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Considering the fact that results for static neural networks are much more scare than results for local field neural networks and
our purpose letting the problem researched be more general in many aspects, in this paper, a generalized neural networks model
which includes reaction-diffusion local field neural networks and reaction-diffusion static neural networks is built and the stability
and bifurcation problems for it are investigated under Neumann boundary conditions. First, by discussing the corresponding
characteristic equations, the local stability of the trivial uniform steady state is discussed and the existence of Hopf bifurcations
is shown. By using the normal form theory and the center manifold reduction of partial function differential equations, explicit
formulae which determine the direction and stability of bifurcating periodic solutions are acquired. Finally, numerical simulations
show the results.

1. Introduction

In the past several decades, the dynamics of neural networks
have been extensively investigated.

The artificial neural network has been used widely in
various fields such as signal processing, pattern recognition,
optimization, associative memories, automatic control engi-
neering, artificial intelligence, and fault diagnosis, because it
has the characteristics of self-adaption, self-organization, and
self-learning.

Most of the phenomena occurring in real-world complex
systems do not have an immediate effect but appear with
some delay; for example, there exist time delays in the infor-
mation processing of neurons. Therefore, time delays have
been inserted into mathematical models and in particular
in models of the applied sciences based on ordinary differ-
ential equations. The delayed axonal signal transmissions in
the neural network models make the dynamical behaviors
become more complicated, because a time delay into an
ordinary differential equation could change the stability of the
equilibrium (stable equilibrium becomes unstable) and could
cause fluctuations, and Hopf bifurcation can occur (see [1]).
And in [1] we can know the time delays’ effects from the work

by Carlo Bianca, Massimiliano Ferrara, and Luca Guerrini.
So, the delay is an important control parameter.

In addition, we must consider that the activations vary
in space as well as in time, because the electrons move in
asymmetric electromagnetic fields, and there exists diffusion
in neural network (see [2]).

In the past, the main work was to research local field
neural networks, and static neural networks were rarely
studied. Considering the fact that the problem of generalized
neural network ismore general inmany aspects; in this paper,
we will investigate a class of generalized neural networks
which combine local field neural networks and static neural
networks.

In order to study the effect of time delays and diffusion on
the dynamics of a neural network model, in [3], Gan and Xu
considered the following neural network model:
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Motivated by the works of Gan and Xu, in this paper, we
are concerned with the following neural network systemwith
time delay and reaction-diffusion:

𝜕𝑢
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= 𝐷
1
Δ𝑢 − 𝑎

1
𝑢 (𝑡, 𝑥) + 𝑏

11
𝑔
1
(𝑤
11
𝑢 (𝑡, 𝑥))

+ 𝑏
12
𝑔
2
(𝑤
12
V (𝑡 − 𝜏, 𝑥)) , 𝑡 > 0, 𝑥 ∈ Ω,

𝜕V
𝜕𝑡
= 𝐷
2
ΔV − 𝑎

2
V (𝑡, 𝑥) + 𝑏

21
𝑔
1
(𝑤
21
𝑢 (𝑡 − 𝜏, 𝑥))

+ 𝑏
22
𝑔
2
(𝑤
22
V (𝑡, 𝑥)) , 𝑡 > 0, 𝑥 ∈ Ω

(2)

with initial and boundary conditions (Neumann boundary
conditions):

𝜕𝑢

𝜕𝑙
=
𝜕V
𝜕𝑙
= 0, 𝑡 > 0, 𝑥 ∈ 𝜕Ω,

𝑢 (𝑡, 𝑥) = 𝜑
1
(𝑡, 𝑥) ,

V (𝑡, 𝑥) = 𝜑
2
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𝑡 ∈ [−𝜏, 0] , 𝑥 ∈ Ω,

(3)
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1
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12
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, 𝑤
12
, 𝑤
21
,

and 𝑤
22

are random constants, where 𝑎
1
and 𝑎

2
represent

the neuron charging time constants, 𝜏 represents the signal
transmission time delay, 𝐷

1
and 𝐷

2
represent the smooth

diffusion operators, 𝑏
11
, 𝑏
12
, 𝑏
21
, and 𝑏

22
represent connecting

weight coefficients, and 𝑤
11
, 𝑤
12
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, and 𝑤
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represent the

coefficients of 𝑢(𝑡, 𝑥), V(𝑡 − 𝜏, 𝑥), 𝑢(𝑡 − 𝜏, 𝑥), and V(𝑡, 𝑥),
respectively. 𝑢, V, and 𝑥 are the state variables and space
variable, respectively. 𝑔

1
and 𝑔

2
are the action functions of

the neurons satisfying 𝑔
1
(0) = 𝑔

2
(0) = 0. Ω is a bounded

domain in 𝑅𝑛 with smooth boundary 𝜕Ω, where 𝜕/𝜕𝑙 denotes
the outward normal derivative on 𝜕Ω.

The organization of this paper is as follows. In Section 2,
by analyzing the corresponding characteristic equations, we
discuss the local stability of trivial uniform steady state and
the existence of Hopf bifurcations of (2) and (3). In Section 3,
by applying the normal form and the center manifold the-
orem, closed-form expressions are derived which allow us
to determine the direction of the Hopf bifurcations and the
stability of the periodic solutions in (2) and (3) (see [2]). In
Section 4, numerical simulations are carried out to illustrate
the main theoretical results.

2. Local Stability and Hopf Bifurcation

Obviously, we can easily show that system (2) always has a
trivial uniform steady state 𝐸∗ = (0, 0).

Here, we use 0 = 𝜇
1
< 𝜇
2
< ⋅ ⋅ ⋅ as the eigenvalues of the

operator −Δ on Ω with the homogeneous Neumann bound-
ary conditions and 𝐸(𝜇

𝑖
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∇
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∇
𝑖
=

dim𝐸(𝜇𝑖)

⨁

𝑗=1

∇
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(4)

Let ℘ = diag(𝐷
1
, 𝐷
2
), 𝜁𝑚 = ℘Δ𝑚 + Z(𝐸∗)𝑚, where
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(5)

First, we linearize system (2) at 𝐸∗. Then, 𝑚
𝑡
= 𝜁𝑚. ∇

𝑖

is invariant under the operator 𝜁 for each 𝑖 ≥ 1, and 𝜆 is an
eigenvalue of 𝜁 if and only if it is an eigenvalue of the matrix
−𝜇
𝑖
℘ + Z(𝐸∗) for some 𝑖 ≥ 1, in which case, there is an

eigenvalue in ∇
𝑖
.

The characteristic equation of −𝜇
𝑖
℘+Z(𝐸∗) is of the form
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(7)

Letting 𝜏 = 0, then (6) becomes
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Obviously,

𝑝
2
+ 𝑝
3
= (𝜇
𝑖
𝐷
1
+ 𝑎
1
− 𝑏
11
𝑤
11
𝑔


1
(0))

⋅ (𝜇
𝑖
𝐷
2
+ 𝑎
2
− 𝑏
22
𝑤
22
𝑔


2
(0))

− 𝑏
12
𝑏
21
𝑤
12
𝑤
21
𝑔


1
(0) 𝑔


2
(0) .

(9)

Obviously, if the following holds:
(𝐻1)

𝑎
1
− 𝑏
11
𝑤
11
𝑔


1
(0) > 0,

𝑎
2
− 𝑏
22
𝑤
22
𝑔


2
(0) > 0,

(𝑎
1
− 𝑏
11
𝑤
11
𝑔


1
(0)) (𝑎

2
− 𝑏
22
𝑤
22
𝑔


2
(0))

− 𝑏
12
𝑏
21
𝑤
12
𝑤
21
𝑔


1
(0) 𝑔


2
(0) > 0

(10)



Discrete Dynamics in Nature and Society 3

then 𝑝
2
+ 𝑝
3
> 0, 𝑝

1
> 0. Hence, if (𝐻1) holds, when 𝜏 = 0,

the trivial uniform steady state 𝐸∗ of problems (2) and (3) is
locally stable.

Let 𝑖𝜔 (𝜔 > 0) be a solution of (6), separating real and
imaginary parts; then, we can get that

𝜔
2
− 𝑝
2
= 𝑝
3
cos 2𝜔𝜏,

𝑝
1
𝜔 = 𝑝

3
sin 2𝜔𝜏.

(11)

Squaring and adding the two equations of (11), we obtain
that

𝜔
4
+ (𝑝
2

1
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2
) 𝜔
2
+ 𝑝
2

2
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2

3
= 0. (12)

Letting 𝑧 = 𝜔2, then (12) becomes

𝑧
2
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2

1
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2
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2

2
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3
= 0. (13)

Obviously, it is easy to calculate that
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Let

𝑞
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𝑤
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𝑏
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𝑤
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𝑤
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𝑔
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𝑞
3
= (𝑎
1
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𝑤
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1
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2

+ (𝑎
2
− 𝑏
22
𝑤
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2
(0))
2

> 0.

(15)

Therefore, if 𝑞
2
> 0, (13) has no positive roots. Then, if

𝑞
1
> 0 and (𝐻1) Holds, the trivial uniform steady state 𝐸∗

of system (2) is locally asymptotically stable for all 𝑖 ≥ 1 and
𝜏 ≥ 0.

For 𝑖 = 1, if 𝑞
1
< 0, then (12) has a unique positive root

𝜔
0
, where

𝜔
0
= (

1

2
(−𝑞
3
+ √𝑞2
3
− 4𝑞
2
))

1/2

. (16)

It means that the characteristic equation (6) admits a pair
of purely imaginary roots of the form ±𝑖𝜔

0
for 𝑖 = 1.

Take 𝜔 = ((1/2)(−𝑞
3
+ √𝑞2
3
− 4𝑞
2
))
1/2. Obviously, (12)

holds if and only if 𝑖 = 1. Now, we define that

𝜏
0𝑛
=

1

2𝜔
0

arccos
𝜔
2

0
− 𝑝
2

𝑝
3

+
𝑛𝜋

𝜔
0

, 𝑛 = 0, 1, . . . . (17)

Then, for 𝑖 = 1, when 𝜏 = 𝜏
0𝑛
, (6) has a pair of purely

imaginary roots ±𝑖𝜔
0
and all roots of it have negative real

parts for 𝑖 ≥ 2. It is easy to see that if (𝐻1) holds, the trivial
uniform steady state 𝐸∗ is locally stable for 𝜏 = 0. Hence,
on the basis of the general theory on characteristic equations
of delay-differential equations from [3, Theorem 4.1], we can
know that 𝐸∗ remains stable when 𝜏 < 𝜏

0
, where 𝜏

0
= 𝜏
00
.

Now, we claim that

𝑑 (Re 𝜆)
𝑑𝜏

𝜏=𝜏0

> 0. (18)

This will mean that there exists at least one eigenvalue
with positive real part when 𝜏 > 𝜏

0
. In addition, the

conditions for the existence of a Hopf bifurcation [2] are
then satisfied generating a periodic solution. To this end, we
differentiate (6) about 𝜏; then,

(2𝜆 + 𝑝
1
)
𝑑𝜆

𝑑𝜏
− 2𝑝
3
𝑒
−2𝜆𝜏

(𝜆 + 𝜏
𝑑𝜆

𝑑𝜏
) = 0. (19)

So, we know that

(
𝑑𝜆

𝑑𝜏
)

−1

=
2𝜆 + 𝑝

1
− 2𝜏𝑝

3
𝑒
−2𝜆𝜏

2𝜆𝑝
3
𝑒−2𝜆𝜏

=
(2𝜆 + 𝑝

1
) 𝑒
2𝜆𝜏

2𝜆𝑝
3

−
𝜏

𝜆
.

(20)

Therefore,

sign{𝑑 (Re 𝜆)
𝑑𝜏

}

𝜆=𝑖𝜔0

= sign{Re(𝑑𝜆
𝑑𝜏
)

−1

}

𝜆=𝑖𝜔0

= sign{Re[
(2𝜆 + 𝑝

1
) 𝑒
2𝜆𝜏

2𝜆𝑝
3

]

𝜆=𝑖𝜔0

+ Re [− 𝜏
𝜆
]
𝜆=𝑖𝜔0

}

= sign{
2𝜔
0
cos 2𝜔

0
𝜏 + 𝑝
1
sin 2𝜔

0
𝜏

2𝜔
0
𝑝
3

} .

(21)

By (11), we can obtain that

sign{𝑑 (Re 𝜆)
𝑑𝜏

}

𝜆=𝑖𝜔0

= sign{
2𝜔
2

0
+ 𝑝
2

1
− 2𝑝
2

2𝑝2
3

} . (22)

Because 𝑝2
1
− 2𝑝
2
> 0, so

𝑑 (Re 𝜆)
𝑑𝜏

𝜏=𝜏0, 𝜔=𝜔0

> 0. (23)

Hence, the transversal condition holds and a Hopf bifur-
cation occurs when 𝜔 = 𝜔

0
and 𝜏 = 𝜏

0
.

Consequently, we gain the following results.

Theorem 1. Let 𝜏
0
= 𝜏
00

and let 𝑞
1
be defined by (15). For

system (2), let (𝐻1) hold. If 𝑞
1
> 0, the trivial uniform steady

state 𝐸∗ of system (2) is locally asymptotically stable when 𝜏 ≥
0; if 𝑞
1
< 0, the trivial uniform steady state𝐸∗ is asymptotically

stable for 0 ≤ 𝜏 < 𝜏
0
and is unstable for 𝜏 > 𝜏

0
; furthermore,

system (2) undergoes a Hopf bifurcation at 𝐸∗ when 𝜏 = 𝜏
0
.
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3. Direction and Stability of Hopf Bifurcation

In Section 2, we have demonstrated that systems (2) and (3)
undergo a train of periodic solutions bifurcating from the
trivial uniform steady state 𝐸∗ at the critical value of 𝜏. In
this section, we derive explicit formulae to determine the
properties of the Hopf bifurcation at critical value 𝜏

0
by using

the normal form theory and center manifold reduction for
PFDEs. In this section, we also let the condition (𝐻1) hold
and 𝑞

1
< 0. And the work of Bianca and Guerrini in papers

[4–7] is the founder of the method in this section.

Set 𝜏 = 𝛼 + 𝜏
0
. We first should normalize the delay 𝜏 by

the time-scaling 𝑡 → 𝑡/𝜏. Then, (2) can be rewritten in the
fixed phase space ℓ∗ = 𝐶([−1, 0], 𝑋) as

�̇� (𝑡) = 𝜏
0
℘Δ𝑚 (𝑡) + 𝜏

0
Z (𝐸
∗
) (𝑚 (𝑡))

+ 𝑓
∗
(𝑚 (𝑡) , 𝛼) ,

(24)

where 𝑓∗:ℓ∗ × 𝑅+ → 𝑅
2 is defined by

𝑓
∗
(𝜙, 𝛼) = 𝛼℘Δ𝜙 (0) + 𝜏

0
Z (𝐸
∗
) (𝜙) + (𝜏

0
+ 𝛼)(

1

2!
𝑏
12
𝑤
2

12
𝑔


2
(0) 𝜙
2

2
(−1) +

1

3!
𝑏
12
𝑤
3

12
𝑔


2
(0) 𝜙
3

2
(−1) + ⋅ ⋅ ⋅

1

2!
𝑏
21
𝑤
2

21
𝑔


1
(0) 𝜙
2

1
(−1) +

1

3!
𝑏
21
𝑤
3

21
𝑔


1
(0) 𝜙
3

1
(−1) + ⋅ ⋅ ⋅

) , (25)

where 𝜙 = (𝜙
1
, 𝜙
2
)
𝑇
∈ ℓ
∗.

By the discussion in Section 2, we can know that the
origin (0, 0) is a steady state of (24) and Λ

0
= {−𝑖𝜔

0
𝜏
0
, 𝑖𝜔
0
𝜏
0
}

are a pair of simple purely imaginary eigenvalues of the linear
equation

�̇� (𝑡) = 𝜏
0
℘Δ𝑚 (𝑡) + 𝜏

0
Z (𝐸
∗
) (𝑚 (𝑡)) (26)

and the functional differential equation

�̇� (𝑡) = 𝜏
0
Z (𝑧
𝑡
) . (27)

On the basis of the Riesz representation theorem, there
exists a function 𝜂(𝜃, 𝜏) of bounded variation for 𝜃 ∈ [−1, 0]
such that

Z (𝐸
∗
) (𝜑) =

1

𝜏
0

∫

0

−1

𝑑𝜂 (𝜃, 𝜏
0
) 𝜑 (𝜃) , where 𝜑 ∈ C. (28)

Here, we choose that

𝜂 (𝜃, 𝜏
0
)

= 𝜏
0
(

−𝑎
1
+ 𝑏
11
𝑤
11
𝑔


1
(0) 0

0 −𝑎
2
+ 𝑏
22
𝑤
22
𝑔


2
(0)

)𝛿 (𝜃)

− 𝜏
0
(

0 𝑏
12
𝑤
12
𝑔


2
(0)

𝑏
21
𝑤
21
𝑔


1
(0) 0

)𝛿 (𝜃 + 1) ,

(29)

where 𝛿 is the Dirac delta function.
Let 𝐴(𝜏

0
) denote the infinitesimal generator of the semi-

group induced by the solutions of (27) and let 𝐴∗ be the
formal adjoint of 𝐴(𝜏

0
) under the bilinear pairing

⟨𝜓 (𝑠) , 𝜑 (𝜃)⟩ = 𝜓 (0) 𝜑 (0)

− ∫

0

−1

∫

𝜃

𝜉=0

𝜓 (𝜉 − 𝜃) 𝑑𝜂 (𝜃) 𝜑 (𝜉) 𝑑𝜉,

(30)

where 𝜑 ∈ 𝐶
1
([−1, 0], 𝑅

2
), 𝜓 ∈ 𝐶

1
([0, 1], (𝑅

2
)
∗
), 𝜂(𝜃) =

𝜂(𝜃, 𝜏
0
). Then, 𝐴(𝜏

0
) and 𝐴∗ are a pair of adjoint operators.

By the discussions in Section 2, we can realize that 𝐴(𝜏
0
)

has a pair of simple purely imaginary eigenvalues ±𝑖𝑤
0
𝜏
0
and

they are also eigenvalues of𝐴∗ since𝐴(𝜏
0
) and𝐴∗ are adjoint

operators. Let 𝑃 and 𝑃∗ be the center spaces of 𝐴(𝜏
0
) and

𝐴
∗ associated with Λ

0
, respectively. Hence, 𝑃∗ is the adjoint

space of 𝑃 and dim𝑃 = dim𝑃∗ = 2.
Let

𝛾 =
𝑏
21
𝑤
21
𝑔


1
(0) 𝑒
−𝑖𝑤0𝜏0

𝑎
2
+ 𝑖𝑤
0
− 𝑏
22
𝑤
22
𝑔
2
(0)
,

𝜅 =
𝑏
12
𝑤
12
𝑔


2
(0) 𝑒
𝑖𝑤0𝜏0

𝑎
2
− 𝑖𝑤
0
− 𝑏
22
𝑤
22
𝑔
2
(0)
;

(31)

then,

𝑝
1
(𝜃) = 𝑒

𝑖𝑤0𝜏0𝜃 (1, 𝛾)
𝑇

,

𝑝
2
(𝜃) = 𝑝

1
(𝜃) ,

− 1 ≤ 𝜃 ≤ 0

(32)

is a basis of 𝑃 associated with Λ
0
and

𝑞
1
(𝑠) = (1, 𝜅)

𝑇
𝑒
−𝑖𝑤0𝜏0𝑠,

𝑞
2
(𝑠) = 𝑞

1
(𝑠) ,

0 ≤ 𝑠 ≤ 1

(33)

is a basis of 𝑄 associated with Λ
0
.

Let Φ = (Φ
1
, Φ
2
), where

Φ
1
(𝜃) =

𝑝
1
(𝜃) + 𝑝

2
(𝜃)

2
,

Φ
2
(𝜃) =

𝑝
1
(𝜃) − 𝑝

2
(𝜃)

2𝑖

(34)
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for 𝜃 ∈ [−1, 0], and let Ψ∗ = (Ψ∗
1
, Ψ
∗

2
)
𝑇, where

Ψ
∗

1
(𝑠) =

𝑞
1
(𝑠) + 𝑞

2
(𝑠)

2
,

Ψ
∗

2
(𝑠) =

𝑞
1
(𝑠) − 𝑞

2
(𝑠)

2𝑖

(35)

for 𝑠 ∈ [−1, 0].
Now we define that (Ψ∗, Φ) = (Ψ∗

𝑗
, Φ
𝑘
), (𝑗, 𝑘 = 1, 2), and

construct a new basis Ψ for 𝑄 by

Ψ = (Ψ
∗

1
, Ψ
2
)
𝑇

= (Ψ
∗
, Φ)
−1

Ψ
∗
. (36)

Hence, (Ψ,Φ) = 𝐼
2
, which is the second-order identity

matrix. Moreover, we define 𝑓
0
for 𝑓
0
= (𝛽
1

0
, 𝛽
2

0
) and 𝑐 ⋅ 𝑓

0
=

𝑐
0
𝛽
1

0
+ 𝑐
2
𝛽
2

0
for 𝑐 = (𝑐

1
, 𝑐
2
)
𝑇
∈ 𝐶. Then, the center space of

linear equation (26) is given by 𝑃
𝐶𝑁
ℓ
∗, where

𝑃
𝐶𝑁
ℓ
∗
= Φ (Ψ, ⟨𝜙, 𝑓

0
⟩) ⋅ 𝑓
0
, 𝜙 ∈ ℓ

∗
, (37)

and ℓ∗ denotes the complementary subspace of𝑃
𝐶𝑁
ℓ
∗, where

ℓ
∗
= 𝑃
𝐶𝑁
ℓ
∗
⊕ 𝑄. (38)

Let 𝐴
𝜏0
be defined by

𝐴
𝜏0
𝜙 (𝜃)

= ̇𝜙 (𝜃)

+ 𝑋
0
(𝜃) [℘Δ𝜙 (0) + 𝜏

0
Z (𝐸
∗
) (𝜙 (𝜃)) − ̇𝜙 (0)] ,

𝜙 ∈ ℓ
∗
,

(39)

where𝑋
0
: [−1, 0] → 𝐵(𝑋,𝑋) is given by

𝑋
0
(𝜃) =

{

{

{

0, −1 ≤ 𝜃 < 0,

𝐼, 𝜃 = 0.

(40)

Then, we have rewritten system (24), and it can be
rewritten as follows:

�̇� (𝑡) = 𝐴
𝜏0
𝑚(𝑡) + 𝑋

0
𝑓
∗
(𝑚 (𝑡) , 𝛼) . (41)

The solution of (24) on the center manifold is given by

𝑚
∗
(𝑡) = Φ (𝑥

1
, 𝑥
2
)
𝑇

⋅ 𝑓
0
+𝑊(𝑥

1
, 𝑥
2
, 𝛼) . (42)

Letting 𝑧 = 𝑥
1
−𝑖𝑥
2
,𝑊 = 𝑊

20
(𝑧
2
/2)+𝑊

11
𝑧𝑧+𝑊

02
(𝑧
2
/2)+

⋅ ⋅ ⋅ , then

�̇� = 𝑖𝑤
0
𝜏
0
𝑧 + 𝑔 (𝑧, 𝑧) , (43)

where

𝑔 (𝑧, 𝑧) = (Ψ
1
(0) − 𝑖Ψ

2
(0)) ⟨𝑓

∗
(𝑚
∗
(𝑡) , 0) , 𝑓

0
⟩

≜ 𝑔
20

𝑧
2

2
+ 𝑔
11
𝑧𝑧 + 𝑔

02

𝑧
2

2
+ 𝑔
21

𝑧
2
𝑧

2
+ ⋅ ⋅ ⋅ .

(44)

We can use some easy computations to show that

⟨𝑓
∗
(𝑚
∗
(𝑡) , 0) , 𝑓

0
⟩ =

𝜏
0

8
(
𝑐
11
𝑧
2
+ 𝑐
12
𝑧
2
+ 𝑐
13
𝑧𝑧

𝑐
21
𝑧
2
+ 𝑐
22
𝑧
2
+ 𝑐
23
𝑧𝑧

)

+
𝜏
0

16
(
⟨𝑐
01
, 1⟩

⟨𝑐
02
, 1⟩
) 𝑧
2
𝑧 + ⋅ ⋅ ⋅ ,

(45)

where

𝑐
11
= 𝑏
12
𝑤
12
𝑔


2
(0) (−𝑎

1
+ 𝑏
11
𝑤
11
𝑔


1
(0)) 𝛾𝑒

−𝑖𝑤0𝜏0 ,

𝑐
12
= 𝑏
12
𝑤
12
𝑔


2
(0) (−𝑎

1
+ 𝑏
11
𝑤
11
𝑔


1
(0)) 𝛾𝑒

𝑖𝑤0𝜏0 ,

𝑐
13
= 𝑏
12
𝑤
12
𝑔


2
(0) (−𝑎

1
+ 𝑏
11
𝑤
11
𝑔


1
(0))

⋅ (𝛾𝑒
𝑖𝑤0𝜏0 + 𝛾𝑒

−𝑖𝑤0𝜏0) ,

𝑐
21
= 𝑏
21
𝑤
21
𝑔


1
(0) (−𝑎

2
+ 𝑏
22
𝑤
22
𝑔


1
(0)) 𝛾𝑒

−𝑖𝑤0𝜏0 ,

𝑐
22
= 𝑏
21
𝑤
21
𝑔


1
(0) (−𝑎

2
+ 𝑏
22
𝑤
22
𝑔


2
(0)) 𝛾𝑒

𝑖𝑤0𝜏0 ,

𝑐
23
= 𝑏
21
𝑤
21
𝑔


1
(0) (−𝑎

2
+ 𝑏
22
𝑤
22
𝑔


2
(0))

⋅ (𝛾𝑒
𝑖𝑤0𝜏0 + 𝛾𝑒

−𝑖𝑤0𝜏0) ,

𝑐
01
= 𝑏
12
𝑤
12
𝑔


2
(0) (−𝑎

1
+ 𝑏
11
𝑤
11
𝑔


1
(0))

⋅ (𝛾𝑊
(1)

20
(0) 𝑒
𝑖𝑤0𝜏0 +𝑊

(2)

20
(−1)) + 2𝑏

12
𝑤
12
𝑔


2
(0)

⋅ (−𝑎
1
+ 𝑏
11
𝑤
11
𝑔


1
(0))

⋅ (𝑊
(2)

11
(−1) + 𝛾𝑊

(1)

11
(0) 𝑒
−𝑖𝑤0𝜏0) ,

𝑐
02
= 𝑏
21
𝑤
21
𝑔


1
(0) (−𝑎

2
+ 𝑏
22
𝑤
22
𝑔


2
(0))

⋅ (𝛾𝑊
(1)

20
(−1) + 𝑊

(2)

20
(0) 𝑒
𝑖𝑤0𝜏0) + 2𝑏

21
𝑤
21
𝑔


1
(0)

⋅ (−𝑎
2
+ 𝑏
22
𝑤
22
𝑔


2
(0))

⋅ (𝛾𝑊
(1)

11
(−1) + 𝑊

(2)

11
(0) 𝑒
−𝑖𝑤0𝜏0) .

(46)

Setting (𝜓
1
, 𝜓
2
) = Ψ

1
(0) − 𝑖Ψ

2
(0), by calculating, we get

that

𝑔
20
=
𝜏
0

4
(𝑐
11
𝜓
1
+ 𝑐
21
𝜓
2
) ,

𝑔
02
=
𝜏
0

4
(𝑐
12
𝜓
1
+ 𝑐
22
𝜓
2
) ,

𝑔
11
=
𝜏
0

8
(𝑐
13
𝜓
1
+ 𝑐
23
𝜓
2
) ,

𝑔
21
=
𝜏
0

8
(⟨𝑐
01
, 1⟩ 𝜓
1
+ ⟨𝑐
02
, 1⟩ 𝜓
2
) .

(47)

Because there are 𝑊
20
(𝜃) and 𝑊

11
(𝜃) in 𝑔

21
where 𝜃 ∈

[−1, 0], we still need to compute them.
By [4], we know that

�̇� = 𝐴
𝜏0
𝑊+𝐻(𝑧, 𝑧) , (48)
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where

𝐻(𝑧, 𝑧) = 𝐻
20

𝑧
2

2
+ 𝐻
11
𝑧𝑧 + 𝐻

02

𝑧
2

2
+ ⋅ ⋅ ⋅

= 𝑋
0
𝑓
∗
(𝑚
∗
(𝑡) , 0)

− Φ (Ψ, ⟨𝑋
0
𝑓
∗
(𝑚
∗
(𝑡) , 𝛼) , 𝑓

0
⟩) ⋅ 𝑓
0
,

(49)

for𝐻
𝑖𝑗
∈ 𝑄, with 𝑖 + 𝑗 = 2. It follows from (43), (48), and (49)

that

(𝐴
𝜏0
− 2𝑖𝑤

0
𝜏
0
)𝑊
20
(𝜃) = −𝐻

20
(𝜃) ,

𝐴
𝜏0
𝑊
11
(𝜃) = −𝐻

11
(𝜃) , . . . .

(50)

By (49), we have that for 𝜃 ∈ [−1, 0)

𝐻 (𝑧, 𝑧) = −
1

2
[𝑔
20
𝑝
1
(𝜃) + 𝑔

02
𝑝
2
(𝜃)] 𝑧
2
⋅ 𝑓
0

− [𝑔
11
𝑝
1
(𝜃) + 𝑔

11
𝑝
2
(𝜃)] 𝑧𝑧 ⋅ 𝑓

0
+ ⋅ ⋅ ⋅ .

(51)

Comparing the coefficients with (49), we get that for 𝜃 ∈
[−1, 0)

𝐻
20
(𝜃) = − [𝑔

20
𝑝
1
(𝜃) + 𝑔

02
𝑝
2
(𝜃)] ⋅ 𝑓

0
, (52)

𝐻
11
(𝜃) = − [𝑔

11
𝑝
1
(𝜃) + 𝑔

11
𝑝
2
(𝜃)] ⋅ 𝑓

0
. (53)

By (50), (52), and the definition of 𝐴
𝜏0
, we get that

�̇�
20
(𝜃) = 2𝑖𝑤

0
𝜏
0
𝑊
20
(𝜃) + [𝑔

20
𝑝
1
(𝜃) + 𝑔

02
𝑝
2
(𝜃)]

⋅ 𝑓
0
.

(54)

Noticing that 𝑝
1
(𝜃) = 𝑝

1
(0)𝑒
𝑖𝑤0𝜏0𝜃, hence,

𝑊
20
(𝜃)

= [
𝑖𝑔
20

𝑤
0
𝜏
0

𝑝
1
(𝜃) 𝑒
𝑖𝑤0𝜏0𝜃 +

𝑖𝑔
02

3𝑤
0
𝜏
0

𝑝
2
(𝜃) 𝑒
−𝑖𝑤0𝜏0𝜃] ⋅ 𝑓

0

+ 𝐸
1
𝑒
2𝑖𝑤0𝜏0𝜃,

(55)

where 𝐸
1
= (𝐸
(1)

1
, 𝐸
(2)

1
) ∈ 𝑅
2 which is a constant vector.

In a similar way, by (50) and (53), we have that

𝑊
11
(𝜃)

= [−
𝑖𝑔
11

𝑤
0
𝜏
0

𝑝
1
(0) 𝑒
𝑖𝑤0𝜏0𝜃 +

𝑖𝑔
11

𝑤
0
𝜏
0

𝑝
2
(0) 𝑒
−𝑖𝑤0𝜏0𝜃] ⋅ 𝑓

0

+ 𝐸
2
,

(56)

where 𝐸
2
= (𝐸
(1)

2
, 𝐸
(2)

2
) ∈ 𝑅
2 which is also a constant vector.

In what follows, we seek appropriate 𝐸
1
and 𝐸

2
. From the

definition of 𝐴
𝜏0
and (50), we can obtain that

2𝑖𝑤
0
𝜏
0
𝑊
20
(0) − ℘Δ𝑊

20
(0) − Z (𝐸

∗
)𝑊
20
(𝜃)

= 𝐻
20
(0) ,

(57)

− ℘Δ𝑊
11
(0) − Z (𝐸

∗
)𝑊
11
(𝜃) = 𝐻

11
(0) , (58)

where

𝐻
20
(0) =

𝜏
0

4
(
𝑐
11

𝑐
21

) − [𝑔
20
𝑝
1
(0) + 𝑔

02
𝑝
2
(0)] ⋅ 𝑓

0
, (59)

𝐻
11
(0) =

𝜏
0

8
(
𝑐
13

𝑐
23

) − [𝑔
11
𝑝
1
(0) + 𝑔

11
𝑝
2
(0)] ⋅ 𝑓

0
. (60)

Substituting (55) and (59) into (57), we can obtain that

𝐸
1
=
1

4
(

2𝑖𝑤
0
𝜏
0
+ 𝑎
1
− 𝑏
11
𝑤
11
𝑔


1
(0) −𝑏

12
𝑤
12
𝑔


2
(0) 𝑒
−2𝑖𝑤0𝜏0

−𝑏
21
𝑤
21
𝑔


1
(0) 𝑒
−2𝑖𝑤0𝜏0 2𝑖𝑤

0
𝜏
0
+ 𝑎
2
− 𝑏
22
𝑤
22
𝑔


2
(0)

)

−1

(
𝑐
11

𝑐
21

) . (61)

In a similar way, substituting (56) and (60) into (58), we
obtain that

𝐸
2

=
1

8
(

𝑎
1
− 𝑏
11
𝑤
11
𝑔


1
(0) −𝑏

12
𝑤
12
𝑔


2
(0)

𝑎
2
− 𝑏
22
𝑤
22
𝑔


2
(0) −𝑏

21
𝑤
21
𝑔


1
(0)

)

−1

(
𝑐
13

𝑐
23

) .

(62)

Therefore, we can compute the following values:

𝑐
1
(0) =

𝑖

2𝑤
0

(𝑔
11
𝑔
20
− 2
𝑔11


2

−

𝑔02

2

3
) +

𝑔
21

2
,

𝜇
2
= −

Re {𝑐
1
(0)}

Re {𝜆 (𝜏
0
)}
,

𝛽
2
= 2Re {𝑐

1
(0)} ,

𝑇
2
= −

Im {𝑐
1
(0)} + 𝜇

2
Im {𝜆 (𝜏

0
)}

𝑤
0

,

(63)

which determine the quantities of bifurcating periodic solu-
tions in the center manifold at the critical value 𝜏

0
; that is,

𝜇
2
determines the direction of Hopf bifurcation: the Hopf

bifurcation is supercritical (subcritical) if 𝜇
2
> 0 (𝜇

2
< 0)

and the bifurcating periodic solutions exist for 𝜏 > 𝜏
0
(𝜏 <
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𝜏
0
); 𝛽
2
determines the stability of the bifurcating periodic

solutions: if 𝛽
2
< 0 (𝛽

2
> 0), the bifurcating periodic

solutions are stable (unstable); and 𝑇
2
determines the period

of the bifurcating periodic solutions: the period increases
(decrease) if 𝑇

2
> 0 (𝑇

2
< 0) [8–11].

4. Numerical Simulations

In this section, in order to illustrate the results above, we will
give two examples.

Example 1. In system (2), we choose that 𝐷
1
= 𝐷
2
= 1, 𝑎

1
=

𝑏
11
= 0.4, 𝑤

11
= 0.6, 𝑎

2
= 0.3, 𝑏

22
= 𝑤
22
= 0.5, 𝑏

12
= 0.3,

𝑏
21
= 0.6, 𝑤

12
= 2.4, 𝑤

21
= 3.6, 𝑔

1
(𝑥) = −0.1tan(𝑥), and

𝑔
2
(𝑥) = arctan(𝑥); then,

𝜕𝑢

𝜕𝑡
= Δ𝑢 − 0.4𝑢 (𝑡, 𝑥) − 0.04 tan (0.6𝑢 (𝑡, 𝑥))

+ 0.3 arctan (2.4V (𝑡 − 𝜏, 𝑥)) ,

𝜕V
𝜕𝑡
= ΔV − 0.3V (𝑡, 𝑥) − 0.06 tan (3.6𝑢 (𝑡 − 𝜏, 𝑥))

+ 0.5 arctan (0.5V (𝑡, 𝑥))

(64)

in which

0 < 𝑥 < 1,

𝑡 > 0

(65)

with initial and Neumann boundary conditions

𝜕𝑢

𝜕𝑙
=
𝜕V
𝜕𝑙
= 0, 𝑡 ≥ 0, 𝑥 = 0, 1,

𝑢 (𝑡, 𝑥) = 0.5 (1 +
𝑡

𝜋
) sin (𝜋𝑥) ,

V (𝑡, 𝑥) = (1 +
𝑡

𝜋
) sin (𝜋𝑥) ,

(𝑡, 𝑥) ∈ [−𝜏, 0] × [0, 1] .

(66)

What should be remarked is that we choose the parameter
values stochastically under the condition 𝑞

2
< 0 in order to

ensure the existence of Hopf bifurcation at 𝐸∗ when 𝜏 = 𝜏
0
.

So, 𝜏
0
= 1.9371 and 𝑤

0
= 0.2939. Then, we can know

on the basis ofTheorem 1 that the trivial uniform steady state
𝐸
∗
= (0, 0) is asymptotically stable when 0 ≤ 𝜏 < 𝜏

0
. When

𝜏 > 𝜏
0
, the steady state is unstable and a Hopf bifurcation is

arising from the steady state. The numerical simulations in
Figures 1 and 2 illustrate the facts.

When 𝜏 = 𝜏
0
, we get that 𝑐

1
(0) = −0.0001 + 0.0022𝑖; then,

we can acquire that 𝜇
2
> 0 and 𝛽

2
< 0. Hence, when 𝜏 passes

through 𝜏
0
to the right (𝜏 > 𝜏

0
), the bifurcation turns up, and

the corresponding periodic orbits are orbitally asymptotically
stable.

Example 2. In system (2), we choose that 𝐷
1
= 𝐷
2
= 0.01,

𝑏
21
= 0.9, 𝑎

2
= 0.2, 𝑏

12
= 0.3, 𝑏

11
= 𝑏
22
= 𝑤
22
= 0.5, 𝑎

1
=

𝑤
11
= 0.6, 𝑤

12
= 2.5, 𝑤

21
= 3.6, 𝑔

1
(𝑥) = −0.1tan(𝑥), and

𝑔
2
(𝑥) = arctan(𝑥); then,

𝜕𝑢

𝜕𝑡
= 0.01Δ𝑢 − 0.6𝑢 (𝑡, 𝑥) − 0.05 tan (0.6𝑢 (𝑡, 𝑥))

+ 0.3 arctan (2.5V (𝑡 − 𝜏, 𝑥)) ,

𝜕V
𝜕𝑡
= 0.01ΔV − 0.2V (𝑡, 𝑥) − 0.09 tan (3.6𝑢 (𝑡 − 𝜏, 𝑥))

+ 0.5 arctan (0.5V (𝑡, 𝑥))

(67)

in which

0 < 𝑥 < 1,

𝑡 > 0

(68)

with initial and Dirichlet boundary conditions

𝑢 (𝑡, 0) = 𝑢 (𝑡, 1) = V (𝑡, 0) = V (𝑡, 1) = 0, 𝑡 ≥ 0,

𝑢 (𝑡, 𝑥) = 0.5 (1 +
𝑡

𝜋
) sin (𝜋𝑥) ,

V (𝑡, 𝑥) = (1 +
𝑡

𝜋
) sin (𝜋𝑥) ,

(𝑡, 𝑥) ∈ [−𝜏, 0] × [0, 1] .

(69)

The similar Hopf bifurcation phenomenon is illustrated
by the numerical simulations in Figures 3 and 4.

5. Discussion and Research Perspective

This section is devoted to a summary of discussion and
research perspective for the generalized reaction-diffusion
neural networkmodel.Themodel is based on the assumption
that the signal transmission is of a digital (McCulloch-Pitts)
nature; the model then described a combination of analog
and digital signal processing in the network [12]. Depending
on the modeling approaches, neural networks can be mod-
eled either as a static neural network model or as a local field
neural network model. In order to let the problem be more
general in many aspects, we build a generalized reaction-
diffusion neural network model which includes reaction-
diffusion local field neural networks and reaction-diffusion
static neural networks. For a delayed neural network, an
important issue is the dynamical behaviors of the network
[13]. Thus, there has been a large body of work discussing the
stability and bifurcation in delayed neural network models.
By analyzing the characteristic equation, we discussed the
local stability of the trivial uniform of system (2) [14]. It
was shown that when the delay 𝜏 varies, the trivial uniform
steady state exchanges its stability and Hopf bifurcations
occur. Numerical simulations illustrated the occurrence of
the bifurcate periodic solutions when the delay 𝜏 passes the
critical value 𝜏

0
.

A research perspective includes the problem of deter-
mining the bifurcating periodic solutions and the stability
and directions of the Hopf bifurcation using the normal
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Figure 1: The temporal solution found by numerical integration of systems (64) and (66) with 𝜏 = 1.85: (a) 𝑢(𝑡, 𝑥) and (b) V(𝑡, 𝑥).
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Figure 2: The temporal solution found by numerical integration of systems (64) and (66) with 𝜏 = 4.25: (a) 𝑢(𝑡, 𝑥) and (b) V(𝑡, 𝑥).
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Figure 3: The temporal solution found by numerical integration of systems (67) and (69) with 𝜏 = 1.25: (a) 𝑢(𝑡, 𝑥) and (b) V(𝑡, 𝑥).
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Figure 4: The temporal solution found by numerical integration of systems (67) and (69) with 𝜏 = 2.05: (a) 𝑢(𝑡, 𝑥) and (b) V(𝑡, 𝑥).

form theory and the center manifold reaction. A challenging
perspective is the comparison of the generalized model
introduced in the present paper with the experimentallymea-
surable quantities. Indeed, the mathematical models should
reproduce both qualitatively and quantitatively empirical
data (see [4]).
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