
Data-Dependent Fairing of Subdivision Surfaces

Ilja Friedel1

Caltech
Patrick Mullen2

Microsoft
Peter Schröder1

Caltech

Abstract
In this paper we present a new algorithm for solving the data depen-
dent fairing problem for subdivision surfaces, using Catmull-Clark
surfaces as an example. Earlier approaches to subdivision surface
fairing encountered problems with singularities in the parametriza-
tion of the surface. We address these issues through the use of the
characteristic map parametrization, leading to well defined mem-
brane and bending energies even at irregular vertices. Combining
this approach with ideas from data-dependent energy operators we
are able to express the associated nonlinear stiffness matrices for
Catmull-Clark surfaces as linear combinations of precomputed en-
ergy matrices. This machinery also provides exact, inexpensive
gradients and Hessians of the new energy operators. With these
the nonlinear minimization problem can be solved in a stable and
efficient way using Steihaug’s Newton/CG trust-region method. We
compare properties of linear and nonlinear methods through a num-
ber of examples and report on the performance of the algorithm.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—Curve, surface, solid, and ob-
ject representations. G.1.6 [Numerical Analysis]: Optimization—
Unconstrained optimization

Keywords: Geometric Modeling, CAD, Fairing, Bicubic B-
Splines, Subdivision Surfaces, Catmull-Clark, Thinplate Energy,
Nonlinear Minimization

1 Introduction
The construction of fair surfaces is important in many areas of geo-
metric modeling and has a long tradition in areas such as ship-hull,
airplane and automotive design. The goals of fairing typically fall
into one of three categories: denoising or removal of spurious fine
scale features; ab initio definition of a shape; and physical sim-
ulation of shells, i.e., materials from which a given shape is to be
manufactured. Typically fairing is achieved by defining a functional
of the surface and then seeking a minimum of this functional sub-
ject to appropriate constraints. In some cases the functional arises
naturally from material properties. More difficult is the definition
of functionals which are meant to capture æsthetic notions of fair-
ness. In practice the fairness functional is most often expressed in
terms of integrals of surface properties. Examples include deriva-
tive and curvature information, though higher order invariants have
also been used. In the present paper we will restrict ourselves to

1. {ilja,ps}@cs.caltech.edu
2. patmul@microsoft.com

The research of the second author was performed during his studies at
Caltech.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SM’03, June 1620, 2003, Seattle, Washington, USA.
Copyright 2003 ACM 1-58113-706-0/03/0006...$5.00.

membrane and bending energies of the surface as these are central
to the most often employed approaches.

Previous fairing methods can be classified by surface primitive
(e.g., spline patches, piecewise linear meshes, etc.), fairness func-
tional (e.g., membrane, bending, variation of curvature, etc.), and
numerical approach, i.e., the use of possibly simplified energies and
the particular minimization scheme employed.

A popular approach [6, 10, 11] for the fairing of spline sur-
faces is based on computing the fairness integral using numerical
quadrature. Splines such as bicubic patches are very smooth (C2;
in fact C∞ in the interior of each integration domain) and the cur-
vatures are well behaved. Hence high order integration rules such
as Gauss [6, 10] and Lobatto [11] are well suited to compute good
approximations of the integrals.

The resulting energy minimization problem is solved in differ-
ent manners. Moreton and Sequin [11] compute a “good” ini-
tial approximation and improve it with an energy gradient descent
scheme. The gradients of the fairing functional are computed using
finite differences. This is both expensive and can lead to numer-
ical difficulties. To avoid these difficulties we compute gradients
and Hessians of our energies directly. Lott and Pullin [10] used a
more sophisticated simplex method for the minimization of their
functional. Greiner and co-workers [6] linearized their functional
and numerically integrated the associated “stiffness” matrix entries.
The solution of the resulting linear system of equations minimizes
the linearized energy. This process can be iterated by solving a
sequence of such linearized problems. However, such a sequence
does not in general approach a global or even local minimum.

Most of the earlier work using parametrized smooth surfaces em-
ployed spline patches as the modeling primitive of choice. Subdi-
vision surfaces are closely related in that they generalize B-splines
to arbitrary topology control meshes. For example, the scheme of
Catmull and Clark [2] generalizes bicubic splines. There are many
other subdivision schemes (for a tutorial see [25]), but Catmull-
Clark surfaces remain the most often employed in applications
ranging from industrial design to computer games and animation
(see for example the movies of Pixar). They are also available in the
MPEG4 standard and are increasingly deployed in free-form sur-
face design packages. Examples include Maya (Alias|wavefront),
3D Studio Max (Discreet), Softimage (Avid), and Catia (Dassault).

A possible approach to the fairing of subdivision surfaces could
be devised by applying methods originally designed for mesh
smoothing [9, 17, 19, 21] to the control polyhedron. However, min-
imizing some discrete energy of the control mesh does not neces-
sarily lead to a minimization of the energy of the associated smooth
surface. Achieving the latter requires computation of energies of
the actual surface. Note that the degrees of freedom continue to be
the control points, just as in the usual spline setting.

A special difficulty in the treatment of subdivision surfaces arises
at irregular vertices. In the case of Catmull-Clark surfaces these are
vertices of the control mesh where other than four patches meet.
While the surface is globally C2 it is only C1 continuous at irregu-
lar vertices. This immediately raises the question if the correspond-
ing squared curvature integrals exist at all. Reif and Schröder [16]
showed that they do exist for a wide class of subdivision schemes
including the scheme of Catmull and Clark. Nevertheless the nu-
merical computation of these integrals is difficult since the curva-
tures generally diverge at the irregular vertices. Bakhvalov’s theo-
rem [1] connects the smoothness of integrands (here at most C0)

with the dimension of the integration problem (here d = 2) to es-
timate the best convergence rate for the worst case (C0) integrand.
The theorem states that the convergence rate of the integration er-
ror εn scales as O(n−1/2), where n is the number of integrand
samples. This result might be too pessimistic, but it reflects our ex-
perience that curvature integrals converge very slowly for patches
incident to irregular vertices. This difficulty makes energy gradient
computations, via recourse to finite differences, very inexact. We
circumvent this difficulty by using exact expressions for the gradi-
ent and Hessian of the underlying energies. This observation might
explain why not much literature is available on the fairing of sub-
division surfaces [7, 12] and why the approaches taken differ from
many standard spline methods.

Our treatment will use ideas first presented by Halstead and co-
workers [7], who precomputed linearized energies. They used a
standard spline parametrization which unfortunately leads to diver-
gent bending energies. We remedy this problem through the use
of the characteristic map [14, 24] parametrization. Exploiting the
scaling relation of the subdivision operator eigen functions, all in-
tegrals can be computed with the same high accuracy as those aris-
ing in standard bicubic spline settings. This approach is still linear
and does not depend on the input data. For data-dependent fair-
ing functionals we follow the ideas of Greiner and co-workers [6].
To increase the efficiency of the resulting nonlinear minimization
problems we decompose the energies into linear combinations of
precomputed stiffness matrices. The weights of these linear combi-
nations can be computed as straightforward functions of the current
state of the control mesh. Since we have access to exact gradients
and Hessians of our energies as well, we can employ very robust
nonlinear minimization algorithms such as Steihaug’s Newton/CG
trust-region method [13].

Overview In the following sections we begin by fixing our no-
tation and giving some of the basic identities (Section 2) before
employing them to derive well defined stiffness matrices in Sec-
tion 3. The resulting “simple” energies are independent of the input
data, a serious limitation in applications. Data-dependent stiffness
matrices are discussed next (Section 4) and we show how these can
be decomposed into linear combinations of precomputed stiffness
matrices. As a final step in the construction of all necessary com-
ponents for the energy minimizer we derive exact derivatives of the
data-dependent energies (Section 5) obviating the need for costly
and inaccurate finite difference computations. Algorithms for en-
ergy minimization are discussed in Section 6 and fairing results
presented in Section 7 before we conclude.

2 Surface Properties
In this section we establish the basic identities we need for the de-
scription of membrane and bending energies, show how stiffness
matrices arise for surface given as linear combinations of basis
functions, and state some useful facts about subdivision surfaces.

A subdivision surface is parametrized over its control mesh,
a polyhedral manifold of two-dimensional, not necessarily pla-
nar faces embedded in R

3. Each face can be parametrized over
Ω ⊂ R

2. For simplicity we assume closed surfaces only, though the
machinery we develop is not limited to these (some of our exam-
ples show surfaces with boundaries). To accommodate input poly-
hedra of arbitrary face and vertex valencies we assume two initial
subdivision steps so that the surface can be treated as the union of
patches parametrized over quadrilateral faces with at most one ir-
regular vertex incident on each face. We denote the valence of a
patch to be the valence of the irregular vertex or four otherwise.
With this we may assume a local parametrization of a surface patch
S : Ω = [0, 1]2 → R

3

S(ū) = S(u1, u2) = (S1(u1, u2), S2(u1, u2), S3(u1, u2))
T .

In most of what follows S will refer to a single Catmull-Clark sub-
division surface patch of valence k. The symbol R is also used to
denote a surface. In general it refers to a simpler surface near S.

The first fundamental form of the surface R(ū) is the 2×2 matrix
IR(ū) =

(
gij(ū)

)
with

gij(u1, u2) = 〈∂iR(u1, u2), ∂jR(u1, u2)〉,
and inverse I−1

R = (gij). The second fundamental form is defined
as a 2 × 2 matrix IIR = (hij) with entries

hij = 〈∂i∂jR, νR〉,
where νR = ∂1R×∂2R

‖∂1R×∂2R‖ is the normal to the surface R(u1, u2).
Finally the Christoffel symbols of the surface R at parameter value
ū are defined as Γk

ij = gkl〈∂i∂jR, ∂lR〉. Here and in some of
the following expressions matching upper and lower indices which
are not otherwise bound follow the Einstein summation convention.
We often express the Christoffel symbols as two 2 × 2 matrices
Γ1 = (Γ1

ij) and Γ2 = (Γ2
ij).

The gradient of a scalar function f(ū) : Ω → R, which we take
to be defined on the reference surface R(ū), is computed as

∇R(f) = gjk∂kf ∂jR,

in matrix notation ∇R(f) = (∂1f, ∂2f) · I−1
R · (∂1R, ∂2R)T (we

consider gradients to be row-vectors).
The Hessian of f with respect to the reference surface R is given

as

HR(f) =

(
g1l(∂1∂lf − ∂ifΓi

1l) g1l(∂2∂lf − ∂ifΓi
2l)

g2l(∂1∂lf − ∂ifΓi
1l) g2l(∂2∂lh− ∂ihΓi

2l)

)

and in matrix notation HR(f) = I−1
R · (

H(f) − (
(∂1f)Γ1 +

(∂2f)Γ2)
)
.

All matrices in the last equation are symmetric. However the
product of two symmetric matrices needs not be symmetric. While
HS(Si) is symmetric1, HR(f) is in general not symmetric for an
arbitrary reference surface R and function f .2

The derivatives of a parametrized surface are in general not very
good indicators for the behavior of the surface. The main reason
is the dependence of the derivatives on the chosen parametrization.
Better suited are quantities that are independent of the parametriza-
tion, such as the principal curvatures κ1, κ2, the mean curvature
1
2
(κ1 + κ2) or the Gaussian curvature κ1 κ2. The principal curva-

tures of S(ū) are the eigen values of the matrix I−1
S · IIS

Our main interest is focused on the functional
∫
Ω
κ2

1 + κ2
2 dω.

The integrand can be expressed as [6]

3∑
i=1

tr
(
HS(Si) · HS(Si)

T)
= κ2

1 + κ2
2. (1)

The data-dependent membrane or stretching energy of a surface
S with respect to the reference surface R is defined as

Em
R (S) =

3∑
i=1

∫
Ω

∇R(Si) · ∇R(Si)
T dωR. (2)

The data-dependent bending energy3 of a patch S with respect to R
is defined as

Eb
R(S) =

3∑
i=1

∫
Ω

tr(HR(Si) · HR(Si)
T) dωR. (3)

1The Weingarten map I−1
S · IIS is self-adjoint [20, p.58].

2Example: R(u1, u2) = (u1, 2u2, 0) and f(u1, u2) = u1 u2.
3Our definition is slightly changed from [6] due to the possible asym-

metry of HR(f). This change is necessary to guarantee the positive semi-
definiteness of JS [6, Theorem 1(b)].

Note that both Em
R (S) and Eb

R(S) are invariant under Euclidian
motions since they only involve derivative quantities.

For R(ū) = S(ū), ū ∈ Ω Equation (1) implies

Eb
S(S) =

∫
Ω

κ2
1 + κ2

2 dωS,

hence the energy functional Eb
S(S) is independent of the

parametrization. Greiner and co-workers [6] argued that Eb
R(S) ≈

Eb
S(S) if the fundamental forms of S and R are approximately

equal for ū ∈ Ω. This observation is a major motivation for the
work presented here.

2.1 The Stiffness Matrix K

So far we have only considered surfaces S and their energies with
respect to some reference surface R generically. We now consider
the case of surfaces which may be regarded as linear combinations
of basis functions. In that case the energy integrals can be written
as a bilinear function of the control points. The stiffness matrix col-
lects the associated integrals of basis functions over a given patch.

From now on we assume that the surface S is a linear combina-
tion of finitely many basis functions

S(u1, u2) =
M∑

i=1

Pi Ni(u1, u2)

where the Pi ∈ R
3 are the control points. Combining this repre-

sentation of S with Equations (2) resp. (3) we note that tr, ∇ and
H are linear with respect to the control points Pi. Consequently

ER(S) = P T ·K · P =

M∑
i,j=1

Kij · P T
i · Pj

where K is an M ×M matrix with entries defined as

Km
ij =

∫
Ω

∇R(Ni) · ∇R(Nj)
T dωR,

Kb
ij =

∫
Ω

tr(HR(Ni) · HR(Nj)
T) dωR,

respectively.
The concept of stiffness matrices partially separates the process

of computing the energies of a given surface from the computation
of the integrals in Equations (2) and (3). We will also see later that
stiffness matrices carry important information regarding the deriva-
tives of the data-dependent energies.

2.2 Catmull-Clark Subdivision Surfaces
In this paper we deal exclusively with Catmull-Clark subdivision
surfaces. Nevertheless the ideas expressed here carry over to other
subdivision surfaces as long as the derivative integrals over regular
regions exist. This is, for example, the case for Doo-Sabin subdivi-
sion surfaces [4], which in general are only C1. Stam [18] showed
that one can represent a Catmull-Clark subdivision patch with a
single irregular vertex of valence k (Figure 1) as an expansion in
M = 2k + 8 functions

S(u1, u2) =
M∑

i=1

Ci φi(u1, u2). (4)

The φi : R
2 → R are the eigen basis functions of the local subdi-

vision matrix and the Ci the control points Pi projected into the
corresponding eigen space. For the case k = 4, i.e., a regular
bicubic patch, the eigen functions are simply the monomials ui

1u
j
2,

9 8

3

4 1

10 2

7 6

5

12

11

1413 17

18

16

15

Figure 1: Topological neighborhood of an irregular patch of va-
lence 5 indicating all the degrees of freedom for this patch.

i, j = 0, . . . , 3. For general k Stam showed how to evaluate φi

and its derivatives exactly at arbitrary parameter values (excepting
the origin where certain derivatives do not exist). We will need
his evaluation technique later for the numerical computation of all
integrals.

Stam’s technique is based on a remarkable property of the eigen
basis functions called the scaling relation

φi

(1

2
x
)

= λi φi(x),

which we will also exploit. The λi ∈ R are the eigen values of the
local subdivision operator. We assume sorted eigen values λi ≥
λi+1. Catmull-Clark as well as most other subdivision schemes of
practical interest have a non-degenerate set of eigen vectors with
real eigen values λ1 = 1 and 1 > λ := λ2 = λ3 > λ4 =: µ for all
valences [25].

3 Simple Energies
So far we have not yet specified the reference surface R. To avoid
diverging membrane and bending energy integrals the reference
surface must be chosen carefully. The canonical choice is given
by the characteristic map Ch : R

2 → R
2 of a subdivision surface

near an irregular vertex. In the smoothness analysis of subdivision
surfaces near irregular vertices this map arises naturally as the one
in which the parametrization of the subdivision surface is C1 at the
irregular vertex. The characteristic map is defined as

Ch(u1, u2) :=

[
φ2(u1, u2)
φ3(u1, u2)

]
,

where the φi are the eigen functions in Equation (4), correspond-
ing to the sub-dominant eigen value λ. For smooth subdivision
schemes Ch is known to be regular and injective [15, 23]. Note
that Ch does not depend on the input data, only on the subdivision
scheme and the valencies.

A Catmull-Clark subdivision surface is only C1 at irregular ver-
tices. In most cases the second derivatives of the eigen functions φi

do not exist at ū = (0, 0). To simplify the evaluation of integrals
over [0, 1]2 and to make the integrands more numerically well be-
haved we rewrite it as follows. Let L := [0, 1]2 \ [0, 1

2
)2 ⊂ R

2

then

[0, 1]2 =
∞⋃

i=0

2−i L.

Letting the image of L under the characteristic map be LCh :=
Ch(L) we also have

Ch([0, 1]2) =
∞⋃

i=0

λi LCh .

Before employing this decomposition of the integration domain we
note that the partial derivatives of the eigen functions with respect

to the characteristic map φCh
i := φi ◦ Ch−1 satisfy the following

scaling relationship

∂kφ
Ch
i (λmv̄) = ∂k(φi ◦ Ch−1)(λmv̄)

= (λi/λ)m ∂k(φi ◦ Ch−1)(v̄)

∂k∂lφ
Ch
i (λmv̄) = ∂k∂l(φi ◦ Ch−1)(λmv̄)

= (λi/λ
2)m ∂k∂l(φi ◦ Ch−1)(v̄).

3.1 Simple Stiffness Matrices
In this section we show how the scaling relation observed by ∂kφ

Ch
i

and ∂k∂lφ
Ch
i can be used to reduce the evaluation of the stiffness

matrix entries to an integral over a single instance of LCh . Since the
integrals are still independent of the input control points we denote
the resulting stiffness matrices “simple.”

For example, to compute the membrane stiffness matrix Km
Ch

one has to compute integrals of the form

Km
ij =

∫
Ch([0,1]2)

∂1φ
Ch
i (v̄)∂1φ

Ch
j (v̄) + ∂2φ

Ch
i (v̄)∂2φ

Ch
j (v̄) dv̄.

Since φCh
1 (v̄) = const , Kij = 0, i = 1 or j = 1. For i, j > 1

∫
Ch([0,1]2)

∂kφ
Ch
i (v̄) ∂lφ

Ch
j (v̄) dv̄

=

∞∑
m=0

∫
λm LCh

∂kφ
Ch
i (v̄)∂lφ

Ch
j (v̄) dv̄

=

∞∑
m=0

∫
LCh

(λi/λ)m ∂kφ
Ch
i (v̄) (λj/λ)m ∂lφ

Ch
j (v̄)λmλm dv̄

= (1 − λiλj)
−1

∫
LCh

∂kφ
Ch
i (v̄)∂lφ

Ch
j (v̄) dv̄

With the same transformation one can show that the bending inte-
grals for i, j > 3 simplify to sums of integrals of the form∫

Ch([0,1]2)

∂k∂lφ
Ch
i (v̄) ∂m∂nφ

Ch
j (v̄) dv̄ =

(
1 − λiλj

λ2

)−1
∫

LCh

∂k∂lφ
Ch
i (v̄) ∂m∂nφ

Ch
j (v̄) dv̄. (5)

Since φCh
2 (v̄) and φCh

3 (v̄) are linear their second partial derivatives
vanish with the result that the associated stiffness matrix entries for
i ≤ 3 or j ≤ 3 vanish.

We have now managed to reduce the computation of the mem-
brane and bending energy of a subdivision surface to the compu-
tation of integrals of derivatives of eigen functions over LCh . In
a final step we will transform these integrals into integrals over L.
The detailed steps to do so are exceedingly tedious and in the fol-
lowing Section we will only demonstrate the transformation for the
case of membrane energies. The case of bending energies follows in
the same footsteps, but results in rather long expressions. A demon-
stration of the steps can be found in Appendix A while complete,
Maple derived source code is available from the authors4.

3.2 Transformation of Membrane Integrals
The general form of the integrals we need to evaluate is given by∫

LCh

D
(
φCh

i

)
(v̄) ·D(

φCh
j

)
(v̄)T dv̄

where D denotes a matrix of partial derivative operators. Since
φCh

i (v̄) = φi ◦Ch−1(v̄), φCh
i : LCh → R we appear to be required

4http://www.multires.caltech.edu/pubs/

to compute the inverse of the characteristic map, a highly non-trivial
task. However this can be avoided for both membrane and bending
integrals.

Since D(φCh
i)(v̄) = D(φi)(Ch−1(v̄)) ·D(Ch−1)(v̄) we get

∫
LCh

D
(
φi

)(
Ch−1(v̄)

) ·D(Ch−1)(v̄)·
(
D

(
φj

)(
Ch−1(v̄)

) ·D(Ch−1)(v̄)
)T

dv̄.

(6)

Performing the change of variables v̄ = Ch(ū) this in turn becomes
∫

L

D
(
φi

)(
Ch−1

(
Ch(ū)

)) ·D(Ch−1)
(
Ch(ū)

)·
(
D

(
φj

)(
Ch−1

(
Ch(ū)

)) ·D(Ch−1)
(
Ch(ū)

))T

|JCh(ū)| dū.

Finally, using the identity D(Ch−1)
(
Ch(ū)

)
=

(
D(Ch)(ū)

)−1
we

arrive at a formula that does not involve Ch−1

∫
L

D(φi)(ū) · (D(Ch)(ū)
)−1·

(
D(φj)(ū) · (D(Ch)(ū)

)−1
)T

|det(D
(
Ch)(ū)

)| dū.
While the operator notation hides the large number of terms in-
volved, we note that the details of all the terms can be managed with
a symbolic algebra system such as Maple. Automatically generated
code can then be linked against numerical quadrature functions to
compute all stiffness matrix entries once and for all in an offline
process. We employed this process for our implementation.

4 Data-Dependent Energies
So far we have expressed energies with only the canonical refer-
ence surface induced by the characteristic map of a given valence.
We now turn to data-dependent energies that take the input control
points into account.

To illustrate that such data-dependence is required, consider the
bending energy of a sphere S(r) with radius r

∫
S

κ2
1 + κ2

2 dωS =

∫
S

r−2 + r−2 dωS = 2r−2 4πr2 = 8π.

The simple energy Eb
Ch(S(r)) computed with the data independent

characteristic map parametrization of the previous section is pro-
portional to r2. This undesirable behavior was already observed by
Wesselink [22] and is clearly wrong. For global uniform scaling
it can be taken into account by a scalar factor. But if the scaling
is non-uniform in different coordinate directions or patches vary
significantly in size, the estimate Eb

Ch(S) can be made locally arbi-
trarily bad compared to Eb

S(S).
This observation motivates the scaling of the reference surface

patch according to the dimensions of the original surface patch.
This makes the energy ER(S) less dependent on the parametriza-
tion of S as already observed by Greiner et al. [6].

Let SCh(ū) be a linearly transformed version of the character-
istic map Ch(ū). Since the energies are invariant under Euclidian
motions we may assume that SCh(ū) is at the origin and parallel
to the x/y-plane, leaving only 3 parameters to describe it

SCh(ū) = W · Ch(ū) =

[
sx sxy

0 sy

]
·
[

φ2(ū)
φ3(ū)

]
,

with sx, sxy, sy ∈ R. In this form we can see that sx, sy are scaling
factors of the characteristic map while sxy is a shearing term.

4.1 Influence of the Map W

To simplify later expressions we note that ∂iSCh(ū) = W ·
∂iCh(ū) and define V := WT · W =:

[E F

F G

]
with V −1 =

1
EG−F2

[G −F

−F E

]
. This gives us

JSCh = |det(W)|JCh = |det(V)|1/2 JCh ,

ISCh = D(Ch)(ū)T ·W T ·W ·D(Ch)(ū).

From the latter equation we see that the inverse of ISCh is given by

I−1
SCh =

(
D(Ch)(ū)

)−1 · (W T ·W)−1 · (D(Ch)(ū)
)−T

.

It is somewhat tedious, but straightforward, to check that Γi
SCh =

Γi
Ch . Hence we have

HSCh(f) = I−1
SCh · (H(f) − (∂1fΓ1 + ∂2fΓ2)

)
= I−1

SCh ·Q(f,Ch),

where Q(f,Ch) is some symmetric matrix depending on f(ū) and
Ch(ū), but not on W .

4.2 Precomputing the Membrane Energy Integrals
Let ū ∈ [0, 1]2 and v̄ ∈ SCh([0, 1]2). The first order data depen-
dent membrane energy stiffness matrix integral

Km
ij =

∫
SCh([0,1]2)

D
(
φSCh

i

)
(v̄) ·D(

φSCh
j

)
(v̄)T dv̄

can be transformed to∫
[0,1]2

D(φi)(ū) · (D(Ch)(ū)
)−1 ·W−1·

(
D(φj)(ū) · (D(Ch)(ū)

)−1 ·W−1
)T

|det(W)| |JCh(ū)| dū

= |det(W)|
∫

[0,1]2
D(φi)(ū) · (D(Ch)(ū)

)−1 ·W−1 ·W−T ·
(
D(Ch)(ū)

)−T ·D(φj)(ū)T |JCh(ū)| dū
= |det(V)|1/2

∫
[0,1]2

D(φi)(ū) · (D(Ch)(ū)
)−1 · V −1·

(
D(Ch)(ū)

)−T ·D(φj)(ū)T |JCh(ū)| dū

=
|det(V)|1/2

det(V)

∫
[0,1]2

D(φi)(ū) · (D(Ch)(ū)
)−1 · [G −F

−F E

]

·(D(Ch)(ū)
)−T ·D(φj)(ū)T |JCh(ū)| dū

= |(EG− F 2)|−1/2 ·
(
E

∫
[0,1]2

fE
ij (ū) dū+

F

∫
[0,1]2

fF
ij (ū) dū+

G

∫
[0,1]2

fG
ij (ū) dū

)

= (EG− F 2)−1/2 · (EKE + F KF + GKG
)

ij
,

where the functions fE
ij (ū), fF

ij (ū) and fG
ij (ū) do not depend on

the choice of the parameters E, F , G (or equivalently on the choice
of sx, sxy and sy). This implies that Km

SCh can be evaluated by
precomputing three matrices KE , KF and KG and scaling them
later as needed.

Comparing the first of the equations with Equation (6) it is not
hard to see that the integrals above can be computed exactly the
same way as in the data independent case as sums of integrals over
L−regions.

Figure 2: Selecting sampling locations for E, F and G with respect
to axial symmetries of the irregular (left) and the regular patch
(right).

4.3 Bending Energy
We show in Appendix (B) that it is possible to decompose the first
order data-dependent bending energy as

Eb
dd(P) = P T ·

(
cEE(P)KEE + cEF (P)KEF +

cEG(P)KEG + cF F (P)KF F +

cF G(P)KF G + cGG(P)KGG
)
· P,

where cEE = EE (EG− F 2)−3/2, cEF = EF (EG− F 2)−3/2

and so on.

4.4 Choosing the Parameters E, F and G

We have already found an interpretation for sx, sxy and sy as scal-
ing and shearing terms of the characteristic map. To compute E,
F and G one could estimate these parameters from the subdivision
patch S using geometric properties.

There is another approach to obtain, hopefully good, values for
E, F and G. It is based on the observation, that one can fix a param-
eter value ūs ∈ [0, 1]2 and use the map W to translate and rotate
the reference patch SCh(ūs) into the tangential plane of the subdi-
vision patch S(ūs). The map W can furthermore be used to match
the first partial derivatives ∂iS(ūs) = ∂iSCh(ūs), and hence the
first fundamental forms IS(ūs) = ISCh(ūs) of both patches at this
particular point.

When choosing ūs we notice that partial derivatives ∂iS and the
first fundamental form IS are continuous on [0, 1]2. Hence any
point ūs ∈ [0, 1]2 is a candidate for estimating E, F and G.

The image of the characteristic map Ch(ū) has one axis of sym-
metry (compare with Figure 2). It is natural to restrict the choice
of ūs such that its image is on this axis. Hence ūs = (t, t) with
t ∈ [0, 1].

In the regular case the choice of ūs should be symmetric with
respect to all four corner vertices. The center ūs = (0.5, 0.5) of
the regular patch is the only location to fulfill this requirement. Ir-
regular patches do not have such a unique point and it is not clear
which additional requirement would lead to an optimal choice of t.

Recalling Equation (4) we find

(∂iS)(0, 0) = C2(∂iφ2)(0, 0) + C3(∂iφ3)(0, 0).

This is a convenient and easily evaluated formula and favors the
point ū = (0, 0) for irregular patches.

Remarks All matrices are precomputed in an offline process.
The scaling factors are easily evaluated online. Hence the evalu-
ation of the energies is dominated by memory fetch operations ac-
cessing the matrices. The run-times for an efficient implementation
will be at most 3× resp. 6× the time for evaluating the simple data
independent energies.

For the simple operators of Section 3 we can assume E = 1,
F = 0 and G = 1. As a numerical test of our implementation we
verified, that

Km
Ch = KE + KG and

Kb
Ch = KEE + KEG + KGG.

The approximation quality of the new operators was analyzed
in [5]. Numerical experiments showed the first order data de-
pendent membrane energy Em

dd(Sn(P)) to approach the exact
data-dependent membrane energy under repeated refinement Sn.
On the other hand we cannot expect Eb

dd(Sn(P)) to converge
to the exact bending energy. The second fundamental form
never enters the computation of the first order data-dependent
bending energy. Another consequence of refinement is the
replacement, piece by piece, of the carefully crafted characteristic
map parametrization with the standard spline parametrization:

This in effect recreates the problems encountered by Halstead
and co-workers [7]. As a result Eb

dd(Sn) tends to grow in each
subdivision step. This indicates that the first order data-dependent
bending energy is best used on coarse meshes.

5 Derivatives of Energies
At this point we have all the machinery to compute data indepen-
dent as well as data-dependent energies. To change surfaces to-
wards a minimum of these energies we need to evaluate the gradi-
ents of the energy with respect to the control points. For the data-
dependent energies we furthermore need to compute Hessians of
the energies with respect to the control points to invoke a robust
nonlinear minimizer. Computing these derivatives is the subject of
this section.

We want to regard the control points P of the subdivision patch
as variables

E(X̄) = X̄T ·K̄ ·X̄ =


 Px

Py

Pz




T

·

 K 0 0

0 K 0
0 0 K


 ·


 Px

Py

Pz


 .

The matrix K̄ has dimension 3M×3M , where M is the number of
basis functions needed to represent the patch. When the matrix K̄
does not depend on the control points, as is the case for the simple
energies ECh(X̄), the gradient follows as

∇(ECh(X̄)) = 2 X̄T · K̄Ch

and the Hessian as

H(ECh(X̄)) = 2 K̄Ch .

In the data-dependent setting the stiffness matrices K̄(X̄) de-
pend on the data X̄ . Fortunately the data-dependence is in the
scalar factors, e.g., in the bending case K̄(X̄) = cEE(X̄)K̄EE +
cEF (X̄)K̄EF +

For simplicity we will focus on the term cEF (X̄)X̄T K̄EF X̄ .
The gradient of this expression is computed as

∇(EEF
dd (X̄)) = ∇(cEF (X̄)) · X̄T · K̄EF · X̄ +

2 cEF (X̄) X̄T · K̄EF

For the Hessian of the data-dependent energy we get

H(EEF
dd (X̄)) = H(cEF (X̄)) · X̄T · K̄EF · X̄ +

2∇(cEF (X̄)) · X̄T · K̄EF +

2 K̄EF · X̄ · ∇(cEF (X̄)) +

2 cEF (X̄) K̄EF

All that remains to do is to evaluate ∇(cEF (X̄)), H(cEF (X̄)) and
so on. This can be done by hand using the chain rule or by auto-
matic differentiation [13]. We decided to go the first route. Exper-
iments show that the evaluation of the gradient ∇(Edd(X̄)) with

its 3M entries is on average only 1.5 times as expensive as a single
function evaluation Edd(X̄). The evaluation of the complete Hes-
sian with 3M × 3M entries is only 10 − 15 times as expensive as
a single function evaluation.

Moreton and Sequin [11] used finite differences to compute the
gradient of the exact functional. Finite differences are very ex-
pensive requiring O(M) function evaluations for the gradient and
O(M2) for the Hessian. At the same time they achieve less accu-
racy. Using double precision a finite difference gradient typically
only achieves 7 − 8 digits (out of 16), while the Hessian computa-
tion deterioates to 3 − 5 good digits.

In the next section we show that fast and accurate derivatives
make nonlinear minimization very fast and effective. Compared to
the linear system solver needed for the simple energies the full non-
linear minimization has a runtime which is worse by only a small
factor.

6 Algorithms
Membrane energies model surfaces under tension. To produce
“fair” surfaces this often is not what is desired. Imagine stretch-
ing a thin rubber sheet between a few tent poles (interpolation con-
straints). More natural is the use of bending energies, which we
will focus on.

Energy functionals can have multiple, well seperated local min-
ima (for the one-dimensional case see [8]). We regard any local
minimum of the energy a solution to the fairing problem. This
is mostly for practical reasons: the global minimum (in case it is
unique) is hard to find. Even if found it could be far away from the
input configuration. This might be undesirable for modeling, where
a local minimum that is as close as possible to the initial configura-
tion is more meaningful.

A neccessary condition for a local minimum X is ∇(E)(X) =
0. This is not sufficient, since saddle points also satisfy this condi-
tion.

6.1 Minimizing the Simple Energy

The simple energy operator is a quadratic form XT · K · X with
constant positive semi-definite matrix K. Consequently one can
find a solution of the minimization problem by solving the linear
equation system K ·X = 0. Without any further constraints X = 0
is a solution as are all configurations in the (often non-trivial) kernel
of K [6, 7].

6.2 Minimizing the Data-Dependent Energy
A suggestion for obtaining a solution for the data-dependent prob-
lem was given by Greiner et al. [6]. They linearized the data-
dependent functional by fixing Kdd(X) for given input data X.
This leads to a linear equation system whose solution often reduces
the data-dependent energy. But this solution rarely represents a lo-
cal minimum of the data-dependent energy. Sometimes (especially
if iterated) the data-dependent energy of the solution can become
larger than the data-dependent energy of the input data.

We experimented with a number of nonlinear solvers to attack
the data dependent energies. For example, we implemented a New-
ton solver which uses exact gradient and Hessian information, but
is otherwise very similar to the approach suggested by Greiner and
co-workers. The Newton method converged very fast to a local
minimum when given an input vector X close to the solution. But it
failed in many general settings. This observation is consistent with
the observation that Newton iteration is not globally convergent—
mostly because it lacks control over the length of the step taken
during an iteration.

Trust region methods minimize functions iteratively. At each
iteration k the input function f(x) is modeled around xk by the

Figure 3: The images illustrate the effect of unconstrained minimization of the first order data-dependent bending energy using the nonlinear
minimizer. The top row shows the fairing of a distorted cube (78 degrees of freedom, 0.23s computation time) and of a distorted TetraThing
(636 dofs, 8.6s). The bottom left shows a bent plate flattened out (48 dofs, 0.12s). Finally, a TetraThing with three open boundaries, unfolds
under the influence of the bending forces (696 dofs, 12.6s). Note that even grossly distorted initial configurations move towards symmetry for
the cube and TetraThing. The control meshes are shown as pink lines. The limit surfaces are colored using reflection lines (grey) overlayed
on curvature plots. The colors where chosen in RGB space. Red and blue denote positive/negative Gaussian curvature while green indicates
non-zero mean curvature.

Figure 4: Unconstrained fairing of a complex subdivision surface (6975 dofs). Solution until convergence took 152 iterations (20m5s) using
the nonlinear minimizer. We show the original model, intermediate meshes at 20 and 100 iterations and the final mesh. Even though the
model is topologically equivalent to a disk, the gradient ∇(Eb

dd) disappears for the right-most mesh.

first terms of the Taylor-series expansion.

m(xk + ∆x) = f(xk) + ∇(f(xk)) · ∆x +
1

2
∆xT H(f(xk))∆x

Since f(xk + ∆x) = m(xk + ∆x) + O(‖∆x‖3) this model is
very accurate in a small neighborhood of xk. The size of the neigh-
borhood for which m(xk + ∆x) is indeed a good model is esti-
mated by the trust-region radius ∆k. Any trust-region algorithm
will adaptively keep track of this variable and minimize m(xk) to

obtain xk+1 = xk + ∆x subject to ‖∆x‖ ≤ ∆k.

Many trust-region methods are known and all converge to local
minima for arbitrary start vectors x0. In our situation the problem
size is fairly large. Gradients and Hessians are known exactly and
are inexpensive to compute. Furthermore the Hessian is sparse but
only guaranteed to be positive semi-definite in a neighborhood of
the minimizer. For these reasons the Steihaug Newton/CG variant
([13, pp. 75ff and 156f]) was implemented.

Since we use the exact Hessian of the energy we can expect

Figure 5: In this example three pipes meet at a common joint. The
two rings of control points near the boundary are fixed to effect in-
terpolation and tangency constraints at the boundary of each pipe.
The original is in the top left. The top right shows the surface re-
sulting from minimizing Eb

simple. Note the sharp transition in the
tangents and the flattening out in the elbow region. This effect is
still present but much less pronounced for Eb

dd solved linearly (bot-
tom left). The best result is achieved with Eb

dd minimized with the
non-linear solver.

super-linear convergence close to the minimum (similar to Newton
iteration).

The implementation of the Steihaug Newton/CG method is very
similar to a standard linear conjugate gradient solver. It takes about
200 lines of code to write. An important difference to the linear
solver from a practical point of view is the need to recompute gra-
dient and Hessian at each iteration. Recomputing the Hessian domi-
nates the run-time in practice, even though we can construct it fairly
cheaply.

The Steihaug Newton/CG method is exceedingly robust. Fig-
ure 3 shows a number of examples with very perturbed initial
meshes converging to the expected shapes observing the symme-
tries in the mesh structure itself. Each of these examples has no
constraints placed on the configuration. Figure 4 shows another ex-
ample of unconstrained minimization.

6.3 Minimizing with Constraints
Finding unconstrained minimal energy surfaces is entertaining but
of limited practical use. We need to give the designer of a sur-
face the option to specify constraints. Typical constraints include
constraining control or limit points to a given position, defining
boundaries or creases, specifying tangent planes or restricting the
movement of points within planes or lines. All these constraint
types can be expressed as linear combinations of control points. In
practice there is no difference on how these constraints are enforced
within the linear and nonlinear solvers. We do this by defining the
appropriate linear map C : R

3M → R
n with n ≤ 3M mapping

control points to degrees of freedom Y = C ·X. The energy com-
putation changes to E(Y) = Y T · C · K · CT · Y . Computing
the matrix product C · K · CT can be impractical for general con-
straint matrices C. In these cases the matrix-vector product, which
is the inner most loop of the sparse linear solver as well as the trust
region solver, can be replaced by three consecutive matrix-vector
products. In our current implementation we support control point
and boundary constraints.

Figures 5, 6 and 7 show examples of constrained minimization.

7 Implementation and Results
The linear minimizer was implemented using the IML++ library [3]
using a CG method with diagonal preconditioning. As a starting

Figure 6: The top left shows an original subdivision model of a toy
airplane assembled from some simple primitives. The shape of the
wings and tail fin was not as desired and consequently subjected to
fairing. The magenta lines indicate constrained parts of the model
while all other section were free to move. The upper right airplane
is the result of minimizing the simple energy. The lower left air-
plane was created using the linear solver with the data-dependent
energy and the lower right airplane using the nonlinear minimizer.
Most noticable are the differences in the shape of the wings. Inter-
estingly the simple bending energy results in significant pinching of
the center part of the wings, a phenomenon usually associated with
membrane energies. The wings created by linear and nonlinear
solvers of the data-dependent bending energy look very similar but
the curvature plots reveal fine differences (see Figure 7). The sec-
tion between fuselage and engines reveal no significant differences
between the faired shapes.

Figure 7: A close-up of the tail section of the airplanes in Figure 6
using the same ordering. The “roundness” of the fin varies. This is
also evidenced by the varying curvature distributions.

guess for the solution vector we chose the input mesh. We are us-
ing the standard BLAS provided with IML++. The largest fraction
(50− 80%) of the run-time was spent in the linear equation solver.
The rest of the time was used for setup and output of the solution.

Steihaug’s Newton/CG trust-region method was implemented di-
rectly without using the functionality provided by IML++. Precon-
ditioning was not implemented. Slightly more than half of the run-
time accounts for recomputing H(Eb

dd) at each iteration. Another
quarter of the run-time was spent on matrix-vector multiplications.

While difficult to compare, we tried to achieve the same accuracy
(10−6) with both linear and nonlinear solvers. Figure 7 gives sizes
and run-times for several sample problems. We observe that the lin-

earized solution of the data-dependent energy takes often slightly
more time than the linear solution of the simple energy. This ap-
pears to be due to worse conditioning of the stiffness matrices. The
run-times of the nonlinear solver of the data-dependent problem are
3 to 6 times as big as the run-times of the corresponding linearized
solver, a moderate increase given that a full blown nonlinear solver
is used.

From the table we conclude that in most cases (6 out of 7) non-
linear minimization of the data-dependent bending energy achieves
the surface with the lowest exact bending energy.

All run times reported in this paper where obtained on a 2GHz
Intel Xeon processor under Linux using gcc with optimization.

8 Conclusions and Future Work
Subdivision surfaces are an increasingly important primitive used
in geometric modeling applications. Motivated by this we have ex-
plored a number of mathematical approaches and algorithms for the
fairing of such surfaces. In particular we addressed the issue of di-
verging energies in earlier approaches by using the characteristic
map parametrization. First order data-dependent energies can be
constructed by considering appropriately transformed characteris-
tic maps as reference surfaces. This has the pleasant consequence
that the resulting nonlinear minimization problem is not that much
more costly than a solution to the simple linear problem. This is ac-
complished by observing that the final energies can be written as a
linear combination of precomputed stiffness matrices. Furthermore,
exact gradients and Hessians are also accessible allowing for the use
of very robust nonlinear solvers such as the Steihaug Newton/CG
metthod. We performed a number of comparative numerical exper-
iments demonstrating both the performance and robustness of the
algorithm.

Comparing the three different methods used, simple (i.e., data
independent) and first order data-dependent energies (with a linear
or full nonlinear solver) we find that the data-dependent methods
generally work better, but it is difficult to make stronger statements.
All methods remove high frequencies from the original shapes. It
is less clear which produces the best shapes. The first order data-
dependence works well for coarse meshes (a few hundred to a few
thousand patches) but in the bending case does not stay constant
under refinement.

The method has definite limitations. The connectivity of meshes
needs to be chosen carefully. For example, symmetries that are
supposed to show up in the final surface need to be observed by the
control mesh connectivity.

In future work we hope to understand the influence of constraints
better. What are the best constraint setups to get “desirable” results?
This is both a mathematical and user interface question. Further
performance gains can be achieved by using BLAS libraries opti-
mized for the Intel architecture (using SIMD instructions) as well as
fine tuning the use of Hessians. These do not need to be recomputed
at every step as we currently do. Finally it would be interesting to
see whether a simple and efficient second order data-dependent en-
ergy can be devised such that the bending energies refine correctly.

Acknowledgment This work was supported in part by NSF
(DMS 0220905, DMS 0138458, ACI 0219979) the DOE (W-7405-
ENG-48/B341492), Intel, Alias|wavefront, nVidia, Pixar, and the
Packard Foundation. Special thanks to Cici Koenig, Nathan Litke
and Igor Guskov.

References
[1] BAKHVALOV, N. S. On approximate calculation of integrals.

Vestnik MGU, Ser. Mat. Mekh. Astron. Fiz. Khim. 4 (1959),
3–18. In Russian.

[2] CATMULL, E., AND CLARK, J. Recursively generated b-
spline surfaces on arbitrary topological meshes. Computer-
Aided Design 10, 6 (September 1978), 350–355.

[3] DONGARRA, J., LUMSDAINE, A., POZO, R., AND REM-
INGTON, K. A sparse matrix library in c++ for high per-
formance architectures. In Proceedings of the Second Ob-
ject Oriented Numerics Conference (1992), pp. 214–218.
http://math.nist.gov/iml++/.

[4] DOO, D., AND SABIN, M. Behaviour of recursive division
surfaces near extraordinary points. Computer-Aided Design
10, 6 (September 1978), 356–360.

[5] FRIEDEL, I. Data dependent energy operators for subdivision
surfaces. Master’s thesis, Caltech, Department of Computer
Science, 2002.

[6] GREINER, G., LOOS, J., AND WESSELINK, W. Data depen-
dent thin plate energy and its use in interactive surface model-
ing. In Computer Graphics Forum (Proc. EUROGRAPHICS
’96), 15(3) (1996), pp. 175–186.

[7] HALSTEAD, M., KASS, M., AND DEROSE, T. Efficient, fair
interpolation using Catmull-Clark surfaces. Proceedings of
SIGGRAPH 93 (1993), 35–44.

[8] HORN, B. K. P. The curve of least energy. ACM Transactions
on Mathematical Software (TOMS) 9, 4 (1983), 441–460.

[9] HSU, L., KUSNER, R., AND SULLIVAN, J. M. Minimiz-
ing the squared mean curvature integral for surfaces in space
forms. Experimental Mathematics 1 (1992), 191–207.

[10] LOTT, N. J., AND PULLIN, D. I. Method for fairing b-spline
surfaces. Computer-Aided Design 20 (1988), 597–604.

[11] MORETON, H., AND SEQUIN, C. Functional optimization
for fair surface design. Computer Graphics 26, Annual Con-
ference Series (1992), 167–176.

[12] NASRI, A. H., WAN KIM, T., AND LEE, K. Fairing recursive
subdivision surfaces with curve interpolation constraints. In
International Conference on Shape Modeling & Applications
(2001), pp. 49–61.

[13] NOCEDAL, J., AND WRIGHT, S. J. Numerical Optimization.
Springer, 1999.

[14] REIF, U. A unified approach to subdivision algorithms near
extraordinary vertices. Computer Aided Geometric Design 12,
2 (1995), 153–174.

[15] REIF, U. Analyse und Konstruktion von Subdivisionsalgorith-
men für Freiformflächen beliebiger Topologie. Department of
Mathematics, Stuttgart University, 1998.

[16] REIF, U., AND SCHRÖDER, P. Curvature integrability of sub-
division surfaces. Advances in Computational Mathematics 2
(2001).

[17] SCHNEIDER, R., AND KOBBELT, L. Mesh fairing based on
an intrinsic pde approach. COMPUTER-AIDED DESIGN 33,
11 (2001), 767–777.

linear Eb
Ch dof run time Eb

Ch before Eb
Ch after Eb

exact after
ThreePipes 504 0.55s 1.75 · 100 1.52 · 100 5.08 · 101

distortedY 993 2.21s 1.77 · 10−3 4.27 · 100 3.02 · 102

ThreeCylinders 1707 2.65s 1.04 · 102 3.16 · 101 4.72 · 103

airplane 4575 11.41s 1.66 · 101 9.12 · 100 1.97 · 103

cube2 57 0.01s 1.40 · 101 1.07 · 101 3.75 · 101

cube32 18417 46.69s 5.23 · 10−1 5.59 · 10−2 4.27 · 101

head.const 3834 15.96s 1.58 · 10−2 1.07 · 10−2 6.42 · 101

linearized Eb
dd dof run time Eb

dd before Eb
dd after Eb

exact after
ThreePipes 504 0.58s 3.16 · 101 3.13 · 101 4.95 · 101

distortedY 993 5.07s 6.06 · 106 9.14 · 102 2.49 · 102

ThreeCylinders 1707 3.81s 7.46 · 102 3.68 · 105 1.53 · 104

airplane 4575 18.74s 9.19 · 102 2.98 · 102 9.91 · 102

cube2 57 0.01s 4.64 · 101 4.59 · 101 3.75 · 101

cube32 18417 47.85s 4.70 · 102 6.07 · 101 4.41 · 101

head.const 3834 22.90s 1.19 · 103 6.91 · 102 8.71 · 101

nonlinear Eb
dd dof run time Eb

dd before Eb
dd after Eb

exact after
ThreePipes 504 2.16s 3.16 · 101 2.99 · 101 4.82 · 101

distortedY 993 25.03s 6.06 · 106 3.86 · 102 9.91 · 101

ThreeCylinders 1707 12.88s 7.46 · 102 1.92 · 102 4.01 · 102

airplane 4575 66.20s 9.19 · 102 2.56 · 102 7.27 · 102

cube2 57 0.14s 4.64 · 101 2.23 · 101 2.67 · 101

cube32 18417 268.00s 4.70 · 102 5.53 · 101 2.64 · 101

head.const 3834 140.00s 1.19 · 103 3.65 · 102 1.02 · 102

Figure 8: Sizes and run-times for different test problems. The fourth column shows the simple resp. data-dependent energy of the surface
before minimization. The fifth column shows the same energy type of the surface after minimization. The final column displays the exact
bending energy of the surface after minimization. The computation of the exact bending energy was performed using numerical quadrature.
Due to the curvature singularities at extraordinary points a single evaluation of the exact energy was several times as expensive as the
complete data-dependent minimization.

[18] STAM, J. Exact evaluation of Catmull-Clark subdivision sur-
faces at arbitrary parameter values. Computer Graphics 32,
Annual Conference Series (1998), 395–404.

[19] TAUBIN, G. A signal processing approach to fair surface
design. Computer Graphics 29, Annual Conference Series
(1995), 351–358.

[20] THORPE, J. A. Elementary topics in differential geometry.
Springer, 1979.

[21] WELCH, W., AND WITKIN, A. Free-form shape design using
triangulated surfaces. Computer Graphics 28, Annual Confer-
ence Series (1994), 247–256.

[22] WESSELINK, W. Variational Modeling of Curves and Sur-
faces. Eindhoven University of Technology, 1996.

[23] ZORIN, D. Subdivision and Multiresolution Surfaces. PhD
thesis, Caltech, 1998.

[24] ZORIN, D. Smoothness of Subdivision on Irregular Meshes.
Constructive Approximation 16, 3 (2000), 359–397.

[25] ZORIN, D., AND SCHRÖDER, P., Eds. Subdivision for Mod-
eling and Animation. Course Notes. ACM Siggraph, 2000.

A Transformation of Bending Integrals
In this section we demonstrate that the bending integrals over LCh

can be transformed into integrals of L just as in the case of the mem-
brane integrals. Because we must now deal with second deriva-
tives this excercise is somewhat messy. To keep the expressions
manageable we introduce the following shorthand notations. The
variables ū = (u1, u2) ∈ L and v̄ = (v1, v2) ∈ LCh ; the char-
acteristic map and its inverse v(ū) = Ch(ū) : L → LCh and
u(v̄) = Ch−1(v̄) : LCh → L. Indices will be used equivalently as
sub- and superscripts while partial differention is indicated with the
comma notation, e.g., ∂k∂lf

i
j (ū) = f i

j,kl(ū).
With this notation we have Du = (Dv)−1, which is equivalent

to uk
,i vj

,k = δj
i where δ denotes the Kronecker symbol. We can

compute the second partial derivatives ut
,im in terms of v by differ-

entiating this expression

0 = (uk
,i vj

,k),m = uk
,im vj

,k + uk
,i vj

,kq uq
,m.

Multiplying by ut
,j and reordering first product gives

0 = ut
,j vj

,k uk
,im + ut

,j uk
,i vj

,kq uq
,m

= δt
k uk

,im + ut
,j uk

,i vj
,kq uq

,m

= ut
,im + ut

,j uk
,i vj

,kq uq
,m.

After appropriate renaming of the symbols we arrive at

ut
,im = −vc

,ab ua
,i ub

,m ut
,c. (7)

The right hand side involves only vc
,ab and first partial derivatives

of u. The latter can be expressed in terms of v through the identity
Du = (Dv)−1.

The entries of the stiffness matrix are integrals of the form∫
LCh

φCh
k,ij(v̄)φ

Ch
l,ij(v̄) dv̄. (8)

Because of the growth of the terms involved we restrict our attention
to the transformations of one of these factors∫

LCh

φCh
,ij (v̄) dv̄

=

∫
Lv

(φ ◦ v),ij(v̄) dv̄

=

∫
Lv

(φ,k(u(v̄)) uk
,j(v̄)),i dv̄

=

∫
Lv

φ,ks(u(v̄)) us
,i(v̄) uk

,j(v̄) + φ,k(u(v̄)) uk
,ji(v̄) dv̄.

After substituting v̄ = v(ū) we get∫
L

(
φ,ks(ū)us

,i

(
v(ū)

)
uk

,j

(
v(ū)

)
+ φ,k(ū)uk

,ji

(
v(ū)

))|Jv(ū)| dū.
(9)

The final formula, which depends only on derivatives of φ and v
but not its inverses, is obtained by replacing us

,i and uk
,ji with help

of the identity Du = (Dv)−1 and Equation (7).
All functions involved in this final formula are eigen functions of

the subdivision patch parametrized over L. The eigen functions are
C2 on an open neighborhood including L. Because of the regularity
of Ch [14] the determinant of Ch does not vanish. As a consequence
the integrand of Equation 9 (and also the integrand of Equation 8)
is smooth and bounded on L. Hence it can be computed accurately
with high order quadrature rules.

B Data-Dependent Bending Energy
As in the unscaled case, we try to avoid numerical integration close
to the origin, where the integrand has poles. By definition of SCh

we have SCh(2−nū) = W · Ch(2−nū) =
(
W · [λ 0

0 λ

]n) · Ch(ū).
This leads to the idea that the necessary change of the integration
domain from 2−nL to L is governed by the rules derived for the
change of HSCh under application of a linear map and the scaling
relations of the eigen functions. Recall, that

Kij

=

∫
[0,1]2

tr
(
HSCh

(
φi(v̄)

) · HSCh

(
φj(v̄)

)T
)
|JSCh(v̄)| dv̄

=
∞∑

n=0

∫
2−nL

tr
(
HSCh

(
φi(v̄)

) · HSCh

(
φj(v̄)

)T
)
|JSCh(v̄)| dv̄.

We pick one of the integrals in the sum and fix n. Now let us ex-
amine the effects of the substitution v̄ = 2−n ū on the terms in

HSCh(φj(v̄))

= I−1
SCh(v̄) · (H(φj(v̄)) − (∂1φj(v̄)Γ

1(v̄) + ∂2φj(v̄)Γ
2(v̄))

)
.

The derivatives of the eigen functions scale as

∂kφi(2
−nū) = 2nλn

i ∂kφi(ū)

∂k∂lφi(2
−nū) = 22nλn

i ∂k∂lφi(ū),

which implies the identities

H(φj)(2
−nū) = 22nλn

j H(φj)(ū)

I−1
SCh(2−nū) = (2λ)−2n I−1

SCh(ū)

Γk
ij(2

−nū) = gkl〈∂i∂jCh, ∂lCh〉 = 2n Γk
ij(ū).

These finally result in

HSCh(φj)(2
−nū) =

(λj

λ2

)n
HSCh(φj)(ū).

The Jacobian scales as before JSCh(2−nū) = λ2n JSCh(ū).
With these identities we can reduce the entire integral to one over

a single instance of L
∫

2−n L

tr
(
HSCh

(
φi(v̄)

)·
HSCh

(
φj(v̄)

)T
)
|JSCh(v̄)| dv̄

=

∫
L

tr
(
HSCh(φi(ū))

(λi

λ2

)n(λj

λ2

)n

HSCh(φj(ū))T
)
λ2n |JSCh(ū)| dū

=
(λiλj

λ2

)n
∫

L

tr
(
HSCh(φi(ū))·

HSCh(φj(ū))T
)
|JSCh(ū)| dū.

The last formula shows the same scaling relation as the simple
bending integral (Equation 5).

B.1 Precomputing the Bending Energy Integrals
Now we want to find an efficient way to assemble the matrix KSCh .
We have

KSCh
ij

(
1 − λiλj

λ2

)

=

∫
L

tr
(
HSCh(φi)

T · HSCh(φj)
)
dωSCh

=

∫
L

tr
(
Q(φi,Ch) · I−1

SCh · I−1
SCh ·Q(φj ,Ch)

)
|det(V)|1/2 dωCh

=
|det(V)|1/2

∫
L

tr
(
Q(φi,Ch) ·DCh−1 · V −1 ·DCh−1·

DCh−1 · V −1 ·DCh−1 ·Q(φj ,Ch)
)
dωCh ,

where we exploited the fact that tr(A · AT) = tr(AT · A). Since
V −1 = 1

EG−F2 · [G −F

−F E

]
this may be rewritten as

KSCh
ij =

(EG− F 2)
1
2

(EG− F 2)2

(
1 − λiλj

λ2

)−1

∫
L

E2 fEE
ij (ū) + EF fEF

ij (ū) + EGfEG
ij (ū)+

F 2 fF F
ij (ū) + FGfF G

ij (ū) + G2 fGG
ij (ū) dū,

where each of the functions fxx is independent of the parameters
E, F and G. With xx ∈ {EE,EF,EG,FF, FG,GG} we get

KSCh
ij =

∑
xx

xx (EG−F 2)−3/2
((

1−λiλj

λ2

)−1
∫

Lu

fxx
ij (ū) dū

)
,

which can be used to define 6 ancillary matrices

Kxx
ij =

(
1 − λiλj

λ2

)−1
∫

Lu

fxx
ij (ū) dū.

	Introduction
	Surface Properties
	The Stiffness Matrix K
	Catmull-Clark Subdivision Surfaces

	Simple Energies
	Simple Stiffness Matrices
	Transformation of Membrane Integrals

	Data-Dependent Energies
	Influence of the Map W
	Precomputing the Membrane Energy Integrals
	Bending Energy
	Choosing the Parameters E, F and G

	Derivatives of Energies
	Algorithms
	Minimizing the Simple Energy
	Minimizing the Data-Dependent Energy
	Minimizing with Constraints

	Implementation and Results
	Conclusions and Future Work
	Transformation of Bending Integrals
	Data-Dependent Bending Energy
	Precomputing the Bending Energy Integrals

