
Eur. Phys. J. C (2014) 74:3103
DOI 10.1140/epjc/s10052-014-3103-0

Special Article - Tools for Experiment and Theory

Designing and recasting LHC analyses with MadAnalysis 5

Eric Conte1, Béranger Dumont2, Benjamin Fuks3,4,a, Chris Wymant5,6

1 Groupe de Recherche de Physique des Hautes Énergies (GRPHE), Université de Haute-Alsace, IUT Colmar, 34 rue du Grillenbreit, BP 50568,
68008 Colmar Cedex, France

2 LPSC, Université Grenoble-Alpes, CNRS/IN2P3, 53 Avenue des Martyrs, 38026 Grenoble, France
3 Theory Division, Physics Department, CERN, 1211 Geneva 23, Switzerland
4 Institut Pluridisciplinaire Hubert Curien/Département Recherches Subatomiques, Université de Strasbourg/CNRS-IN2P3, 23 Rue du Loess,

67037 Strasbourg, France
5 Laboratoire d’Annecy-le-Vieux de Physique Théorique, 9 Chemin de Bellevue, 74941 Annecy-le-Vieux, France
6 Present address: Department of Infectious Disease Epidemiology, Imperial College London, St Mary’s Campus, Norfolk Place,

London W2 1PG, UK

Received: 29 May 2014 / Accepted: 26 September 2014 / Published online: 15 October 2014
© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract We present an extension of the expert mode of the
MadAnalysis 5 program dedicated to the design or reinter-
pretation of high-energy physics collider analyses. We detail
the predefined classes, functions and methods available to the
user and emphasize the most recent developments. The latter
include the possible definition of multiple sub-analyses and
a novel user-friendly treatment for the selection criteria. We
illustrate this approach by two concrete examples: a CMS
search for supersymmetric partners of the top quark and a
phenomenological analysis targeting hadronically decaying
monotop systems.

1 Introduction

For every experimental analysis at the CERN Large Hadron
Collider (LHC), selection criteria, widely referred to as cuts,
are necessary for the reduction of the data-recording rate to
a technically feasible level and the discrimination between
interesting and irrelevant events for a specific physics ques-
tion. At the experimental level, it is important to distinguish
between two classes of cuts: those imposed at the trigger
level, and those imposed offline. Events failing the former
are not recorded at all and the information is lost, whereas
events failing the latter are merely not considered for the final
analysis. This distinction is less important for the reinterpre-
tation of an analysis based on any sample of events other than
real observed data, notably events generated by Monte Carlo
simulations of collisions to be observed assuming a given
(new) physics model. In this case, both types of cuts simply
amount to conditions on whether a given generated event is
considered in the analysis or not. However, the reinterpreta-
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tion of an analysis in general requires ex novo implementation
of the full set of cuts.

Several frameworks [1–3] have recently been released
with this aim, based on simulated collisions including an
approximate modeling of the detector response. Although
the description of the detector is highly simplified when com-
pared to the full ATLAS or CMS software, public fast detec-
tor simulations, most notably the Delphes program [4], have
been found to provide reasonably accurate results. Detector
effects could instead be mimicked by scale factors derived
from unfolded data as done in Rivet [5]. While this is
an excellent approach for Standard Model measurements,
detector unfolding is however not yet practicable for beyond
the Standard Model searches in general. Another alternative
way, which does not rely on event simulation, uses results
published by the experimental collaborations in the context
of so-called Simplified Models Spectra, as in the works of
Refs. [6,7]. While much faster, this is, however, less general.

In the present work, we focus on the expert mode of the
MadAnalysis 5 program [1,8] dedicated to the implemen-
tation of any analysis based on a cut-and-count flow (in con-
trast to analyses relying on multivariate techniques) and the
investigation of the associated effects on any Monte Carlo
event sample. The implementation of an analysis is facili-
tated by the large number of predefined functions and meth-
ods included in the SampleAnalyzer library shipped with
the package, but is however often complicated in cases where
one has several sub-analyses which we refer to as regions
(with a nod to the terms signal and control regions commonly
used in searches for physics beyond the Standard Model).
The complication arose from the internal format handled by
SampleAnalyzer, which assumed the existence of a single
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Fig. 1 Schematic illustration of the definition of different regions in which a given event can be counted (or not), based on different combinations
of selection cuts

region. While this assumption is convenient for prospective
studies, i.e., the design of new analyses, it is rarely fulfilled
by existing analyses that one may want to recast. In order to
allow the user to both design and recast analyses, we have
consequently extended the SampleAnalyzer internal for-
mat to support analyses with multiple regions defined by
different sets of cuts. We have also expanded the code with
extra methods and routines to facilitate the implementation
of more complex analyses by the user.

In the context of analyses which effectively contain sub-
analyses, a further useful classification of cuts can be made:
namely into those which are common/shared by different
regions, and those which are not, the latter serving to define
the different sub-analyses themselves. Figure 1 schemati-
cally illustrates an analysis containing four regions, which
are defined by two region-specific cuts imposed after two
common cuts. Some thought is required concerning the best
way to capture in an algorithm the set of selection require-
ments shown in Fig. 1. For the common cuts (cuts 1 and 2 on
the figure) this is clear: if the selection condition is failed, the
event is vetoed (i.e., we ignore it and move on to analyzing
the next event). Thereafter we have two conditions to check
(cuts 3 and 4), but they apply to different regions. In terms
of pseudo-code the most obvious, although not the most effi-
cient, method for implementing these third and fourth cuts is

count the event in region D
if (condition 3)
{

count the event in region C
if (condition 4)
{
count the event in region A

}
}
if (condition 4)
{

count the event in region B
}

One important drawback of this naive approach is the dupli-
cation of the check of the fourth condition. In the simple
style of implementation of the cuts above, this is unavoid-
able: condition 4 must be checked both inside and outside
the scope of condition 3. With the two region-specific cuts
that we have here, there is only one such clumsy duplica-
tion present in the code. However as the number of such cuts
grows, the situation rapidly gets worse. For instance, consid-
ering growing the decision tree shown in Fig. 1 to include
N region-specific cuts, combined in all possible permuta-
tions to define 2N regions would deepen the nesting of the
above pseudo-code and lead to 2N − (N + 1) unnecessary
duplications of checks. Moreover, each of those needs to be
carefully implemented by the user in the correct scope, a
task becoming less and less straightforward for large values
of N .

Ideally the algorithm should be structured so that there
is no unnecessary duplication, which is one of the new fea-
tures of the latest version of SampleAnalyzer, the C++
core of the MadAnalysis 5 program. Both can be obtained
from the MadAnalysis 5 website, https://launchpad.net/
madanalysis5 and all the features described in this paper are
available from version 1.1.10 of the code onwards. This doc-
ument supersedes the previous version of the manual for the
expert mode of the program [1].

The remainder of this paper is organized as follows. In
Sect. 2, we recall the basic functionalities of MadAnaly-
sis 5 for the implementation of physics analyses in the expert
mode of the program, which has been extended according to
the needs of our users. Moreover, we introduce the new fea-
tures of the SampleAnalyzer kernel. Two concrete exam-
ples are then provided in Sect. 3: the first is the reimplementa-
tion of a CMS search for supersymmetric partners of the top
quark in events with a single lepton and missing energy [9],
and the second the design of a monotop analysis where the
monotop system decays in the hadronic mode [10]. Our work
is summarized in Sect. 4.
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2 The expert mode of MadAnalysis 5

In this section we present the manner in which physics anal-
yses are implemented in the expert mode of MadAnaly-
sis 5 . We begin with the creation of an analysis template
(Sect. 2.1), followed by the addition of several analyses to
the same template (Sect. 2.2). We then discuss the methods
and classes allowing effective implementation of an analy-
sis (Sect. 2.3), its compilation and execution (Sect. 2.4) and
finally the structure of the output files (Sect. 2.5).

2.1 Creation of an analysis template

In the expert mode of the program, the user is asked to write
his/her analysis in C++, using all the classes and methods
of the SampleAnalyzer library. To begin implementing a
new analysis, the user is recommended to use the Python
interpreter of MadAnalysis 5 to create a working direc-
tory. This is achieved by starting MadAnalysis 5 with the
command

./bin/ma5 <mode> -E

where the value of <mode> refers to an analysis of events
generated at the parton level (-P), hadron level (-H) or recon-
structed level (-R). It is then enough to follow the instruc-
tions displayed on the screen—the user is asked for the names
of the working directory and of his/her analysis, which we
denote by name in the rest of Sect. 2. The directory that
has been created contains three subdirectories: the Input,
Output and Build directories.

Use of the Input directory is optional. It has been
included in the analysis template in order to have a unique
structure for both the normal and expert modes of Mad-
Analysis 5 . In the normal mode, its purpose is to collect text
files with the lists of paths to the event samples to analyze. The
Output directory has been conceived to store the results of
each execution of the analysis. TheBuilddirectory includes
a series of analysis-independent files organized into several
sub-directories, together with files to be modified by the user.

At the root of the Build directory, one finds one bash
script together with its tcsh counterpart. These scripts set
appropriately the environment variables necessary for the
compilation and execution of an analysis within the Mad-
Analysis 5 framework. They are initiated by typing in a
(bash or tcsh) shell the respective commands

source setup.sh source setup.csh

A Makefile is also available so that the standard com-
mands

make make clean make mrproper

can be used to (re)compile the analysis (see Sect. 2.4). The
final executable is obtained from two pieces—a library and

the main program. The library originates from the merging of
the SampleAnalyzer library and the analysis of the user,
and is stored in the subdirectory Build/Lib. The main
program is located in theBuild/Main subdirectory and has
a simple structure. It first initializes the analysis, then runs the
analysis over all events (possibly collected into several files)
and eventually produces the results in the Output directory
previously mentioned.

The Build directory contains moreover the SampleA-
nalyzer subdirectory that stores the source and header
files associated with the analysis being implemented (Ana-
lyzer/name.cpp and Analyzer/name.h), together
with a Python script, newAnalyzer.py, dedicated to
the implementation of several analyses into a single work-
ing directory. The Analyzer subdirectory additionally
includes a list with all analyses implemented in the current
working directory (analysisList.h). More information
about those files is provided in the next subsections.

2.2 Merging several analyses in a single working directory

In Sect. 2.1, we have explained how to create a work-
ing directory containing a single (empty) analysis that is
called, in our example, name. The analysis itself is imple-
mented by the user in a pair of files name.cpp and
name.h, which should be consistently referred to in the
file analysisList.h. In addition, the main program (the
file Build/Main/main.cpp) takes care of initializing
and executing the analysis. The structure of this analysis
provides guidelines for the implementation of any other
analysis—newname for the sake of the example—in the
same working directory. This new analysis has to be writ-
ten in the two filesnewname.cpp and newname.h (stored
in the Build/SampleAnalyzer/Analyzer directory)
and referred to in theanalysisList.hfile. The main pro-
gram also needs to be modified in order to initialize and exe-
cute the new analysis, in addition to the first analysis (name).

All these tasks have been automated (with the exception
of the implementation of the analysis itself) so that the user is
only required to run the python script newAnalyzer.py
by typing in a shell the command

./newAnalysis.py newname

from the Build/SampleAnalyzer directory.

2.3 Implementing an analysis in the MadAnalysis 5
framework

2.3.1 General features

As briefly sketched in the previous subsections, the imple-
mentation of a specific analysis within the MadAnalysis 5
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Table 1 Methods of the RegionSelectionManager class

AddCut(...) Declares a cut and links it to a set of regions. A single string must be passed as an argument,
corresponding to the user-defined name of one of the selection cuts of the analysis. If no other
argument is provided, the cut is associated with all declared signal regions. Otherwise, an additional
single string or an array of strings, corresponding to the name(s) of the region(s) associated with the
cut, can optionally be specified

AddHisto(...) Declares a histogram. The first argument is the name of the histogram, the second one is the number of
bins (an integer number), the third and fourth arguments define the lower and upper bounds of the x
axis (given as floating-point numbers), respectively. The last argument is optional and links all or
some of the declared regions to the histogram (see the AddCut method for more information on this
feature)

AddRegionSelection(...) Declares a new region. This method takes a string, corresponding to a user-defined name for the
region, as its argument

ApplyCut(...) Applies a given cut. This method takes two mandatory arguments. The first is a boolean variable and
indicates whether the selection requirement associated with a given cut is satisfied. The second
argument is the name of the considered cut, provided as a string. The method returns true if at least
one region defined anywhere in the analysis is still passing all cuts so far, or false otherwise

FillHisto(...) Fills a histogram. The first argument is a string specifying the name of the considered histogram, and
the second is a floating-point number providing the value of the observable being histogrammed

InitializeForNewEvent(...) To be called prior to the analysis of each event at the beginning of the Execute function. This
method tags all regions as surviving the cuts, and initializes the weight associated with the current
event to the value defined by the user passed as an argument (given as a floating-point number)

IsSurviving(...) Takes as an argument the name of a region (a string). The method returns true if the region survives
all cut applied so far, false otherwise

SetCurrentEventWeight(...) Modifies the weight of the current event to a user-defined value passed as an argument (given as a
floating-point number)

framework consists of providing the analysis C++ source and
header files name.h and name.cpp.

The header file contains the declaration of a class ded-
icated to the analysis under consideration. This class is
defined as a child class inheriting from the base class
AnalysisBase, and includes, in addition to constructor
and destructor methods, three functions to be implemented by
the user (in the source file name.cpp) that define the anal-
ysis itself. The first of these, dubbed Initialize, is exe-
cuted just once prior to the reading of the user’s set of events.
In particular, it enables one both to declare selection regions
and to associate them with a series of cuts and histograms. It
returns a boolean quantity indicating whether the initializa-
tion procedure has been achieved properly. If not, the exe-
cution of the main program is stopped. The second method,
named Execute, is the core of the analysis and is applied
to each simulated event provided by the user. Among others
things, it takes care of the application of the selection cuts and
the filling of the various histograms. This function returns a
boolean quantity that can be used according to the needs of
the user, although it is by default not employed. Finally, the
last function, a function of void type called Finalize, is
called once all events have been read and analyzed. More-
over, the user is allowed to define his/her own set of functions
and variables according to his/her purposes.

The splitting of the analysis into regions, the appli-
cation of the selection criteria, and the filling of his-

tograms are all controlled through the automatically initial-
ized object Manager()—a pointer to an instance of the
class RegionSelectionManager. The member meth-
ods of this class are listed in Table 1 and will be detailed in the
next subsections, in which we also provide guidelines for the
implementation of the functions Initialize, Execute
and Finalize in the C++ source file name.cpp.

2.3.2 Initialization of an analysis

When the analysis is executed from a shell, the program first
calls the Initialize method before starting to analyze
one or several event samples.

Prior to the declaration of regions, histograms and cuts,
we first encourage the user to include an electronic signature
to the analysis being implemented and to ask the program
to display it to the screen. Although this is neither manda-
tory nor standardized, it improves the traceability of a given
analysis and provides information to the community about
who has implemented the analysis and which reference works
have been used. In particular for analyses that are being made
public, we strongly recommend including at least the names
and e-mail addresses of the authors, a succinct description of
the analysis and related experimental notes or publications.
Taking the example of the CMS stop search in monolep-
tonic events [9] presented in Sect. 3, an electronic signa-
ture could be
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INFO << "Analysis: CMS-SUS-13-011,
arXiv:1308.1586"

<< " (stop search, single lepton)"
<< endmsg;

INFO << "Recasted by: Conte, Dumont,
Fuks, Wymant"

<< endmsg;
INFO << "E-mails: " << "conte@iphc.

cnrs.fr, "
<< "dumont@lpsc.

in2p3.fr, "
<< "fuks@cern.ch, "
<< "wymant@lapth.

cnrs.fr"
<< endmsg;

INFO << "Based on MadAnalysis 5 v1.1.
10" << endmsg;

INFO << "DOI: xx.yyyy/zzz" << endmsg;
INFO << "Please cite arXiv:YYMM.NNNN

[hep-ph]"
<< endmsg;

where the last three lines refer to the Digital Object Identi-
fier [11] of the analysis code (if available) and the physics
publication for which this analysis reimplementation has
been developed. The sample of code above also introduces
the INFO message service of the SampleAnalyzer frame-
work, which is presented in Sect. 2.3.7.

As already mentioned, each analysis region must be prop-
erly declared within the Initialize function. This is
achieved by making use of the AddRegionSelection
method of the RegionSelectionManager class (see
Table 1). This declaration requires provision of a name (as
a string) which serves as a unique identifier for this region
within both the code itself (to link the region to cuts and
histograms) and the output files that will be generated by
the program. For instance, the declaration of two regions,
dedicated to the analysis of events with a missing transverse
energy /ET > 200 GeV and 300 GeV could be implemented
as

Manager()->AddRegionSelection
("MET>200");

Manager()->AddRegionSelection
("MET>300");

As shown in these lines of code, the declaration of the two
regions is handled by the Manager() object, an instance of
the RegionSelectionManager class that is automati-
cally included with any given analysis. As a result, two new
regions are created and the program internally assigns the
intuitive identifiers "MET>200" and "MET>300" to the
respective regions.

Once all regions have been declared, the user can con-
tinue with the declaration of cuts and histograms. As for

regions, each declaration requires a string name which acts
as an identifier in the code and the output. Histogram decla-
ration also asks for the number of bins (an integer number)
and the lower and upper bounds defining the range of the x
axis (two floating-point numbers) to be specified. Both his-
tograms and cuts must also be associated with one or more
regions. In the case of cuts, this finds its source at the concep-
tual level: each individual region is defined by its unique set
of cuts. In the case of histograms, this enables one to establish
the distribution of a particular observable after some region-
specific cuts have been applied. The association of both types
of objects to their regions follows a similar syntax, using
an optional argument in their declaration. This argument is
either a string or an array of strings, each being the name of
one of the previously declared regions. If this argument is
absent, the cut/histogram is automatically associated with all
regions. This feature can be used, for example, for preselec-
tion cuts that are requirements common to all regions.

As an illustrative example, the code

Manager()->AddCut("1lepton");
std::string SRlist[] = {"MET>200","

MET>300"};
Manager()->AddCut("MET>200 GeV",

SRlist);

would create two preselection cuts, "1lepton" and
"MET>200 GeV", and assign them to the two previously
declared regions "MET>200" and "MET>300". Although
both cuts are associated with both regions, for illustrative pur-
poses we have shown two methods of doing this—using the
syntax for automatically linking to all regions (here there are
two) and explicitly stating both regions. As a second example,
we consider the declaration of a histogram of 20 bins repre-
senting the transverse momentum distribution of the leading
lepton, pT (�1), in the range [50, 500] GeV. In the case where
the user chooses to associate it with the second region only,
the line

Manager()->AddHisto("ptl1",20,50,500,
"MET>300");

should be added to the analysis code.
Finally, the Initialize method can also be used for

the initialization of one or several user-defined variables that
have been previously declared in the header file name.h.

2.3.3 Using general information on Monte Carlo samples

Simulated events can be classified into two categories: Monte
Carlo events either at the parton or at the hadron level, and
reconstructed events after object reconstruction.1 Contrary to

1 Strictly speaking, there exists a third class of events once detector
simulation has been included. In this case, the event final state consists of
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Table 2 Methods of the SampleFormat class

mc()->beamE().first Returns, as a floating-point number, the energy of the first of the colliding beams

mc()->beamE().second Same as mc()->beamE().first but for the second of the colliding beams

mc()->beamPDFauthor().first Returns, as an integer number, the identifier of the group of parton densities that have been used for
the first of the colliding beams. The numbering scheme is based on the PdfLib [12] and
LhaPdf [13] packages

mc()->beamPDFauthor().second Same as mc()->beamPDFauthor().first but for the second of the colliding beams

mc()->beamPDFID().first Returns, as an integer number, the code associated with the parton density set (within a specific
group of parton densities) that has been used for the first of the colliding beams. The numbering
scheme is based on the PdfLib [12] and LhaPdf [13] packages

mc()->beamPDFID().second Same as mc()->beamPDFID().first but for the second of the colliding beams

mc()->beamPDGID().first Returns, as an integer number, the Particle Data Group identifier defining the nature of the first of
the colliding beams. The numbering scheme is based on the Particle Data Group review [14]

mc()->beamPDGID().second Same as mc()->beamPDGID().first but for the second of the colliding beams

mc()->processes() Returns a vector of instances of the ProcessFormat class associated with the set of
subprocesses described by the sample. A ProcessFormat object contains information about
the process identifier fixed by the generator (an integer number accessed via the processId()
method), the associated cross section in pb (a floating-point number accessed via the
xsection() method) and the related uncertainty (a floating-point number accessed via the
xsection_error() method), and the maximum weight carried by any event of the sample (a
floating-point number accessed via the maxweight() method)

mc()->xsection() Returns, as a floating-point number, the cross section in pb linked to the event sample

mc()->xsection_error() Returns, as a floating-point number, the (numerical) uncertainty on the cross section associated
with the event sample

reconstructed event samples, Monte Carlo samples in general
contain global information on the generation process, such as
cross section, the nature of the parton density set that has been
used, etc. In the MadAnalysis 5 framework, these pieces
of information are collected under the form of instances of
the SampleFormat class and can be retrieved by means of
the methods provided in Table 2.

The function Execute takes, as a first argument, a
SampleFormat object associated with the current ana-
lyzed sample. In this way, if the sample is encoded in the
Lhe [15,16], StdHep [17] or HepMc [18] format, the user
may access most of the available information passed by the
event generator. In contrast, the other event formats supported
by MadAnalysis 5 , namely the Lhco [19] and (Root-
based [20]) Delphes 3 [4] format,2 do not include any infor-
mation of this kind so that the first argument of the Execute
function is a null pointer. In the case where the user may need
such information, it will have to be included by hand.

For instance, assuming that an event sample containing
N = 10000 events (N being stored as a double-precision

Footnote 1 continued
tracks and calorimeter deposits. MadAnalysis 5 has not been designed
to analyze those events and physics objects such as (candidate) jets and
electrons must be reconstructed prior to be able to use the program.
2 In order to activate the support of MadAnalysis 5 for the output
format of Delphes 3, the user is requested to start the MadAnalysis 5
interpreter (in the normal execution mode of the program) and to type
install delphes.

number in the nev variable) is analyzed, the weight of each
event could be calculated (and stored in the wgt variable for
further use within the analysis) by means of the code sample

double lumi = 20000.;
double nev = 10000.;
double wgt = MySample.mc()->xsection()*

lumi/nev;

The MySample object is an instance of the Sample-
Format class associated with the sample being analyzed
and we impose the results to be normalized to 20 fb−1 of
simulated collisions (stored in pb−1 in the lumi variable).
For efficiency purposes, such a computation should be per-
formed once and for all at the time of the initialization of the
analysis, and not each time an event is analyzed. The variable
wgt is then promoted to a member of the analysis class being
implemented.

2.3.4 Internal data format for event handling

In the SampleAnalyzer framework, both Monte Carlo and
reconstructed events are internally handled as instances of a
class named EventFormat. At the time of execution of the
analysis on a specific event, the Execute function receives
such an EventFormat object as its second argument. The
properties of this object reflect those of the current event and
can be retrieved via the two methods
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Table 3 Methods of the MCEventFormat class

alphaQCD() Returns, as a floating-point number, the employed value for the strong coupling constant

alphaQED() Returns, as a floating-point number, the employed value for the electromagnetic coupling constant

particles() Returns, as a vector of MCParticleFormat objects, all the final-, intermediate- and initial-state particles of the event

processId() Returns, as an integer number, the identifier of the physical process related to the considered event

scale() Returns, as a floating-point number, the employed value for the factorization scale

weight() Returns, as a floating-point number, the weight of the event

MET() Returns, as an MCParticleFormat object, the missing transverse momentum /pT of the event. The particles relevant for
the calculation must be properly tagged as invisible (see Sect. 2.3.8)

MHT() Returns, as an MCParticleFormat object, the missing transverse hadronic momentum /HT of the event. The particles
relevant for the calculation must be properly tagged as invisible and hadronic (see Sect. 2.3.8)

TET() Returns, as a floating-point number, the total visible transverse energy of the event ET . The particles relevant for the
calculation must not be tagged as invisible (see Sect. 2.3.8)

THT() Returns, as a floating-point number, the total visible transverse hadronic energy of the event HT . The particles relevant for
the calculation must be properly tagged as hadronic, and not tagged as invisible (see Sect. 2.3.8)

Table 4 Methods of the MCParticleFormat class

ctau() Returns, as a floating-point number, the lifetime of the particle in millimeters

daughters() Returns, as a vector of pointers to MCParticleFormat objects, a list with the daughter particles that are either
produced from the decay of the considered particle or from its scattering with another particle

momentum() Returns, as a (Root) TLorentzVector object [20], the four-momentum of the particle. All the properties of the
four-momentum can be accessed either from the methods associated with the TLorentzVector class, or as
direct methods of the MCParticleFormat class, after changing the method name to be entirely lower case. For
instance, pt() is equivalent to momentum().Pt(). In addition, the methods dphi_0_2pi(...) and
dphi_0_pi(...) return the difference in azimuthal angle normalized in the [0, 2π ] and [0, π ] ranges,
respectively, between the particle and any other particle passed as an argument, whereas dr(...) returns their
angular distance, the second particle being provided as an argument as well

mothers() Returns, as a vector of pointers to MCParticleFormat objects, a list with all the mother particles of the
considered particle. In the case of an initial particle, this list is empty, while for a decay and a scattering process, it
contains one and two elements, respectively

mt_met() Returns, as a floating-point number, the transverse mass obtained from a system comprised of the considered particle
and the invisible transverse momentum of the event. The particles relevant for the calculation must be properly
tagged as invisible (see Sect. 2.3.8)

pdgid() Returns, as an integer number, the Particle Data Group identifier defining the nature of the particle. The numbering
scheme is based on the Particle Data Group review [14]

spin() Returns, as a floating-point number, the cosine of the angle between the three-momentum of the particle and its spin
vector. This quantity is computed in the laboratory reference frame

statuscode() Returns, as an integer number, an identifier fixing the initial-, intermediate- or final-state nature of the particle. The
numbering scheme is based on Ref. [15]

toRestFrame(...) Boosts the four-momentum of the particle to the rest frame of a second particle (an MCParticleFormat object
given as argument). The method modifies the momentum of the particle

event.mc() event.rec()

which return a pointer to an MCEventFormat object
encompassing information at the Monte Carlo event level,
and a pointer to a RecEventFormat object specific
for managing information at the reconstructed event level,
respectively.

Focusing first on Monte Carlo events, the properties
of all initial-state, intermediate-state and final-state parti-
cles can be retrieved by means of the MCEventFormat
class (see Table 3). Particles are encoded as instances of

the MCParticleFormat class whose associated meth-
ods are shown in Table 4. Additionally, general event infor-
mation, such as the values for the gauge couplings or
the factorization scale used, is also available if properly
stored in the event file. Finally, the MCEventFormat
class also contains specific methods for the computation
of four global event observables: the amount of (missing)
transverse energy ET ( /ET ) and of (missing) transverse
hadronic energy HT ( /H T ). These quantities are calculated
from the transverse momentum of the final-state particles
according to
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ET =
∑

visible particles

∣∣pT

∣∣ , HT =
∑

hadronic particles

∣∣pT

∣∣,

/ET = ∣∣/pT

∣∣ =
∣∣∣∣ −

∑

visible particles

pT

∣∣∣∣, (1)

/H T = ∣∣ /HT
∣∣ =

∣∣∣∣ −
∑

hadronic particles

pT

∣∣∣∣,

once the user has defined, in the initialization part of
the analysis, which particles are invisible and which ones
are hadronizing (by means of the configuration functions
described in Sect. 2.3.8). However, the definitions of Eq. (1)
may be not appropriate if the user wants to include only
specific visible/hadronic particles in the sums. In this case,
he/she should perform their implementation within the
Execute function of the analysis according to his/her needs.
The entire set of properties that can be employed to analyze
a Monte Carlo event is shown in Table 3.

For example, the selection of all the final-state electrons
and positrons that are present in an event and whose trans-
verse momentum is larger than 50 GeV could be implemented
as

std::vector<const MCParticleFormat*>
electrons;

for(unsigned int i=0;
i<event.mc()->particles().

size(); i++)
{

const MCParticleFormat* prt =
&event.mc()->particles()[i];

if(prt->statuscode() != 1) continue;

if(std::abs(prt->pdgid()) == 11)
{
if(prt->momentum().Pt()>50)

electrons.push_back(prt);
}

}

The first line of the code above indicates the declaration of a
vector, dubbed electrons, of pointers to (constant) MC-
ParticleFormat objects that contain the selected elec-
trons. With the next block of C++ commands, we loop over
all the event particles (the for loop) and store the current
particle into a temporary variable prt. We then discard non-
final-state particles, which have a status code different from
one (the first if statement). Finally, we fill the electrons
vector with all electrons and positrons (with a Particle Data
Group code equal to ±11, as shown in the second if state-
ment) whose transverse momentum is greater than 50 GeV
(the third if statement).

We next present the methods that have been designed for
the analysis of reconstructed events and which are part of
the RecEventFormat class. This class contains functions
(see Table 5) allowing access to two series of containers,
the first ones gathering final state objects of a given nature
and the second ones collecting specific generator-level (or
equivalently parton-level) objects. All these containers can
be further employed within an analysis so that the properties
of the different objects can be retrieved and subsequently
used, e.g., for cuts and histograms. All the available meth-
ods associated with reconstructed objects have been collected
in Table 6, while we recall that the MCParticleFormat
class has been described in Table 4 (necessary for the han-
dling of generator-level objects). In the case where some
pieces of information (either specific properties of a given
particle species or a given container itself) are absent from
the event file, the related methods return null results.

Finally, as for the MCEventFormat class, specific func-
tions (see Table 5) have been implemented to access the
(missing) transverse energy and (missing) hadronic trans-
verse energy of the event. While the value of the /ET variable
is taken from the event file and not calculated on the fly, the
other variables are computed from the information on the
reconstructedobjects,

ET =
∑

jets, charged leptons, photons

∣∣pT

∣∣,

HT =
∑

jets

∣∣pT

∣∣, (2)

/H T = ∣∣ /HT
∣∣ =

∣∣∣∣ −
∑

jets

pT

∣∣∣∣.

As an example, we show how an isolation requirement on
final-state muons can be implemented. To do this we define
an isolation variable Irel as the amount of transverse energy,
relative to the transverse momentum of the muon, present in
a cone of radius R = 0.4 centered on the muon. We constrain
this quantity to satisfy Irel < 20 %. A possible corresponding
sample of C++ code is

std::vector<const RecLeptonFormat*>
MyMuons;

for(unsigned int i=0;
i<event.rec()->muons().size(); i++)

{
const RecLeptonFormat *Muon =
&event.rec()->muons()[i];

for(unsigned int j=0;
j<Muon->isolCones().size(); j++)

{
const IsolationConeType *cone =
&Muon->isolCones()[j];
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Table 5 Methods of the RecEventFormat class

electrons() Returns, as a vector of RecLeptonFormat objects, all the reconstructed electrons of the event

jets() Returns, as a vector of RecJetFormat objects, all the reconstructed jets of the event

muons() Returns, as a vector of RecLeptonFormat objects, all the reconstructed muons of the event

photons() Returns, as a vector of RecPhotonFormat objects, all the reconstructed photons of the event

taus() Returns, as a vector of RecTauFormat objects, all the reconstructed hadronic taus of the event

tracks() Returns, as a vector of RecTrackFormat objects, all the reconstructed tracks of the event

genjets() Returns, as a vector of RecJetFormat objects, all the parton-level jets of the event

MCBquarks() Returns, as a vector of pointers to MCParticleFormat objects, all the parton-level b-quarks of the event

MCCquarks() Returns, as a vector of pointers to MCParticleFormat objects, all the parton-level c-quarks of the event

MCElectronicTaus() Returns, as a vector of pointers to MCParticleFormat objects, all the parton-level tau leptons that have decayed
into an electron and a pair of neutrinos

MCHadronicTaus() Returns, as a vector of pointers to MCParticleFormat objects, all the parton-level tau leptons that have decayed
hadronically

MCMuonicTaus() Returns, as a vector of pointers to MCParticleFormat objects, all the parton-level tau leptons that have decayed
into a muon and a pair of neutrinos

MET() Returns, as a RecParticleFormat object, the missing transverse momentum of the event as stored in the event
file

MHT() Returns, as a RecParticleFormat object, the missing transverse hadronic momentum /HT of the event

TET() Returns, as a floating-point number, the total visible transverse energy of the event ET

THT() Returns, as a floating-point number, the total visible transverse hadronic energy of the event HT

if(std::fabs(cone->deltaR()-0.4)
<1e-3)

{
if(cone->sumET()/Muon->momentum().

Pt()<.20)
MyMuons.push_back(Muon);

}
}

}

With those lines of code, we start by declaring the
MyMuons variable, a vector of pointers to RecLepton-
Format objects, that will refer to the reconstructed muons
tagged as isolated. Then, we proceed with a for-loop ded-
icated to the computation of the Irel variable for each of
the final state muons. In the case where Irel is smaller than
20 %, the muon is added to the MyMuons container. In
more detail, this for-loop works as follows. The current
muon is stored in a temporary variable called Muon. The
calculation of Irel relies, first, on the amount of calorimet-
ric energy in a cone of radius R = 0.4 centered on the
muon and second, on the transverse momentum of the cur-
rent muon. The first of these two quantities is evaluated via
the isolCones() method of the RecLeptonFormat
class (see Table 6) whereas the second one is derived from
the muon four-momentum (obtained from themomentum()
method of the RecLeptonFormat class). In the example
above, we assume that information on muon isolation associ-
ated with several cone sizes is available, including the choice
R = 0.4. The second for-loop that has been implemented

selects the desired value of R. The subsequent computation of
the Irel quantity is immediate. We refer to Ref. [21] for more
detailed examples on this topic, in cases where event simu-
lation is based on a modified version of Delphes 3 properly
handling such a structure for the isolation information.

2.3.5 Applying cuts and filling histograms

The cuts for the analysis, having been declared in the I-
nitialize function (see Sect. 2.3.2), are applied in the
Execute function by means of the RegionSelection
Manager method ApplyCut (see Table 1). Its two argu-
ments consist of a boolean quantity governing the cut condi-
tion (i.e., it indicates whether the current event satisfies this
cut) and a string which should be the name of one of the
declared cuts.

This method starts by cycling through all regions asso-
ciated with this cut. For each region, it checks whether the
region is still surviving all cuts applied so far by evaluating
an internal boolean variable. If a given region is found to
be already failing one of the preceding cuts (indicated by
the internal surviving variable having the value false), the
ApplyCut method continues with the next region associ-
ated with the considered cut. On the other hand if the region
is surviving, the cut-flow for this region is updated according
to the cut condition (the boolean argument of the ApplyCut
method) and the internal surviving variable will be kept as
true or changed to false as appropriate. The aforemen-
tioned internal boolean variables indicating the survival of
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Table 6 Methods giving access the properties of the reconstructed objects represented as instances of the RecLeptonFormat,RecJetFormat,
RecPhotonFormat, RecTauFormat, RecTrackFormat and RecParticleFormat classes

btag() This method is specific to RecJetFormat objects and returns a boolean quantity describing whether the jet has been
tagged as a b-jet

ctag() This method is specific to RecJetFormat objects and returns a boolean quantity describing whether the jet has been
tagged as a c-jet

charge() Returns, as an integer number, the electric charge of the object (relative to the fundamental unit of electric charge e). This
method is available for the RecLeptonFormat, RecTauFormat and RecTrackFormat classes

etaCalo() This method is specific to the RecTrackFormat class and returns, as a floating-point number, the pseudorapidity
corresponding to the entry point of the track in the calorimeter

isolCones() Returns a vector of pointers to instances of the IsolationConeType class. This class allows one to retrieve information
about the isolation of the object after defining a cone of a given size (a floating-point number accessed via the deltaR()
method of the class) centered on it. The (integer) number of tracks in the cone is obtained by means of the ntracks()
method, the sum of the transverse momenta of these tracks by means of the sumPT() method and the amount of
calorimetric (transverse) energy in the cone by means of the sumET() method. The isolCones() method has only
been implemented for the RecTrackFormat, RecLeptonFormat, RecPhotonFormat and RecJetFormat
classes. A modified version of Delphes 3 that supports this structure has been introduced in Ref. [21]

momentum() Returns, as a (Root) TLorentzVector object [20], the four-momentum of the particle. This method is available for all
types of reconstructed objects. All the properties of the four-momentum can be accessed either from the methods
associated with the TLorentzVector class, or as direct methods of the different classes of objects, after changing the
method name to be entirely lower case. For instance, the method pt() is equivalent to momentum().Pt(). In
addition, the methods dphi_0_2pi(...) and dphi_0_pi(...) return the difference in azimuthal angle
normalized in the [0, 2π ] and [0, π ] ranges, respectively, between the object and any other object passed as an argument,
whereas dr(...) returns their angular distance, the second object being provided as an argument as well

mt_met() Returns, as a floating-point number, the transverse mass obtained from a system comprised of the considered particle and
the missing transverse momentum of the event

ntracks() Returns, as an integer number, the number of charged tracks associated with the reconstructed object. This method has been
implemented for the RecTauFormat and RecJetFormat classes

pdgid() This method is specific to the RecTrackFormat class and returns, as an integer number, the Particle Data Group
identifier defining the nature of the particle giving rise to the track. The numbering scheme is based on the Particle Data
Group review [14]

phiCalo() This method is specific to the RecTrackFormat class and returns, as a floating-point number, the azimuthal angle with
respect to the beam direction corresponding to the entry point of the track in the calorimeter

sumET_isol() Returns, as a floating-point number, the amount of calorimetric (transverse) energy lying in a specific cone centered on the
object. The cone size is fixed at the level of the detector simulation and this method is available for the
RecLeptonFormat class (this information is available in the Lhco format)

sumPT_isol() Returns, as a floating-point number, the sum of the transverse momenta of all tracks lying in a given cone centered on the
object. The cone size is fixed at the level of the detector simulation and this method is available for the
RecLeptonFormat class (this information is available in the Lhco format)

EEoverHE() Returns, as a floating-point number, the ratio of the electromagnetic to hadronic calorimetric energy associated with the
object. This method is available for the RecLeptonFormat, RecTauFormat and RecJetFormat classes

ET_PT_isol() Returns, as a floating-point number, the amount of calorimetric (transverse) energy lying in a given cone centered on the
object calculated relatively to the sum of the transverse momentum of all tracks in this cone. The cone size is fixed at the
level of the detector simulation and this method is available for the RecLeptonFormat class (this information is
available in the Lhco format)

HEoverEE() Returns, as a floating-point number, the ratio of the hadronic to electromagnetic calorimetric energy associated with the
object. This method is available for the RecLeptonFormat, RecTauFormat and RecJetFormat classes

each region should all be initialized to true when starting
to analyze a given event. This is achieved by adding, at the
beginning of the Execute function,

Manager()->InitializeForNewEvent
(myWeight);

where MyWeight is a floating-point number representing
the weight of the event. The weight is used when histograms
are filled and cut-flow charts calculated, and can be mod-

ified within the analysis by making use of the SetCur-
rentEventWeightmethod of the RegionSelection
Manager class.

The analysis manager also stores internally the total num-
ber of surviving regions, which is updated when a specific
region fails a cut. This enables the ApplyCut method to
determine and return, after cycling through the associated
RegionSelection instances, a boolean quantity which
is set to false in the case where not a single surviving
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region remains. The output of the ApplyCutmethod is thus
equal to the boolean value of the statement there is at least
one region in the analysis, not necessarily one of those asso-
ciated with this specific cut, which is still passing all cuts
so far. When it switches from true to false, the present
event should no longer be analyzed, and one should move
on with the next event. It is therefore recommended, for effi-
ciency purposes, to always call the ApplyCut method in
the following schematic manner,

if ( !ApplyCut(...) )
return true;

with the return command terminating the analysis of the
current event if all regions are failing the set of cuts applied
so far.

Since, trivially, cuts keep some events and reject others,
the distribution of an observable is affected by the placement
of its histogram-filling command within the full sequence
of cuts. Then since each region has its own unique set of
cuts (by definition), the distribution of any observable is in
general different for any two regions. However, it is meaning-
ful to consider a single histogram as associated with multiple
regions, if it is filled before any cuts are made that distinguish
the regions. As an example, a typical format for processing
an event would be a set of common preselection cuts, then
the filling of various histograms (which are thus associated
with all regions), then the application of the region-specific
cuts (possibly followed by some further histogramming).

In MadAnalysis 5 , we deal with this within the
histogram-filling method of the RegionSelection
Manager class, FillHisto, which takes as arguments a
string and a floating-point number. The string should be the
name of one of the declared histograms, and the floating-point
number represents the value of the histogrammed observable
for the event under consideration. This method can be called
as in

Manager()->FillHisto("ptl1", val);

where "ptl1" is the name of the considered histogram
(continuing with the example from Sect. 2.3.2) and val is
the value of the observable of interest, namely the trans-
verse momentum of the leading lepton in our case. The
FillHisto method begins by verifying whether each of
the regions associated with this histogram is surviving all
cuts applied so far (via the internal surviving variable above-
mentioned). In the case where all the associated regions are
found surviving (failing) the cuts, the histogram is (not) filled.
If a mixture of surviving and non-surviving regions is found,
the program stops and displays an error message to the screen,
as this situation implies that the histogram filling command
has been called after at least one cut yields a distinction
among the associated regions. This indicates an error in the
design of the analysis.

2.3.6 Finalizing an analysis

Once all the events have been processed, the program calls
the function Finalize. The user can make use of it for
drawing histograms or deriving cut-flow charts as indicated
in the manual for older versions of the program [1]; how-
ever, from the version of MadAnalysis 5 introduced in
this paper onwards, the Finalize function does not need
to be implemented anymore. Output files written according
to the Saf format (see Sect. 2.5) are automatically generated.

2.3.7 Message services

The C++ core of MadAnalysis 5 includes a class of func-
tions dedicated to the display of text on the screen at the
time of the execution of the analysis. Whereas only two dis-
tinct levels of message are accessible by using the standard
C++ streamers (std::cout and std:cerr for normal
and error messages), the SampleAnalyzer library enables
the user to print messages that can be classified into four cat-
egories. In this way, information (the INFO function), warn-
ing (theWARNING function), error (theERROR function) and
debugging (the DEBUG function) messages can be displayed
as in the following sample of code,

INFO << "..." << endmsg;
WARNING << "..." << endmsg;
ERROR << "..." << endmsg;
DEBUG << "..." << endmsg;

Additionally, warning and error messages provide informa-
tion on the line number of the analysis code that is at the
source of the message. The effect of a given message service
can finally be modified by means of the methods presented
in Table 7.

2.3.8 Physics services

The SampleAnalyzer core includes a series of built-in
functions aiming to facilitate the writing of an analysis from
the user viewpoint. More precisely, these functions are spe-
cific for particle identification or observable calculation and
have been grouped into several subcategories of the C++
pointer PHYSICS. All the available methods are listed in
Table 8, and we provide, in the rest of this section, a few
more details, together with some illustrative examples.

As mentioned in Sect. 2.3.4, MadAnalysis 5 can com-
pute the (missing) transverse energy and (missing) hadronic
transverse energy associated with a given Monte Carlo event.
This calculation however relies on a correct identification
of the invisible and hadronizing particles. This information
must be provided by means of the mcConfig() category
of physics services, as for instance, in
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Table 7 Methods associated with a given message service. The available services are INFO, WARNING, ERROR and DEBUG

DisableColor() Switches off the display of messages in color. Colors are switched on by default, and the color scheme is hard-coded

EnableColor() Switches on the display of messages in color. Colors are switched on by default, and the color scheme is hard-coded

Mute() Switches off a specific message service. Services are switched on by default

SetStream(...) Takes a pointer of type ofstream as an argument and redirect the output of a given service to a file

UnMute() Switches on a specific message service. Services are switched on by default

PHYSICS->mcConfig().AddInvisibleId
(1000039);

PHYSICS->mcConfig().AddHadronicId(5);

These intuitive lines of code indicate to the program that the
gravitino (whose Particle Data Group identifier is 1000039)
yields missing energy and that the bottom quark (whose Par-
ticle Data Group identifier is 5) will eventually hadronize.

An important category of methods shipped with the
physics services consists of functions dedicated to the identi-
fication of particles and to the probing of their nature (invis-
ible, hadronizing, etc.). They are collected within the Id
structure attached to the PHYSICS object. For instance (see
Table 8 for the other methods),

PHYSICS->Id->IsInvisible(prt)

allows one to test the (in)visible nature of the particle
referred to by the pointer prt. Also, basic isolation tests
on RecLeptonFormat objects can be performed when
analyzing reconstructed events. Including in the analysis

PHYSICS->Id->IsIsolatedMuon(muon,
event)

yields a boolean value related to the (non-)isolated nature of
the reconstructed lepton muon, event being here a Rec-
EventFormat object. Two isolation algorithms can be
employed. By default, the program verifies that no recon-
structed jet lies in a cone of radius R = 0.5 centered
on the lepton. The value of R can be modified via the
recConfig() category of physics services,

PHYSICS->recConfig().UseDeltaRIsolation
(dR);

where dR is a floating-point variable with the chosen cone
size. The user can instead require the program to tag leptons
as isolated when both the sum of the transverse momenta of
all tracks in a cone (of radius fixed at the level of the detector
simulation) centered on the lepton is smaller than a specific
threshold and when the amount of calorimetric energy in this
cone, calculated relative to the sum of the transverse momenta
of all tracks in the cone, is smaller than another threshold.
This uses the information provided by the sumPT_isol()
andET_PT_isol()methods of theRecLeptonFormat
class (see Table 6) and can be activated by implementing

PHYSICS->recConfig().UseSumPTIsolation
(sumpt,et_pt);

where sumpt and et_pt are the two mentioned thresholds.
For more sophisticated isolation tests, such as those based on
the information encompassed in IsolationConeType
objects possibly provided for reconstructed jets, leptons and
photons (see Sect. 2.3.4), it is left to the user to manually
implement the corresponding routines in his/her analysis.

In addition to identification routines, physics services
include built-in functions allowing one to compute global
event observables, such as several transverse variables that
are accessible through the Transverse structure attached
to the PHYSICS object. More information on the usage of
these methods is provided in Table 8.

2.3.9 Sorting particles and objects

In most analyses, particles of a given species are identified
according to an ordering in their transverse momentum or
energy. In contrast, vector of particles as returned after the
reading of an event are in general unordered and therefore
need to be sorted. This can be achieved by means of sorting
routines that can be called following the schematic form:

SORTER->sort(parts, crit)

In this line of code, parts is a vector of (Monte Carlo or
reconstructed) objects and crit consists of the ordering cri-
terion. The allowed choices for the latter areETAordering
(ordering in pseudorapidity), ETordering (ordering in
transverse energy), Eordering (ordering in energy),
Pordering (ordering in the norm of the three-momentum),
PTordering (ordering in the transverse momentum),
PXordering (ordering in the x-component of the three-
momentum),PYordering (ordering in the y-component of
the three-momentum) and PZordering (ordering in the z-
component of the three-momentum). The objects are always
sorted in terms of decreasing values of the considered observ-
able.

2.4 Compiling and executing the analysis

In Sect. 2.1, we have pointed out that the Build subdirec-
tory of the analysis template contains a Makefile script
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Table 8 Physics service methods

mcConfig().AddHadronicId(...) Adds a particle species, identified via its Particle Data Group code (an integer number
given as argument), to the list of hadronizing particles. Mandatory for the computation
of HT and /H T in the case of Monte Carlo events (see Sect. 2.3.4)

mcConfig().AddInvisibleId(...) Adds a particle species, identified via its Particle Data Group code (an integer number
given as argument), to the list of invisible particles. Mandatory for the computation of
ET and /ET in the case of Monte Carlo events (see Sect. 2.3.4)

mcConfig().Reset() Reinitializes the lists of invisible and hadronizing particles to empty lists

recConfig().Reset() Defines (reconstructed) leptons as isolated when no jet is present in a cone of radius
R = 0.5 centered on the lepton

recConfig().UseDeltaRIsolation(...) Defines (reconstructed) leptons as isolated when no jet is present in a cone, with a radius
given as a floating-point number in argument, centered on the lepton

recConfig().UseSumPTIsolation(...) Defines (reconstructed) leptons as isolated when both the sum �1 of the transverse
momenta of all tracks in a cone (of radius fixed at the level of the detector simulation)
centered on the lepton is smaller than a specific threshold (the first argument) and the
amount of calorimetric energy in this cone, relative to �1, is smaller than another
threshold (the second argument). This uses the information provided by the
sumPT_isol() and ET_PT_isol() methods of the RecLeptonFormat class
(see Table 6)

Id->IsBHadron(...) Returns a boolean quantity indicating whether an MCParticleFormat object passed
as argument is a hadron originating from the fragmentation of a b-quark

Id->IsCHadron(...) Returns a boolean quantity indicating whether an MCParticleFormat object passed
as argument is a hadron originating from the fragmentation of a c-quark

Id->IsFinalState(...) Returns a boolean quantity indicating whether an MCParticleFormat object passed
as argument is one of the final-state particles of the considered event

Id->IsHadronic(...) Returns a boolean quantity indicating whether an MCParticleFormat or a
reconstructed object passed as argument yields any hadronic activity in the event

Id->IsInitialState(...) Returns a boolean quantity indicating whether an MCParticleFormat object passed
as argument is one of the initial-state particles of the considered event

Id->IsInterState(...) Returns a boolean quantity indicating whether an MCParticleFormat object passed
as argument is one of the intermediate-state particles of the considered event

Id->IsInvisible(...) Returns a boolean quantity indicating whether an MCParticleFormat or a
reconstructed object passed as argument gives rise to missing energy

Id->IsIsolatedMuon(...) Returns a boolean quantity indicating whether a RecLeptonFormat object passed as
a first argument is isolated within a given reconstructed event, passed as a second
argument (under the format of a RecEventFormat object)

Id->SetFinalState(...) Takes an MCEventFormat object as argument and defines the status code number
associated with final-state particles

Id->SetInitialState(...) Takes an MCEventFormat object as argument and defines the status code number
associated with initial-state particles

Transverse->AlphaT(...) Returns the value of the αT variable [22], as a floating-point number, for a given (Monte
Carlo or reconstructed) event passed as argument

Transverse->MT2(...) Returns, as a floating-point number, the value of the MT 2 variable [23,24] computed
from a system of two visible objects (the first two arguments, any particle class being
accepted), the missing momentum (the third argument) and a test mass (a
floating-point number given as the last argument)

Transverse->MT2W(...) Returns, as a floating-point number, the value of the MW
T 2 variable [25] computed from a

system of jets (a vector of RecJetFormat objects in the first argument), a visible
particle (given as the second argument, any particle class being accepted) and the
missing momentum (the third argument). Only available for reconstructed events

readily to be used. In this way, the only task left to the
user after having implemented his/her analysis is to launch
this script in a shell, directly from the Build directory.
This leads first to the creation of a library that is stored in
the Build/Lib subdirectory, which includes all the anal-

yses implemented by the user and the set of classes and
methods of the SampleAnalyzer kernel. Next, this library
is linked to the main program and an executable named
MadAnalysis5Job is generated (and stored in theBuild
directory).
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The program can be run by issuing in a shell the command

./MadAnalysis5Job <inputfile>

where <inputfile> is a text file with a list of paths to all
event files to analyze. All implemented analyses are sequen-
tially executed and the results, generated according to the Saf
format (see Sect. 2.5), are stored in the Output directory.

2.5 The structure of the output of an analysis

As indicated in the previous section, the program stores, after
its execution, the results of the analysis or analyses that have
been implemented by the user in the Output subdirectory
of the working directory. First, a subdirectory with the same
name as the input file (<inputfile> in the schematic
example of Sect. 2.4) is created. If a directory with this name
exists already, the code uses it without deleting its content. It
contains a Saf file (updated if already existing) with global
information on the analyzed event samples organized follow-
ing an Xml-like syntax:

where we have set the numerical values to zero for the sake
of the illustration. In reality these values are extracted from
the event file that is read; they are kept equal to zero if
not available. In addition, the format includes header and
footer tags (SAFheader and SAFfooter) omitted for
brevity.

Secondly, a subdirectory specific to each of the executed
analyses is created within the <inputfile> directory.
The name of the subdirectory is the name of the associated
analysis followed by an integer number chosen in such a
way that the directory name is unique. This directory con-
tains a Saf file with general information on the analysis
(name.saf, name denoting a generic analysis name), a
directory with histograms (Histograms) and a directory
with cut-flow charts (Cutflows).

In addition to a header and a footer, the name.saf file,
still encoded according to an Xml-like structure, contains a
list with the names of the regions that have been declared in
the analysis implementation. They are embedded in a Re-
gionSelection Xml structure, as in

<RegionSelection>
"MET>200"
"MET>300"

</RegionSelection>

when taking the example of Sect. 2.3.2.
The Histograms subdirectory contains a unique Saf

file with, again in addition to a possible header and footer,

all the histograms implemented by the user. The single his-
togram declared in Sect. 2.3.2 would be encoded in the
Saf format as in the following self-explanatory lines of
code:

<Histo>
<Description>
"ptl1"
# nbins xmin xmax
20 50 500
# associated RegionSelections
MET>300 # Region nr. 1
</Description>
<Statistics>
0 0 # nevents
0 0 # sum of event-weights over

events
0 0 # nentries
0 0 # sum of event-weights over

entries
0 0 # sum weightsˆ2
0 0 # sum value*weight
0 0 # sum valueˆ2*weight
0 0 # sum value*weightˆ2

</Statistics>
<Data>
0 0 # number of nan
0 0 # number of inf
0 0 # underflow
0 0 # bin 1 / 20
...
0 0 # bin 20 / 20
0 0 # overflow
</Data>

</Histo>

where the dots stand for the other bins that we have omitted
for brevity. Again, for the sake of the example we have set
all values to zero.

Finally, the Cutflows directory contains one Saf file
for each of the declared regions, the filename being the name
of the region followed by the saf extension. Each of these
files contains the cut-flow chart associated with the consid-
ered region encoded by means of two types of Xml tags.
The first one is only used for the initial number of events
(InitialCounter) whereas the second one is dedicated
to each of the applied cuts. Taking the example of the first of
the two cuts declared in Sect. 2.3.2, the MET_gr_200.saf
file (the > symbol in the region name has been replaced by
_gr_) would read
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which is again self-explanatory.

3 Illustrative examples

In this section, we show two examples of analyses making
use of the new features of MadAnalysis 5 introduced in
the previous section. First, we focus in Sect. 3.1 on the rein-
terpretation of a CMS search for stops in 8 TeV events with
one single lepton, jets and missing energy [9]. Second, we
investigate in Sect. 3.2 the implementation of a recent phe-
nomenological analysis dedicated from the study of monotop
systems decaying in the hadronic mode [10].

3.1 Recasting a CMS search for supersymmetric partners
of the top quark

We present an implementation of the CMS cut-based strat-
egy for probing stops in the single lepton and missing energy
channel as presented in Ref. [9]. The analysis contains 16
overlapping signal regions that share a set of common pre-
selection cuts and that are distinguished by extra require-
ments. We refer to Refs. [9,21,26] for more details on the
cuts, the analysis regions and their reimplementation that
strictly obeys the syntax introduced in Sect. 2. For simplic-
ity, we consider below only one of the signal regions, which
is defined by the following cuts.

– We select events with a single tightly-isolated electron
(muon) with a transverse momentum p�

T > 30 GeV
(25 GeV) and a pseudorapidity satisfying |η�| < 1.4442
(2.1). Isolation is enforced by constraining the sum of
the transverse momenta of all tracks3 in a cone of radius
R = 0.3 centered on the lepton to be smaller than
min(5 GeV, 0.15p�

T ).
– Events featuring in addition a loosely-isolated lepton

with a transverse momentum p�
T > 5 GeV are vetoed.

Isolation is enforced by constraining the sum of the trans-

3 The original analysis defines isolation from particle-flow objects [27].
Their correct modeling being difficult to reproduce in our setup, we only
consider tracks in the inner detector.

verse momenta of all tracks in a cone of R = 0.3 centered
on the lepton to be smaller than 0.20p�

T .
– Events featuring an isolated track of transverse momen-

tum ptrack
T > 10 GeV and whose electric charge is oppo-

site to the one of the primary lepton are vetoed. Isola-
tion is enforced by constraining the sum of the transverse
momenta of all tracks in a cone of radius R = 0.3 cen-
tered on the track to be smaller than 0.10 ptrack

T .
– Events with reconstructed hadronic taus of transverse

momentum greater than 20 GeV are vetoed.
– Jets present in a cone of radius R = 0.4 centered on a

lepton are discarded. Four central jets with a transverse
momentum p j

T > 30 GeV and a pseudorapidity |η j | <

2.4 are then required, with at least one of them being
b-tagged.

– The transverse mass MT reconstructed from the lepton
and the missing transverse momentum is constrained to
be larger than 120 GeV.

– The signal region consider events with at least 300 GeV
of missing transverse energy, the preselection threshold
common to all the analysis regions being 100 GeV. The
missing transverse momentum is also required to be sep-
arated from the two hardest jets (�φ > 0.8, φ denoting
the azimuthal angle with respect to the beam direction).

– The final-state configuration is required to contain a ha-
dronically decaying top quark (by means of a χ2-fit based
on the reconstructed objects).

– The MW
T 2 variable must be greater than 200 GeV.

For the sake of the example, we include below a snip-
pet of code describing the implementation of the veto on
the presence of isolated tracks. We start by creating a vari-
able (Tracks) containing all the tracks whose transverse
momentum is larger than 10 GeV and pseudorapidity satis-
fies |ηtrack| < 2.1:

for(unsigned int i=0;
i<event.rec()->tracks().size();

i++)
{
const RecTrackFormat *myTrack =

&(event.rec()->tracks()[i]);
double pt = myTrack->momentum().Pt();
double abseta = std::fabs(myTrack->

eta());
if(pt>10.&&abseta<2.1) Tracks.push_

back(myTrack);
}

Next, we iterate over this container and update a boolean vari-
able noIsolatedTrack (initialized to true) to false
if an isolated track of opposite charge (compared to the pri-
mary lepton charge, stored in the LeptonCharge variable)
is found:
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noIsolatedTrack = true;
for(unsigned int i=0; i<Tracks.size();

i++)
{

if(Tracks[i]->charge()!=LeptonCharge)
{
for(unsigned int j=0;

j<Tracks[i]->isolCones().size();
j++)

{
const IsolationConeType *cone =

&Tracks[i]->isolCones()[j];
double pt = Tracks[i]->momentum().

Pt();
if(std::fabs(cone->deltaR()-0.3)

<0.001)
if(cone->sumPT()<.1*pt)
{noIsolatedTrack = false;

break; }
}

}
}

It is then sufficient to implement the verification of the cut
condition as explained in Sect. 2.3.5,

if(!Manager()->ApplyCut(NoIsolatedTrack,
"VetoIsTr"))

return;

where we assume that a cut "VetoIsTr" has been declared
in the analysis initialization method.

The validation of our reimplementation relies on the com-
parison of results obtained with MadAnalysis 5 with those
of the CMS analysis note. We start from parton-level event
samples that describe the supersymmetric signal in the con-
text of specific benchmark scenarios, and which have been
provided by the CMS collaboration. We then make use of the
Pythia 6 program [28] for parton showering and hadroniza-
tion, and of the previously mentioned modified version of
the Delphes 3 package [4,21] for a simulation of the detec-
tor response which uses the CMS detector description of
Ref. [29]. Our final number of events are normalized to a
signal cross section including the merging of the next-to-
leading order result with resummed predictions at the next-
to-leading logarithmic accuracy [30], σ = 0.0140 pb, and
an integrated luminosity of 19.5 fb−1. More details on the
validation procedure can be found in Refs. [21,26].

As an example, Table 9 shows the cut-flow chart for a
benchmark point denoted by t̃ → t χ̃0

1 (650/50) (using the
naming scheme of the original CMS analysis). In this sce-
nario, a pair of top squarks whose mass is equal to 650 GeV is
produced, and each squark then decays with a 100 % branch-
ing ratio into a top quark and the lightest neutralino. The mass

Table 9 Cut-flow chart for the benchmark point t̃ → t χ̃0
1 (650/50) in

the signal region investigated in Sect. 3.1. We present predictions after
each of the (pre)selection cuts detailed in the text. The small statistical
uncertainties are omitted for brevity. We present number of events for
19.5 fb−1 of simulated collisions, after normalizing the total production
rate to 0.0140 pb

Cut MadAnalysis 5 CMS

At least one lepton, four jets
and 100 GeV of missing
transverse energy

31.4 29.7

At least one b-tagged jet 27.1 25.2

No extra loosely-isolated
lepton or track

22.5 21.0

No hadronic tau 22.0 20.6

Angular separation between
the missing momentum
and the two hardest jets

18.9 17.8

Hadronic top quark
reconstruction

12.7 11.9

The transverse mass MT
(defined in the text) is
larger than 120 GeV

10.4 9.6

At least 300 GeV of
missing transverse energy
and MW

T 2 > 200 GeV

5.1 4.2

of the latter is fixed to 50 GeV. We present both the output of
MadAnalysis 5 and the CMS expectation [31] and observe
that an agreement at the level of 20 % has been obtained. This
order of magnitude is not surprising as we are comparing a
fast simulation made with Delphes to the full simulation of
CMS.

The CMS analysis of Ref. [9] contains, in addition to
a cut-based analysis strategy, a second strategy relying on
advanced multivariate techniques. One of the key variables
of this analysis is a quantity denoted by H ratio

T , defined as the
fraction of the total scalar sum of the jet transverse energies
(including only jets with transverse momentum larger than
30 GeV and pseudorapidity |η| < 2.4) that lies in the same
hemisphere as the missing momentum. For illustrative pur-
poses, we present below a way to fill a histogram representing
this variable. The definition of HT appropriate here being dif-
ferent from Eq. (2), we recalculate it and store the value in
the variable HT. The amount of hadronic energy located in
the same hemisphere as the missing momentum is stored in
the variable HTsameHemisphere. Both calculations rely
on the Jets container, a collection of relevant jets.

double HT = 0.;
double HTsameHemisphere = 0.;
for(unsigned int i=0; i<Jets.size();

i++)
{
double Et = Jets[i]->momentum().Et();
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Fig. 2 Distribution in the H ratio
T variable for the t̃ → t χ̃0

1 (650/50)

scenario investigated in Sect. 3.1. Only the first four cuts of Table 9
have been applied. The solid black line has been obtained with Mad-
Analysis 5 , while the dashed blue line is the CMS result

HT += Et;
if(Jets[i]->dphi_0_pi(pTmiss)

< 1.5708)
HTsameHemisphere += Et;

}
double HTratio = HTsameHemisphere / HT;

A histogram declared as "HTratio" at the level of the
initialization of the analysis can then be filled using the syntax
introduced in Sect. 2.3.5,

Manager()->FillHisto("HTratio",
HTratio);

The distribution that is extracted from the corresponding out-
put Saf file is shown in Fig. 2, alongside the CMS result
presented in Ref. [9]. The two are in good agreement.

3.2 Designing a phenomenological analysis for probing
hadronic monotop states

The LHC sensitivity to the observation of a monotop state—
a topology where a single, hadronically decaying top quark
is produced in association with missing energy—has been
recently investigated by means of a phenomenological anal-
ysis relying on a cut-and-count technique [10]. It exploits
the presence of three final-state jets (including a b-tagged
jet) compatible with a top quark decay, lying in a different
hemisphere to the (large) missing transverse momentum. In
more detail, events are selected as follows.

– Selected events are required to contain two or three light
(non-b-tagged) jets (allowing for one from initial or final
state radiation) with a transverse momentum greater than
30 GeV, as well as one b-tagged jet with a transverse

momentum larger than 50 GeV. The pseudorapidity of
each jet must satisfy |η j | < 2.5 and the ratio of their
hadronic to electromagnetic calorimetric energy must be
above 30 %.

– Events featuring isolated charged leptons with a trans-
verse momentum p�

T > 10 GeV and a pseudorapidity
|η�| < 2.5 are vetoed. Lepton isolation is enforced by
imposing that the sum of the transverse momenta of all
tracks in a cone of R = 0.4 centered on the lepton is
smaller than 0.2p�

T .
– At least 250 GeV of missing transverse energy is required.
– We select the pair of light jets whose invariant mass is

the closest to the W -boson mass. This quantity is then
constrained to lie in the [50, 105] GeV range.

– The missing momentum is constrained to be well sepa-
rated from the momentum of the reconstructed top quark
(�φ ∈ [1, 5], the azimuthal angular distance being nor-
malized in the [0, 2π ] range).

– The missing momentum is constrained to be well sep-
arated from the momentum of the hardest jet (�φ ∈
[0.5, 5.75], the azimuthal angular distance being normal-
ized in the [0, 2π ] range).

– The reconstructed top mass is constrained to lie in the
[140, 195] GeV range.

As in Sect. 3.1, all these cuts can be easily implemented
following the syntax of Sect. 2, so that we again restrict our-
selves to the presentation of a few illustrative samples of
code.

First, we show how to select the jet candidates relevant for
the analysis and store them in a container named TheJets,

for (unsigned int i=0;
i<event.rec()->jets.size();i++)

{
const RecJetFormat *myj = &

(event.rec()->jets[i]);
double abseta = std::fabs(myj

->eta());
double pt = myj->pt();
double HEEE = myj->HEoverEE();
if(abseta<2.5 && pt > 30 && HEEE

>0.3)
TheJets.push_back(myj);

}

In those self-explanatory lines of code, we have not yet split
the jets into b-tagged and non-b-tagged ones.

Second, we focus on the reconstruction of the W -boson
and the top quark. Assuming that all selected light jets are
stored in a vector named ljets and that the b-tagged jet is
represented by the variable bjet, a possible implementation
of a code deriving the four-momenta of the reconstructed W -
boson and top quark would be
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Table 10 Cut-flow charts for the two considered monotop scenarios
SII.v-400 and SII.v-600 (the numbers indicating the choice for the
invisible state mass in GeV). We present the predicted number of events
after each of the cuts detailed in the text, for an integrated luminosity
of 20 fb−1 of LHC collisions at a center-of-mass energy of 8 TeV

Cut SII.v-400 SII.v-600

Jet selection and lepton veto 3176 ± 51.2 774 ± 25.2

Missing energy requirement 949 ± 30.0 305 ± 16.8

W -boson reconstructed
mass

515 ± 22.4 163 ± 12.5

Separation of the
reconstructed top quark
from the missing
momentum

501 ± 22.1 158 ± 12.3

Separation of the hardest jet
from the missing
momentum

497 ± 22.0 156 ± 12.3

Reconstructed top mass 311 ± 17.5 96 ± 9.7

 [GeV]bjjM
50 100 150 200 250 300 350 400 450 500

ev
en

ts
N

1

10

210 SII.v-400

SII.v-600

Fig. 3 Distribution in the reconstructed top mass Mbj j for the two new
physics scenarios investigated in Sect. 3.2, SII.v-400 and SII.v-600 (the
numbers indicating the choice for the invisible state mass in GeV). All
selection cuts except the one on Mbj j have been applied. The curves are
normalized to 20 fb−1 of simulated LHC collisions at a center-of-mass
energy of 8 TeV

TLorentzVector w, top;
for(unsigned int i=0; i<ljets.size();

i++)
for(unsigned int j=i+1; j<ljets.

size(); j++)
{
TLorentzVector w_tmp =
ljets[i]->momentum()+ljets[j]

->momentum();

if(i==0 && j==1 ||
std::fabs(w_tmp.M()-80.)

<std::fabs(w.M()-80.))
w=w_tmp;

}

top = w + bjet->momentum();

In the lines above, the double for-loop derives the pair of
light jets that form the system which is the most compatible
with a W -boson. The four-momentum of the reconstructed
W -boson is saved as an instance of the TLorentzVector
class (named w) and the four-momentum of the reconstructed
top quark is then derived by adding the four-momentum of the
b-tagged jet (stored in the top variable). The reconstructed
top mass could then be histogrammed via the standard com-
mand,

Manager()->FillHisto("Mtreco",
top.M());

where a histogram named "Mtreco" has been initialized
appropriately. Moreover, the selection cut on this variable
could be implemented via

bool cutcondition = (top.M()>140) &&
(top.M()<195);

if(!Manager()->ApplyCut(cutcondition,
"Mtop"))
return;

assuming that the cut named "Mtop" has been correctly
initialized.

We apply the above analysis in the context of the SII.v
monotop scenario of Ref. [10]. In this setup, the monotop sys-
tem arises from the flavor-changing interaction of an up quark
with a novel invisible vector boson whose mass have been
fixed to either 400 GeV or 600 GeV. Using the publicly avail-
able FeynRules [32,33] monotop model [34], we generate
a UFO library [35] that we link to the MadGraph 5 event
generator [36] that is used to simulate parton-level events that
include the decay of the top quark. We then perform parton
showering, hadronization and the simulation of the detector
response as in Sect. 3.1. From our analysis implementation,
we derive, in the context of the two considered new physics
models, the distribution in the reconstructed top mass Mbj j

of Fig. 3 and the cut-flow charts of Table 10.

4 Conclusion

We have presented a major extension of the expert mode of
the MadAnalysis 5 package. Both designing a prospective
new physics analysis and recasting an experimental search
featuring multiple signal regions can now be achieved in a
user-friendly fashion that relies on a powerful handling of
regions, histogramming and selection cuts. We have illus-
trated the strengths of our approach with two examples. First,
we have reimplemented a CMS search for stops in events
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with a single lepton and missing energy. We have shown that
predictions of MadAnalysis 5 agree with the CMS expec-
tation at the level of 20 % for a specific benchmark scenario.
Second, we have implemented a phenomenological study
for estimating the LHC sensitivity to hadronically decaying
monotop systems that has been employed in a recent publi-
cation.
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