
Research Article
Stability of Real Parametric Polynomial
Discrete Dynamical Systems

Fermin Franco-Medrano1,2 and Francisco J. Solis1

1Applied Mathematics, CIMAT, 36240 Guanajuato, GTO, Mexico
2Graduate School of Mathematics, Kyushu University, Fukuoka 819-0395, Japan

Correspondence should be addressed to Francisco J. Solis; solis@cimat.mx

Received 23 November 2014; Revised 22 January 2015; Accepted 23 January 2015

Academic Editor: Zhan Zhou

Copyright © 2015 F. Franco-Medrano and F. J. Solis. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

We extend and improve the existing characterization of the dynamics of general quadratic real polynomial maps with coefficients
that depend on a single parameter 𝜆 and generalize this characterization to cubic real polynomial maps, in a consistent theory that
is further generalized to realmth degree real polynomial maps. In essence, we give conditions for the stability of the fixed points of
any real polynomial map with real fixed points. In order to do this, we have introduced the concept of canonical polynomial maps
which are topologically conjugate to any polynomial map of the same degree with real fixed points. The stability of the fixed points
of canonical polynomial maps has been found to depend solely on a special function termed Product Position Function for a given
fixed point. The values of this product position determine the stability of the fixed point in question, when it bifurcates and even
when chaos arises, as it passes through what we have termed stability bands. The exact boundary values of these stability bands are
yet to be calculated for regions of type greater than one for polynomials of degree higher than three.

1. Introduction

The theory of discrete dynamical systems with iteration func-
tions given by polynomials is an intensive research subject
where a wide variety of discrete models have been proposed
to describe and to analyze different mechanisms in various
areas of science. For example, in Biology andmore specifically
in Population Dynamics there are many simple models that
are used to study the asymptotic behavior of some species
that live in isolated generations; see, for instance, [1–7].

Although the dynamics of parametric polynomial dis-
crete systems are very complex their bifurcation diagrams
have proved to be a very useful visual tool. A new method
for constructing a rich class of bifurcation diagrams for
unimodal maps was presented in [8], where the behavior
of quadratic maps was analyzed when the dependence of
their coefficients was given by continuous functions of a
parameter. Conditions on the coefficients of the quadratic
mapswere given in order to obtain regular reversalmaps.Our
first goal is to restate the results for more complex systems
(cubic) than the quadratic systems analyzed in [8] and to state

the results in the frame of a new formulation that would
allow for generalization. Our second goal is to generalize
the existing results on real quadratic maps for arbitrary
real polynomial maps within a framework that allows us to
understand the dynamics for a larger set of discrete systems.
It is important to remark that our results are analytical and
depend only on the parametric derivative of the system
evaluated at equilibrium points. There are diverse results
based on other approaches such as the linearized stability
due to Lyapunov; see, for instance, [9, 10]. In our opinion,
our approach is natural for polynomial iteration functions
whereas the linearized stability can be used formore complex
discrete systems with iteration functions such as piecewise
functions. It is also important to notice that there is diverse
numerical software specialized in the numerical continuation
and bifurcation study of continuous and discrete parameter-
ized dynamical systems, such as Auto [11] and MatCont [12].

Before attempting to obtain general results for polyno-
mial discrete systems, we want to motivate them with those
for a nontrivial system. To do this, we propose in Section 2
analyzing the stability of a general cubic discrete dynamical

Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2015, Article ID 680970, 13 pages
http://dx.doi.org/10.1155/2015/680970



2 Discrete Dynamics in Nature and Society

system. Then in Section 3, we use a general framework in
order to analyze the stability for real polynomial discrete
dynamical systems by using some of the ideas introduced
in the previous section. In order to illustrate the obtained
results several examples are included in Section 4. Finally,
conclusions are given in Section 5.

2. Cubic Discrete Dynamical Systems

To motivate our results, we will start with a general cubic
discrete system since it is in this case, besides linear
and quadratic systems, when explicit calculations can be
achieved.Then, for such system, we will define two particular
forms, namely, the Linear Factors Form and the Canonical
Form. We will show that these two forms are actually topo-
logically conjugate, which in turn means that the property of
chaos is preserved between the maps, which allows us to
determine stability properties for any cubic map with real
fixed points by analyzing only the Canonical Cubic Map.

Consider the cubic discrete dynamical system given in
its General Form by 𝑦

𝑛+1
= 𝑓
3
(𝑦
𝑛
; 𝜆), where the iteration

function is given by the following definition.

Definition 1 (general cubic map). The general cubic map
(GCM) is defined by

𝑓
3
(𝑦) := 𝑦 + 𝑃

𝑓3
(𝑦) , (1)

where

𝑃
𝑓3
(𝑦) = 𝛼 + 𝛽𝑦 + 𝛾𝑦

2

+ 𝛿𝑦
3 (2)

is called the fixed points polynomial of 𝑓
3
. All the coefficients

𝛼, 𝛽, 𝛾, and 𝛿 are functions of the parameter 𝜆.

It is evident that any cubic map can be put in this form
by adjusting the corresponding values of the coefficients in
the fixed points polynomial. By the fundamental theorem of
algebra, we know that (2) has three roots, by which the GCM
has three fixed points. The roots of 𝑃

𝑓3
are then 𝑦

0
= 𝑆 + 𝑇 −

(1/3)𝛾,𝑦
1
= −(1/2)(𝑆+𝑇)−(1/3)𝛾+(1/2)𝑖√3(𝑆−𝑇), and𝑦

2
=

−(1/2)(𝑆+𝑇)− (1/3)𝛾− (1/2)𝑖√3(𝑆−𝑇), where �̃� = 𝛼/𝛿, 𝛽 =

𝛽/𝛿, 𝛾 = 𝛾/𝛿,𝑄 = (3𝛽−𝛾
2

)/9, 𝑅 = (9𝛽𝛾−27�̃�−2𝛾
3

)/54,𝐷 =

𝑄
3

+ 𝑅
2, 𝑆 =

3
√𝑅 + √𝐷, and 𝑇 =

3
√𝑅 − √𝐷. The coefficients

of the fixed points polynomial (2) and its roots are related
by𝑦
0
+𝑦
1
+𝑦
2
= −𝛾, 𝑦

0
𝑦
1
+𝑦
1
𝑦
2
+𝑦
2
𝑦
0
= 𝛽, and𝑦

0
𝑦
1
𝑦
2
= −�̃�.

𝐷 is called the discriminant and we have three cases.

(i) If𝐷 > 0 then one fixed point is real and the other two
are complex conjugates.

(ii) If 𝐷 = 0 then the three fixed points are real with at
least two of them equal.

(iii) If𝐷 < 0 then all fixed points are real and distinct.

It is the last two cases (real fixed points) that will interest
us most for the time being. Suppose in particular that𝐷 < 0.
Then, we can write

𝑦
0
= 2√−𝑄 cos(𝜃

3
) −

1

3
𝛽,

𝑦
1
= 2√−𝑄 cos(𝜃 + 𝜋

3
) −

1

3
𝛽,

𝑦
2
= 2√−𝑄 cos(𝜃 + 2𝜋

3
) −

1

3
𝛽,

(3)

where cos 𝜃 = 𝑅/√−𝑄3. Using the previous notation we have
the following definition.

Definition 2 (linear factors formof the cubicmap). Let𝑓
3
be a

general cubic map with three fixed points, 𝑦
0
, 𝑦
1
, and 𝑦

2
∈ C.

One can write 𝑓
3
as

ℎ
3
(𝑦) = 𝑦 +𝑀(𝑦 − 𝑦

0
) (𝑦 − 𝑦

1
) (𝑦 − 𝑦

2
)

= 𝑦 + 𝑠�̃� (𝑦 − 𝑦
0
) (𝑦 − 𝑦

1
) (𝑦 − 𝑦

2
) ,

(4)

where all𝑀, 𝑦
0
, 𝑦
1
, and 𝑦

2
are functions of the parameter 𝜆,

𝑠 = sign(𝑀), �̃� = |𝑀|; one calls ℎ
3
the Linear Factors Form

of the cubic map (LFFCM).

Now we will apply a linear transformation to (4) so
that one fixed point is mapped to zero and the “amplitude”
coefficient of the Linear Factors term is unity; this can be
done since 𝑓

3
is cubic and at least one of the fixed points is

real, so we can always map this fixed point to zero.The linear
transformation can be chosen by each one of the following
transformations:

𝑇
0
(𝑥) = 𝑦

0
±

𝑥

√𝑀
, 𝑇

1
(𝑥) = 𝑦

1
±

𝑥

√𝑀
,

𝑇
2
(𝑥) = 𝑦

2
±

𝑥

√𝑀
,

(5)

by taking 𝑦 = 𝑇
𝑘
(𝑥), 𝑘 ∈ {0, 1, 2}. Without loss of generality,

we will use 𝑇
0
with the plus sign and call it simply 𝑇, so that

we get the following.

Definition 3 (canonical cubic map). The Canonical Cubic
Map (CCM) is defined by

𝑔
3
(𝑥; 𝜆) = 𝑥 + 𝑠𝑥 (𝑥 − 𝑥

1
(𝜆)) (𝑥 − 𝑥

2
(𝜆)) , (6)

where it has been stressed out that both fixed points 𝑥
1
and

𝑥
2
depend upon the parameter 𝜆.
So if𝑀 > 0 then

𝑔
3
(𝑥) = 𝑥 + 𝑥 (𝑥 − 𝑥

1
) (𝑥 − 𝑥

2
) , (7)

and if𝑀 < 0

𝑔
3
(𝑥) = 𝑥 − 𝑥 (𝑥 − 𝑥

1
) (𝑥 − 𝑥

2
) . (8)

The relationship between the roots of the Linear Factors
Form of the cubic map and the Canonical Cubic Map (CCM)
is given by the following.
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Corollary 4. Thefixed points of the Linear Factors Form of the
cubic map and the Canonical Cubic Map are related by

𝑥
1
(𝜆) = √𝑀(𝜆) [𝑦

1
(𝜆) − 𝑦

0
(𝜆)] ,

𝑥
2
(𝜆) = √𝑀(𝜆) [𝑦

2
(𝜆) − 𝑦

0
(𝜆)] .

(9)

We have then reduced the parametric dependence to only
two functions of the parameter 𝜆: 𝑥

1
and 𝑥

2
. Notice 𝑇 is a

homeomorphismbetween the domains of bothmaps; thiswill
help us in Section 3 to prove that the Linear Factors Form
and the Canonical Form of polynomial maps are actually
topologically conjugate, which in turnmeans that the stability
and chaos properties are preserved between the maps, which
allows us to determine stability properties for any cubic map
by analyzing only the CCM.

2.1. Stability for the Canonical Cubic Map. Let us determine
the stability of the periodic points of the CCM. This analysis
will suffice for any cubic map with real fixed points, by means
of topological conjugacy. However, we can only explicitly give
this for the fixed points. We already know, by construction,
that the fixed points of the CCM are 𝑥

0
= 0, 𝑥

1
, and 𝑥

2
. While

the first is constant, the other two fixed points are set to be
functions of the parameter 𝜆. By evaluating in 𝑔

󸀠

3
, we get the

eigenvalue functions. For 𝑥
0
= 0 we have 𝜙

0
(𝜆) = 𝑔

󸀠

3
(0) =

𝑠𝑥
1
(𝜆)𝑥
2
(𝜆) + 1. So the stability condition for this fixed point

is

−2 < 𝑠𝑥
1
𝑥
2
< 0. (10)

We can draw some conclusions from this. In order for
zero to be a stable (attracting) fixed point one must have the
following.

Lemma 5. The following are sufficient conditions for the
asymptotic stability of the zero fixed point of the Canonical
Cubic Map:

(i) in magnitude, |𝑥
1
||𝑥
2
| < 2;

(ii) if𝑀 > 0, 𝑥
1
and 𝑥

2
must have different signs; or

(iii) if𝑀 < 0, 𝑥
1
and 𝑥

2
must have the same sign.

Notice that the stability condition (10) states that the
product of the relative positions from the other two fixed
points to the zero fixed pointmust bewithin the range (−2, 0),
for positive 𝑀 [or (0, 2) for negative 𝑀], for the zero fixed
point to be asymptotically stable.

The case of 𝑥
𝑘
= 0, 𝑘 ∈ {1, 2}, is not included in the dis-

cussion here since this would represent repeated fixed points
(multiplicity), which will be discussed in Section 2.3 below;
likewise, in the remainder of this section we will avoid
dealing with multiplicity of the fixed points. Now, for 𝑥

1
, its

eigenvalue function is 𝜙
1
(𝜆) = 𝑔

󸀠

3
(𝑥
1
(𝜆)) = 1+𝑠𝑥

1
(𝜆)(𝑥
1
(𝜆)−

𝑥
2
(𝜆)), so that the stability condition for this fixed point is

−2 < 𝑠𝑥
1
(𝑥
1
− 𝑥
2
) < 0. (11)

This fact gives us the following.

Lemma 6. The following are sufficient conditions for the
asymptotic stability of the 𝑥

1
fixed point.

If𝑀 > 0 then

(i) 𝑥
1
and 𝑥

2
must have the same sign;

(ii) |𝑥
1
| < |𝑥
2
| < |𝑥
1
+ 2/𝑥

1
|.

On the other hand, if𝑀 < 0,

(i) |𝑥
2
| < |𝑥
1
|;

(ii) if |𝑥
1
| ≥ √2, then |𝑥

1
− 2/𝑥

1
| < |𝑥
2
| < |𝑥
1
|; or

(iii) if 0 < 𝑥
1
< √2, then 𝑥

1
− 2/𝑥

1
< 𝑥
2
< 𝑥
1
; or

(iv) if −√2 < 𝑥
1
< 0, then 𝑥

1
< 𝑥
2
< 𝑥
1
− 2/𝑥

1
.

Again, notice that the stability condition (11) for 𝑥
1
can be

translated as that the product of the relative positions between
the other two fixed points and 𝑥

1
must be within the range

(−2, 0) for positive 𝑀 [or (0, 2) for negative 𝑀]. Also notice
that when 0 < |𝑥

1
| < √2 the bound 𝑥

1
− 2/𝑥

1
may be

negative even if 𝑥
1
> 0 or positive even if 𝑥

1
< 0, therefore the

usefulness of the distinction. For𝑥
2
we have analogous results

since it is indistinguishable from 𝑥
1
in the present formula-

tion.
We will later generalize these “stability conditions” to

functions of the parameter which are different for each fixed
point, but of whose value depends on the stability of not
only the fixed points, but also higher period periodic points,
through period doubling bifurcations. From the stability
conditions for the three fixed points we have proved the
following.

Corollary 7. A cubic polynomial map with three different real
roots can only have a single attracting fixed point.

Proof. Compare the stability conditions for the three fixed
points.

Also we have proved the following theorem.

Theorem 8. Then sufficient conditions for the stability of a
fixed point of the Canonical Cubic Map are as follows.

If𝑀 > 0,

(i) the product of the relative positions between each unsta-
ble fixed point and the stable one must be negative,
which means one position is positive and the other
negative, which leads us to the following;

(ii) the fixed point that lies between the other two will be
stable, while the outer fixed points will be unstable, as
long as the following holds;

(iii) the product of the relative positions between each
unstable fixed point and the stable one must be greater
than −2.

And if𝑀 < 0,

(i) the product of the relative positions between each
unstable fixed point and the stable onemust be positive,
which means that both relative positions are positive,
which leads us to the following;
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Table 1: Bifurcation values for the canonical cubic map.

𝑘 𝑐
𝑘

1 2
2 3.0 ± 0.005
3 3.236 ± 0.002
4 3.288 ± 0.0005
5 3.29925 ± 0.00025
.
.
.

.

.

.

∞ ∼3.30228 ± 5 × 10−6

(ii) either zero or the outer fixed point will be stable, while
the other two fixed points will be unstable, as long as
the following holds;

(iii) the product of the relative positions between each
unstable fixed point and the stable onemust be less than
2.

2.2. Higher Period Periodic Points. Although, as previously
stated, in general, we cannot calculate the values of the
periodic points of period 2 or higher, we can calculate
for which values of the stability conditions above the fixed
points undergo period doubling bifurcations. We will see in
Section 3 that these stability conditions can actually be gen-
eralized to something called the “Product Position Function,”
which depends on the parameter and is different for each
fixed point. An asymptotic parameterization of the fixed
points allowed us to determine the bifurcation values, 𝑐

𝑘
, of

the fixed points of the CCM up to some precision.The values
obtained are shown in Table 1. When the stability conditions
of each fixed point cross these values, bifurcations take place.
An estimation of the bifurcation value for the onset of chaos
through a period doubling cascade has been calculated as
𝑐
∞

∼ 3.30228 ± 5 × 10
−6.

From these values, we can construct the analogue of the
stability bands of the CQM for the CCM.

Definition 9 (stability bands of the CCM). Let 𝑥
1
, 𝑥
2
: A ⊆

R → R be the two nonzero fixed points of the family of
cubic maps 𝑔

3
, as given by Definition 3, and let {𝑐

𝑘
}
𝑘∈N be the

sequence of bifurcation values of Table 1. The open interval

(−𝑐
𝑘+1

, −𝑐
𝑘
) , 𝜆 ∈ A (12)

is called the 𝑘th stability band of the CCM.

Notice, however, that in contrast with the stability bands
of the Canonical Quadratic Map, the stability bands of the
CCM cannot be plotted along the fixed points plots, at
least not directly as just defined, but rather they must be
represented in a separate plot for the stability conditions, as
we will see in the examples of Section 4.

2.3. Multiplicity of the Fixed Points. When multiplicity of the
fixedpoints takes place in theCCM,without loss of generality,
𝑔
3
can take the following forms:

𝑔
3
(𝑥) =

{{

{{

{

𝑥 + 𝑠𝑥
2

(𝑥 − 𝑥
1
) , if 𝑥

2
= 𝑥
0
= 0, 𝑥

1
̸= 0

𝑥 + 𝑠𝑥 (𝑥 − 𝑥
1
)
2

, if 𝑥
1
= 𝑥
2

̸= 0

𝑥 + 𝑠𝑥
3

, if 𝑥
1
= 𝑥
2
= 0,

(13)

with corresponding derivatives

𝑔
󸀠

3
(𝑥)

=

{{{{

{{{{

{

1 + 2𝑠𝑥 (𝑥 − 𝑥
1
) + 𝑠𝑥

2

, if 𝑥
2
= 𝑥
0
= 0, 𝑥

1
̸= 0

1 + 𝑠𝑥 (𝑥 − 𝑥
1
)
2

+ 2𝑠𝑥 (𝑥 − 𝑥
1
) , if 𝑥

1
= 𝑥
2

̸= 0

1 + 3𝑠𝑥
2

, if 𝑥
1
= 𝑥
2
= 0,

(14)

and therefore, 𝑔󸀠
3
(𝑥
𝑘
) = 1, 𝑘 ∈ {0, 1, 2}, for all three cases, so

that we deal with nonhyperbolic fixed points.

Proposition 10. The stability of the fixed points of the CCM
when they present multiplicity is, without loss of generality, as
follows.

(1) If 𝑥
2
= 𝑥
0
= 0, 𝑥

1
̸= 0, the zero fixed point is an

unstable fixed point with multiplicity of two;

(i) if𝑀 > 0 and
(a) if 𝑥

1
> 0 it is semiasymptotically stable from

the right,
(b) if 𝑥

1
< 0 it is semiasymptotically stable from

the left;
(ii) or if𝑀 < 0 and

(a) if 𝑥
1
> 0 it is semiasymptotically stable from

the left,
(b) if 𝑥

1
< 0 it is semiasymptotically stable from

the right.

(2) If 𝑥
1
= 𝑥
2

̸= 0, this fixed point has multiplicity of two
and it is unstable; moreover

(i) if𝑀 > 0 and
(a) if 𝑥

1
> 0 it is semiasymptotically stable from

the left,
(b) if 𝑥

1
< 0 it is semiasymptotically stable from

the right;
(ii) or if𝑀 < 0 and

(a) if 𝑥
1
> 0 it is semiasymptotically stable from

the right,
(b) if 𝑥

1
< 0 it is semiasymptotically stable from

the left.

(3) If 𝑥
0

= 𝑥
1

= 𝑥
2

= 0, the zero fixed point has
multiplicity of three;

(i) if𝑀 > 0, it is unstable;
(ii) if𝑀 < 0, it is asymptotically stable.
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Proof. Notice that

𝑔
󸀠󸀠

3
(𝑥) =

{{

{{

{

2𝑠 (𝑥 − 𝑥
1
) + 4𝑠𝑥, if 𝑥

2
= 𝑥
0
= 0, 𝑥

1
̸= 0

4𝑠 (𝑥 − 𝑥
1
) + 2𝑠𝑥, if 𝑥

1
= 𝑥
2

̸= 0

6𝑠𝑥, if 𝑥
1
= 𝑥
2
= 0,

𝑔
󸀠󸀠󸀠

3
(𝑥) = 6𝑠 ̸= 0,

(15)

for all cases. Using the stability (ST) and semistability (SST)
theorems for nonhyperbolic points [13, pp. 4-5], therefore

(1) if 𝑥
2

= 𝑥
0

= 0, 𝑥
1

̸= 0, the zero fixed point
has multiplicity of two and we have that 𝑔󸀠

3
(0) = 1,

𝑔
󸀠󸀠

3
(0) = −2𝑠𝑥

1
̸= 0, and 𝑔

󸀠󸀠󸀠

3
(0) = 6𝑠 ̸= 0; therefore,

by ST, the zero fixed point is an unstable fixed
point. Applying SST we get the particular cases of
semistability;

(2) if 𝑥
1
= 𝑥
2

̸= 0, this fixed point has multiplicity of two
and we have that 𝑔󸀠

3
(𝑥
1
) = 1, 𝑔󸀠󸀠

3
(𝑥
1
) = 2𝑠𝑥

1
̸= 0,

and 𝑔
󸀠󸀠󸀠

3
(0) = 6𝑠 ̸= 0; therefore, by ST, this fixed point

is unstable; moreover, the semistability cases are
inferred from SST again;

(3) if 𝑥
0
= 𝑥
1
= 𝑥
2
= 0, the zero fixed point has multi-

plicity of three and we have that 𝑔󸀠
3
(0) = 1, 𝑔󸀠󸀠

3
(0) = 0,

and 𝑔
󸀠󸀠󸀠

3
(0) = 6𝑠 ̸= 0; therefore, by ST, if 𝑀 > 0

the zero fixed point is unstable and if 𝑀 < 0 it is
asymptotically stable.

3. Polynomial Discrete Dynamical Systems

Consider again a one-dimensional discrete dynamical system
defined by

𝑦
𝑛+1

= 𝑓 (𝑦
𝑛
; 𝜆) , (16)

where 𝑓 is a polynomial in one real variable 𝑦 with real fixed
points and whose coefficients depend smoothly on the real
parameter 𝜆. Depending on the form of 𝑓 we have defined
previously the General, Linear Factors, and Canonical Forms
of the cubic maps. Next, we will define precisely the General
and Canonical Maps of a𝑚th degree polynomial map.

Definition 11 (general polynomialmap). TheGeneral Polyno-
mial Map of𝑚th degree (GPM-𝑚) is defined by

𝑓
𝑚
(𝑦) := 𝑦 + (−1)

𝑚−1

𝑃
𝑓𝑚

(𝑦) , (17)

where

𝑃
𝑓𝑚

(𝑦) := (−1)
𝑚−1

𝑚

∑

𝑖=0

𝑎
𝑖
𝑦
𝑖

. (18)

𝑃
𝑓𝑚

is called the fixed points polynomial associated with 𝑓
𝑚
.

It is known that any 𝑚th degree real polynomial in
one variable can be put into the General Form by means
of adjusting the value of the 𝑎

1
coefficient properly in the

fixed points polynomial. This is the broadest class of real
polynomials of finite degree. The roots of 𝑃

𝑓𝑚
are the fixed

points of 𝑓
𝑚
. In the case of𝑚 odd, the fundamental theorem

of algebra guarantees the existence of at least one real fixed
point. Let 𝑦

𝑖
∈ C, 𝑖 ∈ {0, 1, . . . , 𝑚 − 1}, be the𝑚 roots of 𝑃

𝑓𝑚
;

then (𝑦−𝑦
𝑖
) is a factor of 𝑃

𝑓𝑚
by the factor theorem; therefore

we can rewrite 𝑃
𝑓𝑚

as

𝑃
𝑓𝑚

(𝑦) = 𝑀(𝑦 − 𝑦
0
) ⋅ ⋅ ⋅ (𝑦 − 𝑦

𝑚−1
)

= 𝑀

𝑚−1

∏

𝑗=0

(𝑦 − 𝑦
𝑗
) , 𝑀 ∈ R,

(19)

and then define the following.

Definition 12 (linear factors form). Let𝑓
𝑚
be theGPM-𝑚 and

𝑦
𝑗
, 𝑗 ∈ {0, . . . , 𝑚 − 1}, its𝑚 fixed points. Then one can write

𝑓
𝑚
(𝑦) = 𝑦 + (−1)

𝑚−1

𝑀

𝑚−1

∏

𝑖=0

(𝑦 − 𝑦
𝑖
) ,

= 𝑦 + (−1)
𝑚−1 sgn (𝑀) |𝑀|

𝑚−1

∏

𝑖=0

(𝑦 − 𝑦
𝑖
) ,

= 𝑦 + (−1)
𝑚−1

𝑠�̃�

𝑚−1

∏

𝑖=0

(𝑦 − 𝑦
𝑖
) ,

(20)

with the definitions of 𝑠 and �̃� used in Section 2. One calls
this the Linear Factors Form of 𝑓

𝑚
.

We can directly verify that for 𝑚 = 3 we obtain the
corresponding Linear Factors Form of the cubic maps. Once
we know the𝑚 fixed points of a map 𝑓

𝑚
, it is straightforward

to write its Linear Factors Form. The motivation behind
the (−1)𝑚−1 factor is that we want that, for purely aesthetic
reasons, if 𝑀 > 0, the fixed points are real, and 0 < 𝑦

0
<

𝑦
1
< ⋅ ⋅ ⋅ < 𝑦

𝑚−1
, we have that 𝑓󸀠

𝑚
(0) ≥ 0, which is thus

accomplished.
We will now restrict this set of polynomials to those

whose fixed points polynomials have only real roots, that
is, maps with real fixed points only, though not necessarily
distinct. Let us make this precise by the following.

Definition 13 (canonical polynomials set). The Canonical
Polynomials Set, denoted by 𝑃

𝐶
[𝑦], is

𝑃
𝐶
[𝑦] := {𝑓 ∈ R [𝑦] | 𝑃

𝑓
has only real roots} , (21)

where R[𝑦] is the set of polynomials with real coefficients
on the variable 𝑦. Likewise, 𝑃𝑚

𝐶
[𝑦] denotes 𝑃

𝐶
[𝑦]⋂R

𝑚
[𝑦],

where R
𝑚
[𝑦] is the set of polynomials of degree 𝑚 with real

coefficients on the variable 𝑦.

The set𝑃
𝐶
has been ourmainwork ground for the analysis

in this work and, as it turns out, its elements can be put
in a much nicer form, easier to understand. We can further
reduce the complexity of this set of maps by means of the
transformation

𝑦 = 𝑇
𝑚
(𝑥) := 𝑠�̃�

−1/(𝑚−1)

𝑥 + 𝑦
0
, (22)
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where 𝑦
0
is a real fixed point of the map in its linear product

form. Notice that 𝑇
𝑚
is linear; therefore it has an inverse

𝑥 = 𝑇
−1

𝑚
(𝑦) = 𝑠�̃�

1/(𝑚−1)

(𝑦 − 𝑦
0
) . (23)

𝑇
𝑚
is in fact a homeomorphism. We will drop the sub-

script𝑚 when referring to the transformation for no specific
degree. Applying this transformation to 𝑦 we reach the
following.

Definition 14 (canonical polynomial map). The canonical
polynomial map of𝑚th degree (CPM-𝑚) is

𝑔
𝑚
(𝑥) := 𝑥 + (−1)

𝑚−1

𝑠
𝑚

𝑥

𝑚−1

∏

𝑖=1

(𝑥 − 𝑥
𝑖
) , 𝑚 ≥ 2, (24)

where

𝑥
𝑖
= 𝑠�̃�
1/(𝑚−1)

(𝑦
𝑖
− 𝑦
0
) , (25)

and 𝑦
𝑗
are the 𝑚 fixed points of the corresponding Linear

Factors Form map of𝑚th degree, (at least) 𝑦
0
being real.

It is clear from the definition that 𝑥
0

= 0 always.
Notice also that the 𝑥

𝑖
result from evaluating 𝑇

−1

𝑚
in the

corresponding 𝑦
𝑖
. We can easily prove that not only does the

canonical map result from applying 𝑇, but also the canonical
map is in fact 𝑇-conjugate to the Linear Factors Form.

Proposition 15. Let 𝑓
𝑚
and 𝑇

𝑚
and 𝑔

𝑚
be as defined above,

having 𝑓
𝑚
at least one real fixed point; let 𝑦

0
be this real fixed

point, without loss of generality.Then𝑓
𝑚
is𝑇
𝑚
-conjugate to𝑔

𝑚
.

Proof. It is clear that𝑇
𝑚
is a homeomorphism since it is linear.

Then, we must only prove that 𝑇
𝑚
∘ 𝑓
𝑚

= 𝑔
𝑚
∘ 𝑇
𝑚
; that is,

𝑓
𝑚
(𝑇
𝑚
(𝑥)) = 𝑇

𝑚
(𝑔
𝑚
(𝑥)). We then have

𝑓
𝑚
(𝑇
𝑚
(𝑥))

= 𝑓
𝑚
(𝑠�̃�
−1/(𝑚−1)

𝑥 + 𝑦
0
)

= 𝑠�̃�
−1/(𝑚−1)

𝑥 + 𝑦
0

+ (−1)
𝑚−1

𝑠�̃�

𝑚−1

∏

𝑖=0

(𝑠�̃�
−1/(𝑚−1)

𝑥 + 𝑦
0
− 𝑦
𝑖
)

= 𝑠�̃�
−1/(𝑚−1)

𝑥 + (−1)
𝑚−1

𝑠
2

�̃��̃�
−1/(𝑚−1)

𝑥

⋅

𝑚−1

∏

𝑖=1

(𝑠�̃�
−1/(𝑚−1)

𝑥 + 𝑦
0
− 𝑦
𝑖
) + 𝑦
0

= 𝑠�̃�
−1/(𝑚−1)

𝑥 + (−1)
𝑚−1

𝑠
𝑚−1

�̃�
−1/(𝑚−1)

𝑥

⋅

𝑚−1

∏

𝑖=1

[𝑥 − 𝑠�̃�
1/(𝑚−1)

(𝑦
𝑖
− 𝑦
0
)] + 𝑦

0

= 𝑠�̃�
−1/(𝑚−1)

𝑥 + (−1)
𝑚−1

𝑠
𝑚−1

𝑀
−1/(𝑚−1)

𝑥

⋅

𝑚−1

∏

𝑖=1

(𝑥 − 𝑥
𝑖
) + 𝑦
0

= 𝑠�̃�
−1/(𝑚−1)

[𝑥 + (−1)
𝑚−1

𝑠
𝑚

𝑥

𝑚−1

∏

𝑖=1

(𝑥 − 𝑥
𝑖
)] + 𝑦

0

= 𝑇
𝑚
(𝑔
𝑚
(𝑥)) ,

(26)

where we have used 𝑠
2

= 1 and 𝑠 = 𝑠
−1.

This turns out to be very useful, since we know that
topological conjugacy is an equivalence relation that preserves
the property of chaos. This means that the analysis of stability
and chaos (i.e., the “dynamics”) of real polynomial maps with
real fixed points is reduced to the study of the canonical
polynomial maps defined above, since we can always take
any polynomial in 𝑃

𝐶
[𝑥] to its Canonical Form by means

of 𝑇, determine the stability properties, and then go back
to the original polynomial. A commutative diagram of the
conjugacy is in Figure 5.

3.1. Stability and Chaos in the Canonical Map of Degree 𝑚.
The derivative of 𝑔

𝑚
, recalling 𝑥

0
= 0 to simplify notation,

is

𝑔
󸀠

𝑚
(𝑥) = 1 + (−1)

𝑚−1

𝑠
𝑚

𝑚−1

∑

𝑗=0

𝑚−1

∏

𝑖=0,𝑖 ̸=𝑗

(𝑥 − 𝑥
𝑖
) . (27)

Evaluating (27) in the fixed point 𝑥
𝑘
we get the eigenvalue

function for each 𝑥
𝑘
:

𝜙
𝑘
(𝜆) = 𝑔

󸀠

𝑚
(𝑥
𝑘
(𝜆))

= 1 + (−1)
𝑚−1

𝑠
𝑚

𝑚−1

∏

𝑖=0,𝑖 ̸=𝑘

(𝑥
𝑘
(𝜆) − 𝑥

𝑖
(𝜆))

= 1 + 𝑠
𝑚

𝑚−1

∏

𝑖=0,𝑖 ̸=𝑘

(𝑥
𝑖
(𝜆) − 𝑥

𝑘
(𝜆)) .

(28)

Then, the asymptotic stability condition |𝑔
󸀠

𝑚
(𝑥
𝑘
)| < 1

implies that

−2 < 𝑠
𝑚

𝑚−1

∏

𝑖=0,𝑖 ̸=𝑘

(𝑥
𝑖
− 𝑥
𝑘
) < 0. (29)

From (29) we can recover all the stability conditions for
the fixed points of the Canonical Quadratic Map and cubic
map. The above leads us to the following.

Definition 16 (Product Position Function). Let 𝑔
𝑚

be the
canonical polynomial map of𝑚th degree and 𝑥

0
= 0, and let

𝑥
1
, . . . , 𝑥

𝑚−1
be its 𝑚 fixed points, all of which depend upon
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the parameter 𝜆. Let 𝑥
𝑘
be a real fixed point among the latter.

Then

𝐷
𝑚,𝑘

(𝜆) := 𝑠
𝑚

𝑚−1

∏

𝑖=0,𝑖 ̸=𝑘

(𝑥
𝑖
(𝜆) − 𝑥

𝑘
(𝜆)) ,

𝑘 ∈ {0, . . . , 𝑚 − 1} , 𝑚 ≥ 2,

(30)

is called the Product Position Function (PPF) of 𝑥
𝑘
.

The definition is motivated by the fact that 𝐷
𝑚,𝑘

is a
product of the positions relative to 𝑥

𝑘
of each of the other

𝑚 − 1 fixed points and that this quantity is fundamental in
determining the stability of the fixed points. These positions
are positivewhen𝑥

𝑖
> 𝑥
𝑘
andnegativewhen𝑥

𝑖
< 𝑥
𝑘
.Wehave

stressed the dependence on the parameter 𝜆 in the definition
of 𝐷
𝑚,𝑘

so that its character as a function is clear, stemming
from the corresponding dependence on 𝜆 of the fixed points.
In this way, the stability condition for the 𝑘th fixed point is
reduced to

−2 < 𝐷
𝑚,𝑘

(𝜆) < 0. (31)

Since𝐷
𝑚,𝑘

must be negative in order for 𝑥
𝑘
to be stable as

a sufficient condition and an odd number of factors (𝑥
𝑖
− 𝑥
𝑘
)

must be negative for the product in 𝐷
𝑚,𝑘

to be negative, it
follows that if𝑚 is even or𝑀 > 0, an odd number of negative
factors (𝑥

𝑖
− 𝑥
𝑘
) is a necessary condition for the hyperbolic

fixed point 𝑥
𝑘
to be stable; that is, if 𝑀 > 0, an odd number

of fixed points must lie below 𝑥
𝑘
and, consequently, an even

or zero (resp., odd) number of fixed points must lie above 𝑥
𝑘

if 𝑚 is even (resp., odd). By similar arguments, we can prove
the following.

Proposition 17 (necessary conditions for the stability of 𝑥
𝑘
).

Let 𝑔
𝑚
,𝐷
𝑚,𝑘

be defined as above and let 𝑥
𝑘
be a hyperbolic real

fixed point of 𝑔
𝑚
. The following are necessary conditions for 𝑥

𝑘

to be an asymptotically stable fixed point:

(i) if 𝑀 > 0 or 𝑚 is even, an odd number of fixed points
must have values lower than 𝑥

𝑘
; or

(ii) if𝑚 is odd and𝑀 < 0, zero or an even number of fixed
points must have values lower than 𝑥

𝑘
.

We must remark that the above conditions are not
sufficient for a fixed point to be an attractor. The sufficient
condition, however, is stated as follows.

Theorem 18 (sufficient condition for the stability of 𝑥
𝑘
). Let

𝑔
𝑚
, 𝐷
𝑚,𝑘

be defined as above and let 𝑥
𝑘
be a hyperbolic real

fixed point of 𝑔
𝑚
. Then, a necessary and sufficient condition for

𝑥
𝑘
to be an attractor is that

−2 < 𝐷
𝑚,𝑘

(𝜆) < 0. (32)

Below the value of −2 there are other “stability bands”
that lead to further period doubling bifurcations of the fixed
points as they are crossed, but theymust be calculated numer-
ically and, as we have seen, depend on the degree 𝑚 of the
polynomial.

Let us remark that for those values of 𝜆 in (32) where
𝐷
𝑚,𝑘

(𝜆) = −2 or 𝐷
𝑚,𝑘

(𝜆) = 0 there are some stability
conditions that require higher parametric derivatives; see, for
instance, [14, 15].

4. Examples

Here wewill deal with specific parameterizations for the fixed
points 𝑥

1
and 𝑥

2
in order to clarify the above findings and to

demonstrate howwe can construct bifurcation diagramswith
specific predetermined properties with cubic maps. We will
consider𝑀 > 0 unless otherwise stated explicitly.

Example 1. First, consider linear parameterizations for both
𝑥
1
and 𝑥

2
as

𝑥
1
(𝜆) = −𝜆, 𝑥

2
(𝜆) = 𝜆. (33)

The result is plotted in the lower panel of Figure 1, where
we see that the middle fixed point is 𝑥

0
= 0 always, so

we expect this to be the only stable fixed point, until the
separation between this and the other points breaks the sta-
bility condition and the period doubling bifurcation cascade
sets on. The corresponding stability conditions are shown
in the middle panel of Figure 1, where we confirm that the
curve for 𝑥

0
is the only one within the stability band (−2, 0)

until 𝜆 ≈ 1.45, where the curve crosses the barrier of −2
getting into the stability band (−3, −2), causing 𝑥

0
to bifur-

cate. The corresponding bifurcation diagram is shown in the
upper panel of Figure 1, where we confirm the statement
stated above.

Example 2. Now we will explore the full range of stability
regions bymaking a linearly varying fixed point pass through
the regions defined by the constant 𝑥

0
and a constant 𝑥

1
. We

define then

𝑥
1
(𝜆) = 2, 𝑥

2
(𝜆) = 6𝜆 + 1. (34)

We then obtain the plot of the lower panel of Figure 2, for the
selected range of interest of the parameter 𝜆. In the middle
panel of the same figure we can see the stability curves for the
fixed points, where we see that initially, from left to right, all
fixed points are unstable and then, progressively, 𝑥

0
, 𝑥
2
, and

𝑥
1
become stable, the latter one losing stability for still greater

values of 𝜆. The corresponding bifurcation diagram is shown
in the upper panel, where we can see how first the stable fixed
point is 𝑥

0
= 0, since it is the middle one, but begins in the

chaotic region and goes “reversal” towards being stable; then,
as 𝑥
2
crosses through zero, it becomes the middle stable fixed

point and when it in turn crosses the constant 𝑥
2
, this latter

one becomes the stable fixed point, again loosing stability
when 𝑥

2
crosses the stability band for 𝑥

1
.

Example 3 (quartic maps). Using Definition 12 for 𝑛 = 4, we
have that𝑓

4
(𝑦) = 𝑦−𝑀(𝑦−𝑦

0
)(𝑦−𝑦

1
)(𝑦−𝑦

2
)(𝑦−𝑦

3
). Suppose

𝑓
4
has at least one real fixed point. Without loss of generality,

suppose this fixed point is 𝑦
0
. Then 𝑇

4
(𝑥) = 𝑠�̃�

−1/3

𝑥 + 𝑦
0
.

Making the substitution 𝑦 = 𝑇
4
(𝑥) we can verify that we get

𝑔
4
(𝑥) = 𝑥−𝑥(𝑥−𝑥

1
)(𝑥−𝑥

2
)(𝑥−𝑥

3
), where𝑥

𝑖
= 𝑠�̃�
1/3

(𝑦
𝑖
−𝑦
0
),
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Figure 1: Bifurcation diagram (a), Product Position Functions and stability bands (b), and fixed points (c) for the linear parameterization of
the fixed points example of the CCM.

𝑖 ∈ {0, 1, 2, 3}. The stability of a real fixed point 𝑥
𝑘
is given

by the Product Position Function 𝐷
4,𝑘
(𝜆) = ∏

3

𝑖=0,𝑖 ̸=𝑘
(𝑥
𝑖
(𝜆) −

𝑥
𝑘
(𝜆)), whose value must remain between minus two and

zero in order for 𝑥
𝑘
to be asymptotically stable; that is, if all

fixed points are real,
−2 < 𝐷

4,0
(𝜆) = 𝑥

1
𝑥
2
𝑥
3
< 0,

−2 < 𝐷
4,1

(𝜆) = −𝑥
1
(𝑥
2
− 𝑥
1
) (𝑥
3
− 𝑥
1
) < 0,

−2 < 𝐷
4,2

(𝜆) = −𝑥
2
(𝑥
1
− 𝑥
2
) (𝑥
3
− 𝑥
2
) < 0,

−2 < 𝐷
4,3

(𝜆) = −𝑥
3
(𝑥
1
− 𝑥
3
) (𝑥
2
− 𝑥
3
) < 0,

(35)

for 0, 𝑥
1
, 𝑥
2
, and 𝑥

3
to be asymptotically stable fixed points,

respectively. For example, let
𝑥
1
(𝜆) = 𝜆, 𝑥

2
(𝜆) = −𝜆, 𝑥

3
(𝜆) = 2𝜆. (36)

The plots of these fixed points with their corresponding
parametric dependence on𝜆 are shown in Figure 3(c). In light

of Proposition 17 we expect only 𝑥
0
and 𝑥

3
to be able to be

asymptotically stable fixed points in any given range of 𝜆. As
Figure 3(b) shows, precisely 𝑥

0
and 𝑥

3
are the fixed points

whose product distances cross the stability band (−2, 0) in
the range of 𝜆 being plotted. As we recall, the product
distance functions are the “stability conditions” of the fixed
points. As long as the product distances remain within the
stability interval, the fixed points are attractors, as we can
verify in Figure 3(a); also in this last panel, we can see the
two attracting fixed points at the beginning of the plotted
range; then, first 𝑥

3
loses its stability and gives rise to the

period doubling bifurcations cascade which leads to chaotic
behavior; later, zero also loses its stability and also gives rise
to period doubling and chaos.

Example 4. The logistic map, 𝐿
𝜆
(𝑥) = 𝜆𝑥(1 − 𝑥), is the

most immediate and obvious example application [16–19].
This map undergoes a series of period doubling bifurcations
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Figure 2: Bifurcation diagram (a), Product Position Functions and stability bands (b), and fixed points (c) for the constant and linear mixed
parameterizations of the fixed points example of the CCM.

starting at the value of 𝜆 = 3, ultimately achieving a chaotic
nature at 𝜆 ≈ 3.570 [18, p. 47]. The fixed points of the
logistic map are 𝑦

0
= 0 and 𝑦

1
= (𝜆 − 1)/𝜆 [18, p. 43].

The corresponding Linear Factors Form of the logistic map
is then ℎ

𝜆
(𝑥) = 𝑥 − 𝜆𝑥(𝑥 − ((𝜆 − 1)/𝜆)), where we can

identify the functions of the parameters 𝑀, 𝑦
0
, and 𝑦

1
from

its definitions [13] as 𝑠 = +1, �̃�(𝜆) = 𝜆, 𝑦
0
(𝜆) = 0, and

𝑦
1
(𝜆) = (𝜆 − 1)/𝜆. The corresponding nonzero fixed point

of the canonical logistic map, 𝑥
1
(𝜆) = 𝑠�̃�(𝑦

1
− 𝑦
0
), is then

simply [13] 𝑥
1
(𝜆) = 𝜆 − 1, from which we can state that the

canonical logisticmap takes the explicit form𝑔
𝜆
= 𝑥−𝑥(𝑥−𝜆+

1). In order to determine the stability properties of these fixed
points, both zero and nonzero, in the canonical logistic map,
it is then sufficient, as we have proved in Section 3, to observe
the behavior of the Product Position Functions (PPFs) of
these fixed points; namely,𝐷

𝑔,0
(𝜆) = 𝑥

1
− 0 = 𝑥

1
= 𝜆 − 1 and

𝐷
𝑔,1
(𝜆) = 0 − 𝑥

1
= −𝑥
1
= 1 − 𝜆. By determining when these

PPFs cross the stability bands whose boundaries are shown in
Table 2 [13] we can readily determine when these fixed points

are stable or unstable, when they bifurcate, and when they
reach any 2𝑛 attracting periodic orbit for any 𝑛, up to crossing
the 𝑏
∞

band. This whole process is depicted in Figure 4. In
particular, we can see fromTable 2, and again in Figure 4, that
when −1 < 𝑥

1
< 0, the zero fixed point is attracting since

its PPF lies within the first stability band and then exchanges
stability at 𝑥

1
= 0, when this last FP becomes stable and

proceeds to a period doubling cascade upon its PPF, −𝑥
1
,

crossing the bands defined by the bifurcation values −𝑏
1
, −𝑏
2
,

and so forth until reaching 𝑥
1
= 𝑏
∞

≈ 2.569941. This last
value agrees quite well and improves upon the approximation
reported in [18] of 3.570 for the logistic map, since with the
calculations of the present work 𝜆

∞
= 1 + 𝑏

∞
≈ 3.569941 ±

5×10
−7. Finally, since these maps are topologically conjugate

and it is known that the logistic map is chaotic starting with
𝜆 = 4 [18], we conclude that the Canonical Quadratic Map
must be so starting from 𝑥

1
= 3, which we may denote by 𝑏

𝑐
,

our final “bifurcation” value.
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Figure 3: Bifurcation diagram (a), Product Position Functions and first stability band (b), and fixed points (c) of the quartic polynomial map
example.

Table 2: Bifurcation values for the CQM. Reproduced from [13].

𝑘 𝑏
𝑘

1 2
2 √6

3 2.5440 ± 0.0005
4 2.5642 ± 0.0002
5 2.56871 ± 4 × 10

−5

6 2.56966 ± 1 × 10
−5

7 2.569881 ± 5 × 10
−6

.

.

.
.
.
.

∞ ∼2.569941 ± 5 × 10−7

Example 5 (harvesting strategies). The connection of the
logistic map with population models is old and well known.
In [19] there are a few examples of second degree polynomials
used as recurrence functions for modeling “harvesting,” or
hunting, strategies of animal populations. The main idea is

that the animal populations grow whenever there are food
and resources in the environment which, by account of its
finite resources, has a certain “carrying capacity”; this leads
to a maximum population which this environment can hold,
the population growing according to the logistic model. The
population may then be “harvested,” or hunted, at a certain
rate yet to be specified and, depending on this rate, it is
not hard to imagine that the final fate of the population of
animals may be (i) extinction, if the rate is too high; (ii)
steady population below the carrying capacity, if the rate is
“just right”; or (iii) steady population at its maximum value
dictated by the carrying capacity of the environment. A final
fourth possibility—perhaps more rare—is to (iv) bring more
individuals of the species fromoutside the systemunder anal-
ysis and introduce them to it, therefore making it possible for
the population to surpass in number the carrying capacity of
the system, but only to return naturally to themaximumvalue
after a finite number “time-steps.” To examine this in detail
consider the system defined by the recurrence relation Δ𝑦 ≡

𝑦
𝑛+1

− 𝑦
𝑛
= 𝑟(1 − 𝑦

𝑛
)𝑦
𝑛
. Here the population growth in any



Discrete Dynamics in Nature and Society 11

3.0
3.5
4.0

2.0
2.5

1.0
1.5

0.5
0.0

3.0 3.5 4.02.0 2.51.0 1.50.50.0
−0.5

A
sy

m
pt

ot
ic

 v
al

ue

Parameter

(a)

1

0

−1

−2

−3

−4

PP
Fs

3.0 3.5 4.02.0 2.51.0 1.50.50.0

Parameter

PPF0
PPF1

(b)

3.0

2.0
2.5

1.0
1.5

0.5
0.0

3.0 3.5 4.02.0 2.51.0 1.50.50.0

−0.5
−1.0

FP
s

Parameter

FP0
FP1

(c)

Figure 4: Bifurcation diagram (a), Product Position Functions (b), and fixed points (c) for the canonical logistic map.
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given periodΔ𝑦 is proportional to both the initial population
𝑦
𝑛
and the difference between this and the maximum popu-

lation, normalized to the value of 1. The proportion constant
is the growth rate 𝑟. After some simplification, we can rewrite
system as 𝑦

𝑛+1
= (1 + 𝑟)𝑦

𝑛
− 𝑟𝑦
2

𝑛
. We have yet to add the

“harvesting term(s),” whichwemight do in several ways. If we
consider a fixed rate (say each period we harvest a proportion
𝑏 of the population (in terms of the maximum)), then 𝑓(𝑦) =
(1 + 𝑟)𝑦 − 𝑟𝑦

2

− 𝑏 is the corresponding map of this discrete
dynamical system. From here we see that the fixed points

polynomial (FPP) of 𝑓 is 𝑃
𝑓
(𝑦) = 𝑟𝑦

2

− 𝑟𝑦 + 𝑏, whose FPs
we can determine to be 𝑦

±
= (1 ± √1 − 4𝑏/𝑟)/2, from which

we immediately calculate the Linear Factors Form (LFF) to
be 𝑓(𝑦) = 𝑦 − 𝑟𝑦(𝑦 − 𝑦

+
)(𝑦 − 𝑦

−
). From this form it is

also straightforward to determine that in the corresponding
Canonical Form we have 𝑥

1
(𝑏) = 𝑟(𝑦

+
− 𝑦
−
) = √𝑟(𝑟 − 4𝑏).

Both systems are related then by the linear transformations
𝑦
𝑛
= 𝑦
−
+ 𝑥
𝑛
/𝑟 and 𝑥

𝑛
= 𝑟(𝑦

𝑛
− 𝑦
−
). With this choice, the

zero fixed point in the canonical map corresponds to 𝑦
−
and

the nonzero fixed point to 𝑦
+
. To analyze the stability of this

system, consider 𝑟 to be fixed and given and consider 𝑏 to be
the parameter of this family of systems. The one immediate
conclusion is that, for 𝑥

1
∈ R, we necessarily have that

𝑥
1
≥ 0. Now, real 𝑥

1
implies 𝑏 ≤ 𝑟/4. Over the 𝑟/4 value 𝑥

1

becomes complex which does not give any fixed points (but
would mean “overharvesting”). Since “harvesting” cannot be
negative, it is clear 𝑏 = 0 corresponds to the maximum value
of 𝑥
1
= 𝑟 and that 𝑥

1
= 0 when 𝑏 = 𝑟/4. Remember now that

to analyze the stability of 𝑥
1
we consider its PPF; 𝐷

1
= −𝑥
1
.

Analogously, 𝐷
0
= 𝑥
1
. Since the maximum value of 𝑥

1
is 𝑟,
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this being the “unconstrained growth rate,” 0 < 𝑟 < 1, we have
that −𝑟 < 𝐷

1
< 0, therefore putting the 𝑥

1
in the stability

range between 𝑏
0

= 0 and −𝑏
1

= −2 determined by the
first stability band. This range is never left in any situation
with physical meaning so we conclude that the nonzero fixed
point, that is, 𝑦

+
in the original system, is always the only

asymptotically stable fixed point and the zero fixed point, that
is, 𝑦
−
in the original system, is always unstable. The only case

to analyze with care is 𝑏 = 0 since then the two fixed points
collide, but the semistability theorem [18] guarantees that in
this case 𝑥

1
= 0 is semistable from the right.

In conclusion,

(1) when 𝑏 = 𝑟/4 the population faces extinction asymp-
totically. Over this value extinction is achieved in a
finite number of steps, there not being any more fixed
points;

(2) when 0 < 𝑏 < 𝑟/4, 𝑥
𝑛
→ 𝑟 and the population tends

to 𝑦
+
= 0.5(1 + √1 − 4𝑏/𝑟);

(3) when 𝑏 = 0, that is, no harvesting, 𝑥
𝑛
still tends to

𝑥
1
= 0 from the right and, correspondingly, the pop-

ulation tends asymptotically to 𝑦
+
= 1.

5. Conclusions

We can summarize the findings of this work as having suc-
cessfully given conditions for the stability of the fixed points
of any real polynomial map with real fixed points and that
depends on a single parameter. In order to do this we have
defined “canonical polynomial maps” which are topologically
conjugate to any polynomial map of the same degree with
real fixed points. Then, the stability of the fixed points of the
canonical polynomial maps has been found to depend solely
on a special function called “product position” of a given
fixed point. The values of this product position determine
the stability of the fixed point and when it bifurcates to give
rise to attracting periodic orbits of period 2

𝑛 for all 𝑛 and
even when chaos arises through the period doubling cascade,
as it passes through different “stability bands,” although the
exact values and widths of these stability bands are yet to
be calculated for regions of type greater than one for higher
order polynomials. The latter must be done numerically. The
proposed methodology allows us to create discrete dynam-
ical systems with some prescribed bifurcation diagram.
Ultimately it is desired to obtain extensive tables of the
bifurcation values for higher order polynomials. The power
and simplicity of the proposed methodology will best be
appreciated with 3rd or higher degree polynomials and when
the implications for the Taylor polynomial of any nonlinear
map are understood.
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