t → b ν� �+, are summarised
in Fig. 7.

They comprise differential distributions in the energy of
the charged lepton (E�) and of the bottom quark (Eb), the
invariant mass of the bottom quark and the charged lep-
ton (Mb�), and the cosine of the angle between the directions
of the lepton and the bottom quark (cos θb�).

Following the reconstruction described in Sect. 5.3.1, we
distinguish the two cases of “dressed leptons” and “bare
muons” for the EW corrections. For observables that are not
sensitive to the collinear � → � γ splitting, i.e. which are
collinear safe, both corrections must be nearly identical. This
can be seen in the distributions in cos θb� and Eb shown in the
upper right and lower right plots in Fig. 7, respectively. In the
former case in particular, the photon is indeed recombined
only if collinear to the positron, i.e. it does hardly change
the direction of the charged lepton. The EW corrections have
a minimum in the proximity of the peak (cos θb� ∼ −0.8),
are positive and smaller than 2 %. For comparison, the QCD
corrections reach down to −12 %. The distribution in the
b-jet energy is characterised by the fact that a 1 → 2 par-
ticle decay is effectively taking place when the W boson is
on shell. In this case, the energy Eb of the b-jet tends to the
fixed value

EOS
b = m2

t − M2
W + m2

b

2mt
. (5.9)

6 Note that no direction is distinguished in the top-quark rest frame
and we have fixed an arbitrary reference axis to compute the transverse
component.
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Fig. 7 EW and QCD corrections to the semi-leptonic top-quark decay as a function of Mb� (top left), cos θb� (top right), E� (bottom left), and Eb
(bottom right), for dressed leptons and bare muons

This explains the peak at Eb ≈ 68 GeV. The asymmetric
shape of the EW corrections is due to the typical radiative tail
produced by photon radiation off a particle near a resonance
energy. Most b quarks have an energy Eb ≈ EOS

b after the
top-quark decay, so that photon radiation off b quarks, which
is collinearly enhanced, reduces Eb, leading to large posi-
tive corrections at energies below EOS

b . This effect is further
enhanced in the relative corrections, because the LO distri-
bution is strongly suppressed there. The same effect occurs
in the QCD correction as well, leading to a similar shape, but
even more than an order of magnitude larger. Note that in this
case corrections more than 100 % do not signal a breakdown
of perturbation theory, they merely signal that the effective
lowest order is provided by the radiative process with hard
gluon (and partially photon) emission. A proper description

of this tail, thus, would require the inclusion of multi-jet (and
multi-photon) emission, as provided, e.g., by parton showers.

For the remaining distributions, i.e. in Mb� and E�, we
observe EW corrections that are larger in magnitude for
“bare muons”, stemming from the large mass-singular log-
arithm α ln mμ and reflecting the non-collinear-safe nature
of the corresponding observable. The emitted photon in the
� → � γ splitting removes some energy from the charged
lepton. Contrary to the “bare muon” case, the “dressed lep-
ton” effectively can reabsorb some photons in its redefinition
when the photon-recombination procedure is applied. Hence,
the EW correction to E�, always monotonically decreasing,
are steeper for the “bare muon” than for the “dressed lepton”,
as can be seen in the bottom left plot of Fig. 7. For similar
reasons, this effect is present also in the distribution in Mb�,
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Fig. 8 EW and QCD corrections to the hadronic top-quark decay as a
function of Mb j (top left), cos θb j (top right), E j (bottom left), and Eb
(bottom right), with j denoting the leading (non b-tagged) jet. The cor-

rections are shown for the two choices R = 0.6 and R = 1 for the angu-
lar resolution parameter of the jet algorithm

as shown in the top left plot of Fig. 7. Here, the EW correc-
tions decrease from +6 to −4 % for “dressed leptons”, while
they drop from +8 to −10 % when “bare muons” are con-
sidered in the top-quark decay. The QCD corrections to this
distribution are decreasing down to −45 % for large invariant
masses.

5.3.3 Hadronic decay of the top-quark

Here, we present the results for the QCD and EW corrections
to the top-quark hadronic decay width. In our setup, the cor-
rections to the two processes t → b uNd and t → b cNs coincide
and are given in Table 1 for the integrated decay width.

In the top-left plot of Fig. 8 we show the distribution in
the invariant mass of the b-jet and the leading jet.

In the upper frame we notice that the QCD corrections
evaluated for R = 0.6 turn the distribution negative at
Mb j ∼ mt . This is of course an unphysical effect: For a too
low value of R, as in this case, the recombination between the
real and the virtual parts is not sufficiently inclusive, so that
the IR divergence leaves a trace as αs ln R corrections. This
problem can be solved by enlarging the cone, e.g. to R = 1,
as shown in the same plot. With a wider cone, there is indeed
a larger probability for the particles to be merged. In the case
where all the final-state particles (excluding the b quark) are
combined into a single jet, the invariant mass Mb j reproduces
the top-quark mass value. This explains the appearance of a
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peak at Mb j = mt . This obviously happens more frequently
for a 1 → 3 kinematics (as the LO) rather than at NLO. At
NLO, the extra gluon can populate Mb j regions less proba-
ble at LO. This in turns explains the huge corrections in the
lower frame of Fig. 8 (top left): The magnitude of the NLO
correction, shown in the middle frame, gets very large due to
the strong suppression of the LO in the normalisation. The
EW correction is much smaller than the QCD correction, but
is similar in shape. The curve for R = 0.6 does not suffer
from the same issue as the QCD counterpart. The R = 1 case
is nonetheless shown for comparison.

The distributions obtained choosing R = 0.6 or R = 1.0
are compared also for the other observables. The main differ-
ence is that the relative corrections induced by the choice of
the larger radius are milder than those obtained when using
R = 0.6, as expected from the inclusiveness argument. This
effect can be clearly seen in the bottom-left and bottom-right
plots in Fig. 8, where the NLO corrections to the energy of
the leading jet and of the b-jet are presented, respectively.
The energy of the leading jet receives positive QCD cor-
rections due to gluon radiation, which turn negative above
the energy peak at ∼65 GeV. As a consequence, the shape
of the energy distribution at NLO is shifted to the left, more
evidently for R = 0.6. In the low-energy tails the relative cor-
rections are enhanced owing the normalisation to the small
LO prediction in this region. The QCD and EW corrections
to the distribution in the energy Eb of the b-jet, displayed
in Fig. 8 (bottom right), again show the distinctive radiative
tails as already discussed for the semi-leptonic top decay in
the previous section.

The different choice of the jet-algorithm parameter affects
also the cosine of the angle between the b-jet and the leading
jet, as displayed in the top-right plot in Fig. 8. Once again,
a larger jet radius implies a larger probability to merge all
final-state partons other than the b quark into a single jet.
The latter will then be back-to-back to the b-jet since in this
calculation the top-quark is considered at rest. This explains
the peak appearing in the bin close to cos θb j = −1 when
R = 1 is employed. As in the previous case, the shape of
the EW corrections match closely the QCD ones, however,
are smaller in size by an order of magnitude. The strong rise
of the QCD corrections toward larger values of cos θbj again
originates from the fact that gluon radiation populates the
jet phase space more uniformly than at LO, where there is
a strong tendency that the b quark and the hardest jet are
back-to-back.

6 Conclusions

In this paper we have described extensions of two techniques
for the treatment of infrared singularities in the computation
of electroweak corrections at next-to-leading order: In Sect. 3

we have supplemented the construction of universal subtrac-
tion terms within the dipole subtraction formalism to cover
decay kinematics. The one-cutoff slicing method described
in Sect. 4 was derived on the basis of the dipole subtraction
formalism and organises the singular contributions in terms
of pairs of fermions. These results represent the first ones
employing mass regularisation and further allow for an arbi-
trary number of charged particles, a case that has not been
discussed in detail in the literature so far. When dealing with
more than three charged particles in the process, the appear-
ance of new “surface” terms has been emphasised. For both
methods we have covered all possible cases of massless and
massive fermions in the final state and further worked out the
respective extensions for the treatment of non-collinear-safe
observables. The extension of the described techniques to the
calculation of NLO QCD corrections is straightforward.

Both methods have been applied to compute the NLO
QCD and electroweak corrections to the top-quark decay
width. In this computation, we have considered the b-quark
as massive and evaluated the correction to the top-quark
three-body decays fully accounting for the off-shellness of
the intermediate W boson within the complex-mass scheme.
Both the hadronic and the semi-leptonic decay channels are
considered, further accounting for the case of non-collinear-
safe observables in the latter. For the semi-leptonic decay, the
NLO QCD corrections to the partial decay width amount to
∼−9.4 and ∼+1.3 % for the electroweak corrections. In the
hadronic decay channel, the NLO QCD correction are more
moderate with ∼−5.6 %, however, still much larger than the
EW correction which amount to ∼+1.3 %. While off-shell
effects of the W boson modify the integrated decay widths
by about 1.5 %, the relative NLO QCD and EW corrections
are modified only by few per mille by W off-shell effects.
We have further presented differential distributions in the
top-quark rest frame for different kinematic observables.

The final result for the total decay width of the top-quark
at NLO QCD+EW is given by �NLO

t = 1.369 GeV, which
corresponds to an overall correction with respect to the LO
prediction of δNLO = −5.5 %. This breaks down to an over-
all NLO QCD correction of ∼−6.8 %, and to a NLO EW
correction of ∼+1.3 %, normalised to LO. As mentioned in
the introduction, the total top decay width is known at NNLO
QCD accuracy. TheO(α2

s

)
correction, evaluated with a finite

b-quark mass and a finite W-boson width in a soft–collinear
effective theory and normalised to the LO, amounts to a fur-
ther ∼−2.1 % [29,32]. A comparison of our NLO QCD+EW
prediction – with and without the additional NNLO correc-
tion of Refs. [29,32] – reveals good agreement with the most
recent measurement by the CMS experiment [49]:

�CMS
t = 1.36 ± 0.02 (stat) +0.14

−0.11 (syst) GeV,

�NLO
t = 1.369 GeV,
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�
NLO+NNLO QCD
t = 1.338 GeV. (6.1)

However, the quoted experimental error is still one order
of magnitude larger than the typical EW corrections of
∼+1.3 % addressed here. The experimental error is domi-
nated by systematic uncertainties, such as the jet energy scale,
where a significant improvement is difficult. The study of
top-quark properties is an important part of the physics pro-
gramme of future lepton colliders which aims for a precision
at the order of 10−30 MeV in the experimental determina-
tion of the top width [75,76] and where the EW corrections
are important.

The codes developed in the context of this work can serve
as a first step towards an unweighted Monte Carlo generator
for the decay of the top-quark at NLO, which can easily be
linked to any top-quark production process in order to simu-
late the decay at NLO accuracy. This is particularly important
for processes with many particles in the final state when all
intermediate particles are decayed. For instance, tt + V (V )

(V = γ, Z, W±), ttH, ttbb, and tttt, among others. More-
over, the top-quark decay width including both NLO QCD
and EW corrections and W-boson off-shell effects comprises
an ingredient in NLO predictions for the production of single
top-quarks or tt̄ pairs including top-quark decays and off-
shell effects, such as the process pp → bb̄W+W− → 6 f ,
for which NLO QCD corrections are known, but not yet the
EW corrections.
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Appendix

A Conversion from mass regularisation to dimensional
regularisation

In this appendix we briefly describe how to convert the results
obtained using mass regularisation (the default choice in the
main part of this paper) to the corresponding expressions
using dimensional regularisation in D = 4−2ε dimensions.
To this end, we use the results of Refs. [18,52] for the general

singular IR behaviour of one-loop amplitudes which also
include the finite terms that arise from the non-commutativity
of the limits ε → 0 and m → 0 and, thus, can be exploited
for the conversion between the two regularisation schemes.
The following translation rules apply both to the functions
G f f ′(P2,�s) of the OCS method given in Sect. 4 and to
the dipole subtraction functions D(sub) and G(sub) given in
Sect. 3 and Refs. [16,19], respectively. In the following we
generically denote these functions G f f ′ .

For an emitter particle with a non-vanishing mass m, i.e.
m2 � �s in the OCS method, only soft singularities arise
which appear as ln mγ terms in mass regularisation. The tran-
sition to dimensional regularisation is simply accomplished
by the substitution

ln(m2
γ ) → cεμ

2ε

ε
+ O(ε), (A.1)

where we have defined the constant

cε = (4π)ε�(1 + ε) = (4π)ε

�(1 − ε)
+ π2

6
ε2 + O(ε3) (A.2)

and μ is the reference mass of dimensional regularisation.
If the emitter mass m is not light, but is used only as regula-

tor in the limit m → 0 (m2 	 �s in the OCS method), addi-
tional collinear singularities show up as ln m terms in mass
regularisation. The transition from mass to dimensional reg-
ularisation is more conveniently described exploiting the fact
that only the symmetrised sum G f f ′ + G f ′ f of the functions
G f f ′ appears in applications, since each charged particle can
appear as emitter or spectator. In this symmetrised form the
results of Refs. [18,52] can be exploited to derive the cor-
respondence. However, we have checked that the following
rule applies to each G f f ′ separately as well.

In mass regularisation the IR divergences are always con-
tained in the function L(P2, m2) defined in Eq. (3.24) with
an appropriate kinematical invariant P2. In dimensional reg-
ularisation with a vanishing emitter mass m = 0 this singular
function is universally given by

L(P2, 0) =
(

μ2

P2

)ε

cε

(
1

ε2 + 3

2ε

)
+ 2. (A.3)

Note that the difference between the results in the two reg-
ularisation schemes, which is proportional to the combina-
tion L(P2, 0)−L(P2, m2), does not depend on the invariant
P2, since the discontinuities arise from terms proportional to
(m2

μ2 )−ε 1
ε

or (m2

μ2 )−ε 1
ε2 , which vanish in dimensional regular-

isation (m → 0 first), but not for mass regularisation (ε → 0
first).
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