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Solar photovoltaic (PV) power plant is an effective way to utilize the renewable energy sources. EMI is one of the major concerns in
PV power plant. Typically, the multilevel inverters are used in high voltage PV power plant. However, the conventional multilevel
inverters requiremore semiconductors, which complicate the circuit structure and control algorithm. In this paper, a novel five-level
inverter is introduced for the high voltage PV power plant applications. The model of the inverter is analyzed. With the redundant
switching states, a new modulation strategy is proposed to reduce the common-mode voltage and EMI. The proposed approach is
able to eliminate the common-mode voltage; meanwhile it has the capability of balancing the capacitor voltages. The cosimulation
tests with the Matlab/Simulink and S-function are carried out. The results verify the effectiveness of the proposed method.

1. Introduction

Thesolar photovoltaic power plant is recently attractingmuch
attention throughout the world. Typically, the multilevel
inverters are applied in high voltage PV power plant [1–
4], mainly due to the high voltage capability, low switching
frequency, and low power losses [5, 6]. The classic multilevel
topologies include the diode clamped, flying capacitor, and
cascaded H-bridge converters [7–12]. However, these kinds
of converters give rise to common-mode voltage (CMV),
which could induce the ground leakage currents, as well as
electromagnetic interference (EMI). And the EMI is one of
the major concerns in PV power plant applications [13–16].
To reduce the EMI, many interesting methods have been
reported in literature. For example, the CMV reduction for
cascaded converters has been discussed in [17–19]. The CMV
reduction strategies for neutral point clamped topologies
have been reported in [20–22]. As for other types ofmultilevel
converters, the space vector modulation (SVM) for CMV
reduction of a four-level inverter is presented in [23] and
for a five-level inverter is presented in [24]. Unfortunately,
the balance of the capacitor voltage is not considered in the
abovementioned modulation strategies. Actually, the balance
of the capacitor voltage is one of the key issues in multilevel

converters [7, 25]. Therefore, the modulation strategy which
is able to eliminate theCMVandbalance the capacitor voltage
needs further investigation.

The objective of this paper is to present the modeling
and analysis of a novel five-level inverter for PV power plant
applications. The rest of the paper is organized as follows.
Section 2 presents the analysis of the system operation
principle. The proposed strategy is discussed in Section 3.
The simulation interface and results are shown in Section 4.
Finally, the conclusion is presented in Section 5.

2. Analysis of the New Five-Level Inverter

2.1. Operation of the Novel Five-Level Inverter. Thenovel five-
level inverter, as shown in Figure 1, is a combination of a
flying capacitor inverter and a neutral point clamped inverter
presented in [26]. To ensure the equally spaced steps in the
output voltages, the capacitors 𝐶

𝑥1
and 𝐶

𝑥2
(𝑥 = 𝑎, 𝑏, 𝑐) are

charged to 1/4𝑉dc and 𝐶𝑥3 is charged to 3/4𝑉dc.𝑉dc is the dc-
link voltage. As shown in Table 1, the phase voltages are𝑉dc/2,
𝑉dc/4, 0, −𝑉dc/4, and −𝑉dc/2, with respect to the midpoint
𝑛 of the dc-link, corresponding to the phase switching states
𝑆
𝑘
(𝑘 = 𝑎, 𝑏, 𝑐) = 2, 1, 0, −1, −2.
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Table 1: Switching states of the five-level inverter.
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(𝑏)
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1 0 1 1 0 0 1 0 D C D C C D (𝑑)
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Figure 1: Schematic of the novel five-level inverter.

2.2. Common-Mode Voltage in the Novel Five-Level Inverter.
The relationship between phase voltages and switching states
can be expressed as follows:

𝑉
𝑥𝑛
=

{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{

{

𝑉dc
2
𝑆
𝑥
= 2

𝑉dc
4
𝑆
𝑥
= 1

0 𝑆
𝑥
= 0

−
𝑉dc
4
𝑆
𝑥
= −1

−
𝑉dc
2
𝑆
𝑥
= −2

𝑥 = 𝑎, 𝑏, 𝑐,

𝑉
𝑎𝑛
=
𝑉dc
4
× 𝑆
𝑎
,

𝑉
𝑏𝑛
=
𝑉dc
4
× 𝑆
𝑏
,

𝑉
𝑐𝑛
=
𝑉dc
4
× 𝑆
𝑐
.

(1)

The CMV is

𝑉CM =
(𝑉
𝑎𝑛
+ 𝑉
𝑏𝑛
+ 𝑉
𝑐𝑛
)

3
. (2)

𝑆sum can be defined as

𝑆sum = 𝑆𝑎 + 𝑆𝑏 + 𝑆𝑐. (3)

And the CMV generated by switching states can be
expressed as

𝑉CM (𝑆sum) =
𝑉dc
12
× 𝑆sum. (4)

According to (4), the CMV of all the switching states can
be calculated. Table 2 demonstrates the number of switching
states corresponding to each CMV; for instance, 19 switching
states make CMV zero. The switching states that make zero
CMV are shown in Table 3, where

𝑆
𝑎
+ 𝑆
𝑏
+ 𝑆
𝑐
= 0. (5)

Figure 2 shows the 19 switching states that generate zero
CMV where the switching states are symmetric in the space
vector diagram. The switching states in the different sectors
can be transformed into region I. For example, switching
states (01-1), (-110), (-101), (0-11), and (1-10) can be converted
to (10-1) in region I using the corresponding angle.Therefore,
without considering the voltage balancing of the capacitors,
the inverter can properly operate by employing the switching
states and selecting the appropriate switching sequence.
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Table 2: CMV and switching states.

CMV The number of switching states
𝑉dc/2 1
5𝑉dc/12 3
𝑉dc/3 6
𝑉dc/4 10
𝑉dc/6 15
𝑉dc/12 18
0 19
−𝑉dc/12 18
−𝑉dc/6 15
−𝑉dc/4 10
−𝑉dc/3 6
−5𝑉dc/12 3
−𝑉dc/2 1

Table 3: Switching states with zero CMV.

CMV Switching states

0 2-1-1, 20-2, 10-1, 11-2, 02-2, 01-1, -12-1, -220, -110, -211, -202,
-101, -1-12, 0-22, 0-11, 1-21, 2-20, 1-10, 000

3. Proposed Strategy

3.1. Modulation Strategy. The CMV can not be eliminated
in the conventional carrier-based modulation presented in
[6] and this is because the different switching states generate
different CMVs. For example, when the given reference falls
into the shaded triangle in Figure 2, only one of the three
switching states, namely, (10-1), is with zero CMV; however
with the conventional modulation the CMV cannot be kept
zero.

Figure 3(a) shows the three-level space vector diagram
and Figure 3(b) is the same as Figure 2 rotated by 30 degrees.
There are 27 switching states and 7 redundant switching states
in Figure 3(a) where the redundant switching states operate
similar to synthesize reference vectors. Therefore, regard-
less of redundant switching states, the number of actually
working switching states is 19, which is the same as five-
level switching states with zero CMV. In other words, there
is corresponding relationship between three-level switching
states and five-level switching states with zero CMV as shown
in Table 4. For example, switching state (20-2) in a five-level
space vector diagram with zero CMV is corresponding to a
(200) switching state in a three-level diagram, and similarly
switching state (10-1) in a five-level diagram is corresponding
to switching states (211) or (100) in a three-level diagram.

Table 4 shows the relationship between the three-level
switching states and five-level switching states with zero
CMV. This feature results in the three-level modulation
strategy employing Table 4 being used for a five-level inverter
while achieving zero CMV.

To achieve the three-level modulation strategy, there are
space vector modulation and carrier-based modulation. Due
to the complex calculation and implementation of space
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Figure 2: Space vector diagram in a five-level inverter.

Table 4: Relationship between three-level switching states and five-
level switching states.

Three-level switching states Five-level switching states
200 20-2
211, 100 10-1
210 11-2
211, 110 01-1
220 02-2
120 -12-1
020 -220
121, 010 -110
021 -211
022 -202
122, 011 -101
012 -1-12
112, 001 0-11
002 0-22
102 1-21
202 2-20
101, 212 1-10
201 2-1-1
222, 111, 000 000

vector modulation, the carrier-based modulation is used in
this paper.

It should be noted that the zero CMV is achieved where
the capacitor voltages are balanced.The following sectionwill
present a strategy to balance the capacitor voltages in each
phase.

3.2. Capacitor Voltage Balancing Strategy. The capacitor volt-
ages 𝑉

𝐶
𝑥1

and 𝑉
𝐶
𝑥2

should be kept at 1/4 of the dc bus voltage
(𝑉dc/4) and 𝑉𝐶

𝑥3

should be maintained at 3/4 of the dc bus
voltage (3𝑉dc/4) to ensure the proper operation of the five-
level inverter. The voltage deviation of flying capacitor is
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Figure 3: Space vector diagram: (a) three levels and (b) five levels (CMV = 0).

defined as the difference between flying capacitor voltage and
the given value, which can be expressed as

Δ𝑉
𝐶
𝑥1

= 𝑉
𝐶
𝑥1

−
𝑉dc
4
,

Δ𝑉
𝐶
𝑥2

= 𝑉
𝐶
𝑥2

−
𝑉dc
4
,

Δ𝑉
𝐶
𝑥3

= 𝑉
𝐶
𝑥3

−
3𝑉dc
4
,

(6)

where 𝑉
𝐶
𝑥1

, 𝑉
𝐶
𝑥2

, and 𝑉
𝐶
𝑥3

are capacitor voltages and Δ𝑉
𝐶
𝑥1

,
Δ𝑉
𝐶
𝑥2

, and Δ𝑉
𝐶
𝑥3

are the deviation of capacitor voltages. The
capacitor voltage can be balanced by controlling the absolute
value of the deviation voltages close to zero.

The switching states (𝑎)∼(𝑘) can affect the current flowing
into the flying capacitors and can change the capacitor
voltages by either charging or discharging. Taking switching
state (𝑏) as an example, when 𝑖

𝑘
> 0, the capacitor 𝐶

𝑥1
is

charged, and when 𝑖
𝑘
< 0, the capacitor 𝐶

𝑥1
is discharged.

The capacitor voltage balancing strategy can be defined as
follows:

(i) Switching state 𝑆
𝑘
= 1 is employed to control

capacitor voltages 𝑉
𝐶
𝑥1

and 𝑉
𝐶
𝑥3

.
(ii) Switching state 𝑆

𝑘
= −1 is employed to control

capacitor voltages 𝑉
𝐶
𝑥2

and 𝑉
𝐶
𝑥3

.
(iii) Switching state 𝑆

𝑘
= 0 is employed to control

capacitor voltages 𝑉
𝐶
𝑥1

and 𝑉
𝐶
𝑥2

.

Details of the control method are shown in Tables 5, 6,
and 7.

3.3. Integration Capacitor Voltage Balancing with PWM
Schemes. The abovementioned capacitor voltage balancing

Table 5: Control table for capacitor voltage: 𝑆
𝑥
= 1.

Input conditions Output results
𝑆
𝑥
Δ𝑉
𝐶1

Δ𝑉
𝐶3

The chosen switching states

1

>0 >0 (𝑐)
>0 <0 (𝑑)
<0 >0 (𝑐)
<0 <0 (𝑏)

Table 6: Control table for capacitor voltage: 𝑆
𝑥
= −1.

Input conditions Output results
𝑆
𝑥

Δ𝑉
𝐶2

Δ𝑉
𝐶3

The chosen switching states

−1

>0 >0 (𝑗)
>0 <0 (𝑘)
<0 >0 (𝑗)
<0 <0 (𝑖)

Table 7: Control table for capacitor voltage: 𝑆
𝑥
= 0.

Input conditions Output results
𝑆
𝑥
𝑖
𝑥
Δ𝑉
𝐶1

Δ𝑉
𝐶2

The chosen switching states

0 >0

>0 >0 (ℎ)
>0 <0 (𝑒)
<0 >0 (𝑔)
<0 <0 (𝑒)

0 <0

>0 >0 (𝑒)
>0 <0 (𝑓)
<0 >0 (ℎ)
<0 <0 (ℎ)

method can be easily integrated with the proposed zero
CMV modulation strategy. The schematic diagram of the
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Figure 4: The control diagram of the novel five-level inverter.
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Figure 5: Matlab/Simulink and S-function cosimulation.

integration is shown in Figure 4. The procedure consists of
the following steps:

(1) First, the three-level switching states are generated by
a dual-carrier-based PWM scheme.

(2) According to Table 4, the five-level switching states
corresponding to three-level switching states can be
determined to keep the novel five-level inverter with
zero CMV.

(3) Finally, the capacitor voltage balancing can be
achieved by using control tables of Table 5, 6, and 7
and considering the direction of phase current 𝑖

𝑘
.

4. Simulation Interface and Results

The cosimulation between Matlab/Simulink and S-function
is realized to verify the effectiveness of the proposed method,
as shown in Figure 5. The simulation parameters are listed in
Table 8. In Simulink environment, the model of each system
component is expressed by block diagram, and the lines
among the block diagram indicate the direction of the signal
flow. From the perspective of the whole system, Simulink is
fast and convenient. However, for some complex and lengthy
program code, it is not suitable with modularity. That is the
reason why S-function is used for the simulation interface.
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Figure 6: Simulation results of different modulations.

Table 8: Simulation parameters.

Inverter parameters Values
Input dc voltage 12 kV
Capacitor 1000𝜇F
Inverter rating 3MVA
Output frequency 50Hz
Output inductance 5mH
Power factor 0.9
Modulation index 0.95
Switching frequency 700Hz

The cosimulation system is very useful to tackle the demand
of the simulation and implementation of complex multilevel
inverter systems.

Figure 6 shows the performance of the five-level inverter
with conventional and proposed modulations. The total
harmonic distortion of the line-line voltagewith conventional
modulation is 17.32% and the CMV cannot be eliminated,
varying within the range of 𝑉dc/6 and −𝑉dc/6. Whereas
the total harmonic distortion of the line-line voltage with
proposed modulation is 37.41%, however, the CMV can be
effectively eliminated. It should be noted that, like other
modulation strategy regarding the common-mode voltage
reduction, the voltage THDwill be higher. However, itmainly
consists of high frequency components. So the THD can be
reduced with the output filter, as shown in Figure 7.

To evaluate the dynamic performance of the proposed
modulation, a step change from half load to full load has been
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Figure 7: Simulation results from half to full loads.

studied at 𝑡 = 0.1 s, as shown in Figure 7. The voltage of the
flying capacitors can bemaintained at the nominal values and
theCMVcan be kept constant at zero before and after the step
change.
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In order to verify the performance of the proposed
control strategy with and without the proposed control, the
simulation test is carried out and shown in Figure 8. In this
case, the proposed controller is enabled and, at 𝑡 = 0.05 s,
the controller is disabled; then the controller is reactivated at
𝑡 = 0.1 s. As can be seen from Figure 8, when the controller
is deactivated, the capacitor voltages diverge and the CMV
gets bigger. However, when the controller is reactivated, the
capacitor voltage starts converging and the CMV approaches
zero rapidly, which verifies the effectiveness of the proposed
control strategy.

5. Conclusion

The modeling and analysis of a novel five-level inverter
for PV power plant applications has been presented in this
paper. The common-mode voltage can be eliminated by
selecting the specific switching states. Also, the balancing
of flying capacitor voltages can be achieved with a simple
control strategy. In contrast to the conventional solutions, our
proposal reduces the number of calculations which simplifies
the implementation, and thus it is very attractive for PV
power plant applications, where the EMI is a major concern.
It should be noted that this papermainly focuses on the CMV
and EMI reduction of the five-level inverter for PV power
plant. The MPPT and other issues of PV power plant are the
subject of the future research.
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