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The aim of this study was to evaluate the osseointegration of implants which were surface-treated with various diameters of
TiO
2
nanotubes (30 nm, 70 nm, and 100 nm) in rabbit. Resorbable blast media (RBM) surfaced implants (Osstem, Busan, Korea)

3.5mm in diameter and 8.5mm in length were designated as the control group and the implants surface-treated with various
diameters of nanotubes (30 nm, 70 nm, and 100 nm) with the same shapes were designated as the experimental groups. The
implants were maintained unloaded for 4 and 12 weeks. After this period, the animals were sacrificed and micro-CT analysis,
histomorphometric analysis (bone to implant contact (BIC), bone volume (BV)), and removal torque test were performed. Micro-
CT analysis, histomorphometric analysis, and removal torque test results all showed the similar pattern, showing that 70 nm
experimental group had the highest value at 4 weeks while 30 nm experimental group had the highest value at 12 weeks. Therefore,
on the basis of the results above, it can be concluded that 30 nm and 70 nmTiO

2
nanotubesmay have positive effects on osteogenesis

and osseointegration depending on the healing time.

1. Introduction

Titanium and its alloys have long been used as implantable
biomaterials because of their high-quality mechanical prop-
erties, resistance to corrosion, and biocompatibility [1–3].
Although the resistance to corrosion and biocompatibility
come from inactivity of TiO

2
oxide layer, the osseointe-

gration of implant may also be delayed due to TiO
2
oxide

layer. Therefore, various research groups have been trying to
modify the TiO

2
surface to promote even earlier and better

osseointegration [2, 3].
Schwartz et al. [4, 5] reported that the harmony of surface

roughness, surface energy, surface composition, and surface
topography are necessary for optimal osseointegration of the
implant, and these surface conditions play the important

role in adhesion and proliferation of the cell, as well as
the adsorption of protein during the early state of healing
process. According to studies on the surface roughness of
implants, rough-surfaced implants have earlier and stronger
osseointegration clinically compared to smooth-surfaced
implants since rough-surfaced implants are easier to obtain
initial mechanical fixation, which is more advantageous for
osteoblast attachment and differentiation [6–10]. The ideal
surface roughness for optimal osseointegration with the
highest rate is known as 1-2 𝜇m [2, 11].

In recent years, nanoscale surface modification has been
attracting more attention ever since several investigators had
revealed that nanoscale topography influences cell adhesion
and osteoblast differentiation [12–14]. Above all, vertically
aligned and laterally spaced TiO

2
nanotubes created by
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electrochemical anodization have become increasingly popu-
lar for achieving superior osteoblast cell growth and directed
osteogenic differentiation of mesenchymal stem cells (MSCs)
[15–17]. TiO

2
nanotubes are hydrophilic, which increases

the surface area, and may provide increased channeling for
proper fluid exchange [15].

In the previous study, cell behavior on the surface of TiO
2

nanotube varied depending on the nanotube diameter. Oh
et al. reported that, on the 70 nm TiO

2
nanotube, the adhe-

sion of proteins, osteoblasts, and MSCs showed the highest
elongation and cellular activity of osteoblasts andMSCs were
obtained on large-sized (70, 100 nm) TiO

2
nanotube [16–19].

On the other hand, Park et al. [20, 21] reported that a spacing
of 15 nm provided the optimum length scale for integrin
clustering and focal contact formation, inducing osteoblasts,
MSCs, and osteoclasts proliferation and differentiation.

While there are many in vitro studies about TiO
2
nan-

otube, there are not many animal studies reporting the
effect of various nanotube diameters on osseointegration of
titanium implants. Moreover, the optimum TiO

2
nanotube

size is still controversial.Therefore, in this study wemeasured
and compared the bone area near the implants and implant
removal torques in rabbit to evaluate the osseointegration of
implants surface with various diameters of TiO

2
nanotubes

histomorphometrically and biomechanically.

2. Materials and Methods

2.1. Implants and TiO
2
Nanotube Fabrication

2.1.1. Implants. Twenty RBM surfaced implants (Osstem,
Busan, Korea) 3.5mm in diameter and 8.5mm in length were
designated as the control group and sixty machined surface
implants with the same shape were manufactured (Adtech,
Seoul, Korea) for the experimental group.

2.1.2. TiO
2
Nanotube Fabrication. TiO

2
nanotube surfaces

were processed on sixty machined surface implants. The
nanotubes were prepared in a 1 : 7 volumetric ratio of acetic
acid to hydrofluoric acid in water at 5, 15, and 20V. The
samples were then heat-treated at 500∘C for 2 h in order to
crystallize the amorphous structure into an anatase structure.
Implants treated with various diameters (30 nm, 70 nm, and
100 nm) of nanotube were designated as experimental groups
(Figure 1). Every group was divided into two categories
according to healing period (4 weeks, 12 weeks) (Table 1).

2.2. Experimental Animals and Surgical Procedure

2.2.1. Experimental Animals. Twenty rabbits (New Zealand
white), 6 weeks old, weighing approximately 3.5 kg each, were
used in this study. Animal selection, management, surgical
protocol, and procedures for this study were reviewed and
approved by the Institutional Animal Care and Use Commit-
tee, Yonsei Medical Center, Seoul, Korea.

2.2.2. Surgical Procedure. All surgical procedures were
performed under general anesthesia. The animals were

Table 1: Experimental groups classified by nanotube surface treat-
ment.

Week RBM surface 30 nm 70 nm 100 nm
4 10 10 10 10
12 10 10 10 10
RBM: resorbable blast media.

anesthetized with intravenously administered mixture of
30mg/kg of Zolazepam (Zoletil Virback Korea Co., Seoul,
Korea) and 10mg/kg of Xylazine HCI (Rumpun, Bayer
Korea, Seoul, Korea). After ten minutes, the site of surgery
was shaved and sterilized with povidone-iodine and then
further anesthetized with 2% lidocaine HCl with epinephrine
1 : 80000 by infiltration. Implants were placed in the right
femur of rabbit. The site of implantation was in the middle
of the femur where the quality of bone was poor in order
to observe the surface characteristic of the implant. After
8 weeks, implants of the same group were placed in the
left femur of rabbit (Figure 2). 4 weeks after the second
implantation animals were sacrificed by 2% paraformalde-
hyde injection to heart under a general anesthetic. Then the
block sections including implants were preserved and fixed
in 10% neutral buffered formalin for 2 weeks. Half of the
samples in each group were analyzed radiographically and
histomorphometrically while the remaining samples in each
group were analyzed biomechanically.

2.3. Evaluation Method

2.3.1. Micro-Computed Tomography (Micro-CT) Analysis.
Themean bone volumewithin 400𝜇mof implant surface was
measured by micro-CT (Skyscan 1076, Aartselaar, Belgium)
at 18 𝜇m pixel, 50 Kv, and 30 𝜇A (Figure 3).

2.3.2. Histologic and Histomorphometric Analysis. The speci-
mens were dehydrated through graded alcohols of 70%, 80%,
95%, and 100% at 2 h intervals for 1 week. The specimens
were then embedded in Technovit 7200 (Heraeus Kulzer,
Dormagen, Germany) and alcohols (1 : 3, 1 : 1, and 3 : 1 ratio)
and sectioned in the buccolingual plane using a diamond
saw (Exakt 300, Kulzer, Norderstedt, Germany). From each
implant site, the central section was reduced to a final
thickness of about 15 𝜇mbymicrogrinding and polished with
a cutting-grinding device (Exakt 400CS, Exakt Apparatebau,
Norderstedt, Germany) and finally stained with hematoxylin
and eosin.

The stained specimens were scanned and captured
using light microscope (Leica DM 2500, Leica Microsys-
tems, Wetzlar, Germany) at ×12.5, ×50 magnification.
The bone to implant contact ratio (BIC) was measured
in the microthreads and bone volume was measured at
both the microthreads (micro-BV) and three consecutive
macrothreads (macro-BV) using imaging analyses system
(Image-Pro Plus 4.5 Media Cybernetics Inc., Silver Springs,
MD, USA) (Figure 4).
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Figure 1: SEM images of a resorbable blast media surface used as control group (a) and TiO
2
nanotubes with various diameters, 30 (b), 70

(c), and 100 nm (d), processed by controlling anodizing potentials ranging from 5 to 20V (scale bar, 200𝜇m). Photo courtesy of Professor
Seunghan Oh fromWonkwang University.

(a) (b)

Figure 2: Surgical procedure and site of implants in the rabbit femur.

(a) (b)

Figure 3: The defined area for measurement of new bone (diameter 4.4mm × height 2.5mm).
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(a) Microthread (b) Macrothread

×12.5

Figure 4: Histologic feature of the specimen (H&E stain; 12.5 magnifications). (A) Microthreads area. (B) Three consecutive macrothreads
area.
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Figure 5:Measurement ofmicro-CTbone volume (mm3) at 4weeks
and 12 weeks.

2.3.3. Removal Torque Value (RTV) Analysis. To biomechan-
ically evaluate the osseointegration of implants, removal
torque value analysis was performed immediately after sacri-
fice. Sampleswith implantswere connected to removal torque
test apparatus (Mark-10, MGT12, New York, USA) with the
long axis of implant parallel to the long axis of apparatus.
Screw driver was turned in counterclockwise direction until
the implant bone interface was destroyed.

2.3.4. Statistical Analysis. Statistical analysis was performed
using the SASV 9.2 (SAS Institute, Cary, NC). All results were
expressed as mean and standard deviation. Kruskal-Wallis
test was used in comparing differences among the groups at
4 and 12 weeks to test for relationships between micro-CT

BV/BIC/micro-BV/macro-BV and RTV analysis.The level of
statistical significance was set at 𝑃 < 0.05.

3. Results

3.1. Clinical Finding. Among twenty rabbits, four rabbits died
from femur fracture or postsurgery stress. In addition, we
could not use 16 samples due to femur fracture at the site of
implantation. Finally, out of the forty-eight samples acquired,
thirty samples were used for micro-CT and histomorpho-
metric analysis and eighteen samples were used for removal
torque analysis.

3.2. Micro-CT Scan. Regardless of nanotube diameter, the
micro-CT bone volume results at 12 weeks showed signifi-
cantly higher value than at 4 weeks (𝑃 < 0.05). At 4 and
12 weeks, 30 nm and 70 nm experimental groups had the
highest bone volume, but there were no statistical significant
differences between 4 weeks group and 12 weeks group (𝑃 >
0.05) (Figure 5). From the micro-CT images, implants were
found to be well positioned in themiddle of femur (Figure 6).

3.3. Histologic and Histomorphometric Analysis. The BIC
results at 12 weeks showed significantly higher value than
at 4 weeks (𝑃 < 0.05). At 4 weeks, 70 nm experimental
group had the highest BIC results and, at 12 weeks, 30 nm
experimental group had the highest BIC results. But there
were no statistical significant differences among experimental
groups (𝑃 > 0.05) (Figure 7).

The BV results at 12 weeks showed significantly higher
value than at 4 weeks (𝑃 < 0.05). At 4 weeks, 70 nm
experimental group had the highest BV value, but there was
no statistical significant differences (𝑃 > 0.05). At 12 weeks,
30 nm experimental group had significantly higher BV value
than 100 nm experimental group (𝑃 < 0.05) (Figure 8).
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Figure 6: Micro-CT images of representative sample of each group.
All the implants were placed favorably in femur.
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Figure 7: Measurement of BIC (%) at 4 weeks and 12 weeks in
defined area which is designated in microthreads.
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Figure 8:Measurement of bone volume (%) at 4 weeks and 12 weeks
in defined area which is designated in microthreads.
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Figure 9: Measurement of bone volume (%) in defined area which
is designated in three consecutive macrothreads at 4 weeks and 12
weeks.
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Figure 10: The mean of removal torque values at 4 weeks after
implantation.
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Figure 11: Histologic images of control ((a), (b), and (c)) and 30 nm ((d), (e), and (f)) groups at 4 weeks after implantation. ((a), (d)) H&E
stained images at lower magnification (×12.5), ((b), (e)) H&E stained images of microthreads in the A&D (×50), and ((c), (f)) H&E stained
images of macrothreads in the A&D (×50).

The bone volume measured at the three consecutive
macrothreads (macro-BV) at 4 weeks showed higher values
than at 12 weeks. However, there were no statistical significant
differences between 4 weeks group and 12 weeks group (𝑃 >
0.05). At 4weeks, 70 nm experimental group had significantly
highermacro-BVvalue than 100 nmexperimental group (𝑃 <
0.05). At 12 weeks, control group had the highest macro-
BV value, but there were no statistical significant differences
(𝑃 > 0.05) (Figure 9).

3.4. Removal TorqueMeasurement. At 4weeks, 70 nmexperi-
mental group had higher removal torque value than the other
groups (𝑃 < 0.05) (Figure 10).

4. Discussion

In the installation of implants, adhesion and differentiation of
cells on the implant surface are critical factors for a successful
osseointegration between the implant and the bone. There-
fore, in order to enhance cell adhesion and osteogenesis of
cells on the implant surface, there have been many studies on
modifying the TiO

2
surface by processing nanostructures on

the oxide surface [13]. Vertically aligned and laterally spaced
TiO
2
nanotubes created by electrochemical anodization are

hydrophilic, whichmeans TiO
2
nanotubes could increase the

surface area and provide increased channeling for the proper
fluid exchange. In addition, the advantage of TiO

2
nanotube

includes simple, low cost, flexible manufacturing and the
possibility of its usage as a drug or growth factor delivery
system [15]. Therefore, it is important to perform in vitro
study using small-, medium-, or large-sized animals to com-
pare the osseointegration of the surface-treated implants with
various diameters of TiO

2
nanotube.This study evaluated the

osseointegration of implants, which is surface-treated with
various diameters of TiO

2
nanotube in accordance with the

healing time in rabbit.
Previous in vivo studies to investigate the effect of TiO

2

nanotube on osseointegration weremostly done in rat model.
In the present study, in order to investigate the osseointe-
gration in larger animal, rabbits (New Zealand white) were
used. The rabbit is one of the most commonly used animals
for medical research, being used in approximately 35% of
musculoskeletal research studies, due to its compact size and
ease of handling [22]. We installed 4 implants in the rabbit
to compare the osseointegration processes betweenmodeling
stage (4 weeks) and remodeling stage (12 weeks) in the same
animal [23]. And we installed the implants in the middle of
the rabbit femur where the quality of bone was poor in order
to observe the surface characteristic of the implant. For the
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Figure 12: Histologic images of 70 ((a), (b), and (c)) and 100 ((d), (e), and (f)) nm groups at 4 weeks after implantation. ((a), (d)) H&E stained
images at lower magnification (×2.5), ((b), (e)) H&E stained images of microthreads in the A&D (×50), and ((c), (f)) H&E stained images of
macrothreads in the A&D (×50).

rabbit model, implants are not recommended to be larger
than 2mm in diameter and 6mm in length because the bone
is very brittle [24]. In this study, we used commercial size
(3.5mm ∗ 8.5mm) implant, which might have been too large
for the rabbit and therefore had resulted in femur fracture;
specially designed implant for the rabbit would be required
in the future study to reduce the fracture.

Implants treated with various diameters of nanotubes
(30 nm, 70 nm, and 100 nm) were designated as experimental
groups since those showed the best results from the previous
studies [16, 20, 25]. Half of the samples in each group
used to measure bone area near the implants in order to
evaluate the osseointegration of implants radiologically and
histomorphometrically.The remaining samples in each group
were used to measure the removal torque values and evaluate
the osseointegration of implants.

In micro-CT analysis, we measured the bone area near
the implants to evaluate the osseointegration of implants
radiologically. Micro-computed tomography is an efficient,
nondestructive, and reproducible three-dimensional imaging
technique that analyses bone architecture and density under
various conditions without sophisticated specimen prepara-
tion. Although themicro-CT evaluation has limited ability to
measure bone adjacent to the implant surface, it can possibly
be used for studies designed to compare different groups of

experiments [26]. Futami et al. [27] stated that the affected
areas in the installation of implant are within 100 𝜇m drilling
sites and Kenzora et al. [28] stated that the affected areas are
within 500 𝜇m drilling sites. In this study, we set the affected
area to be within 400𝜇m from the implant surface.

In micro-CT analysis the bone volume results at 12 weeks
were significantly higher than at 4 weeks (𝑃 < 0.05).
It can be stated that osseointegration of the implant was
enhanced by the bone remodeling and maturation over the
time.This finding meets the purpose of our study to compare
the osseointegration of implants surface-treated with TiO

2

nanotube between late modeling and late remodeling stages.
Although there were no significant differences, 30 nm and
70 nm experimental groups showed the higher bone volume
than other groups at 4 and 12 weeks (Figure 5). From
the result of the micro-CT analysis, it can be stated that
the implants surfaced-treated with 30 nm and 70 nm TiO

2

nanotubes show higher bone formation than control group.
In histomorphometric analysis, the BIC and bone volume

were measured in the microthreads (BV) and three consecu-
tivemacrothreads (macro-BV). Although histomorphometry
is a destructive method and there is uncertainty whether
the analysis of histological sections represents the entire
osseous status, the histomorphometric evaluation of the bone
implant contact (BIC) and bone area within the threads
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Figure 13: Histologic images of control ((a), (b), and (c)) and 30 nm ((d), (e), and (f)) groups at 12 weeks after implantation. ((a), (d)) H&E
stained images at lower magnification (×12.5), ((b), (e)) H&E stained images of microthreads in the A&D (×50), and ((c), (f)) H&E stained
images of macrothreads in the A&D (×50).

(BV) was established as the most common method and
was applied in the majority of subsequent studies [29–31].
In histomorphometric analyses, BIC and BV results at 12
weeks were significantly higher than at 4 weeks (𝑃 < 0.05).
Interestingly, although there was no statistical significance,
the macro-BV results at 4 weeks were higher than at 12
weeks. This may be because modelled bone resulted from
favorable surface characteristics during the healing period
which was then resorbed during remodeling period because
there were little functional stress and cellular component in
the cancellous bone. Also, it can be stated that even in the
situation where the bone is difficult to be generated there was
new bone formation near the implants which were surface-
treated with TiO

2
nanotube in modelling stage. Although

there was no significant difference in histomorphometric
analyses, 70 nm experimental group had the highest BIC and
BV result at 4 weeks and 30 nm experimental group had the
highest BIC and BV result at 12 weeks (Figures 11, 12, 13, and
14).

Removal torque test has been used for one of the ways
to evaluate new bone formation since Johansson et al.
said that a directly proportional relationship exists between
removal torque and BIC [32]. In removal torque test, 70 nm
experimental group had significantly higher value than any
other groups at 4 weeks (𝑃 < 0.05) (Figure 10). These

findings might explain the higher BIC and BV results of
the 70 nm experimental group than any other groups at 4
weeks. We could not perform the statistical analysis because
the number of specimens at 12 weeks was not sufficient for
testing. However, the mean removal torque at 12 weeks was
higher than at 4 weeks and 30 nm experimental group had
the higher result than other experimental groups.

In this study, 30 nm and 70 nm experimental groups
showed more new bone formation and bone implant fix-
ation than control group. This result is in agreement with
previously published study where pull-out testing indicated
that TiO

2
nanotubes significantly improved bone bonding

strength compared with TiO
2
grit-blasted surfaces in rabbit

tibias [33]. We hypothesize that the topography of the TiO
2

nanotubes more closely resembles the porous structure of
native bone tissue, allowing more optimal interactions for
contact osteogenesis.

In this study, micro-CT investigation, histomorphomet-
ric analysis, and removal torque test showed similar patterns.
The 70 nm experimental group at 4 weeks and the 30 nm
experimental group at 12 weeks showed more new bone
formation and exhibited a stronger osseointegration than
other groups.

Our results showing good radiological, histological,
biomechanical results in the 70 nm experimental group at 4
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Figure 14: Histologic images of 70 ((a), (b), and (c)) and 100 ((d), (e), and (f)) nm groups at 12 weeks after implantation. ((a), (d)) H&E
stained images at lower magnification (×12.5), ((b), (e)) H&E stained images of microthreads in the A&D (×50), and ((c), (f)) H&E stained
images of macrothreads in the A&D (×50).

weeks are in accordance with Oh et al. reporting that the
optimal elongation and cellular activity of osteoblasts and
stem cells were obtained in large diameters (80, 100 nm)
[16, 19]. They are also in accordance with von Wilmowsky et
al. [25], who reported that the highest level of osteocalcin was
observed in the 70 nm nanotube implant.

Once healing is completed and remodeling has been
progressed at 12 weeks, 30 nm experimental groups showed
good radiological, histological, and biomechanical results.
These results are in accordance with Park et al. who reported
that a spacing of 15 nm provides the optimum length scale
for integrin clustering and focal contact formation, inducing
osteoblasts, MSCs, and osteoclasts proliferation, migration,
and differentiation [20, 21]. In addition, the maintenance
of an appropriate balance of bone resorption and bone
remodeling during and after wound healing is important for
stable integration of the implants. Inmost aspects, osteoblasts
and osteoclasts behave different in vitro and in vivo. Thus,
the similar response of MSCs, HSCs, and osteoclasts to the
15 nm spacing suggests that this nanoscale spacing may be
a universal scaffold at least for bone remodeling-associated
cells [20, 21].

However, the cellular and molecular mechanism respon-
sible for the favorable osteogenesis responses to TiO

2

nanotube is a complex biological process and is not fully

understood yet. And the in vitro and in vivo studies searching
for the optimal TiO

2
nanotube diameter have shown con-

flicting results depending on surface chemistry, crystalline
structure, roughness, cell type, species of animal, and other
experimental conditions. There are several material factors
that affect how the proteins adhere, unfold and how the sur-
face is perceived by the cell. These include surface chemistry,
surface energy/tension/wet ability, surface roughness, crystal
structure, surface charge, feature size, feature geometry, and
other mechanical properties such as elasticity [15].Therefore,
in order to find the optimal diameter of the TiO

2
nanotube,

the studies in various surface conditions of nanotube and
in various kinds of animal models should be comparatively
analyzed.

The limits of this study include that the number of sam-
ples of the experimental groups was too small and the femur
was used as the model instead of the jaw bone. In addition,
it was not possible to avoid the differences in the thickness
of the cortical bone or the rate of growth and rehabilitation
as well as other variations that might have happened during
surgery. However, the implants that were surface-treated with
TiO
2
nanotube showed good osseointegration compared to

the control group. From the time point of view, the 70 nm
experimental group at 4 weeks and the 30 nm experimen-
tal group at 12 weeks showed more new bone formation
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and a stronger osseointegration than other groups.Therefore,
depending on healing time, both 30 nm and 70 nm TiO

2

nanotubes could be beneficial to osseointegration of implants
compared to control and 100 nmnanotubes.However, further
investigation with the increasing number of implants would
be necessary to yield a meaningful result because statistically
significant difference was not found.

Future trends of implant will be concerned about the
modifications of surface roughness at the nanolevel and the
incorporation of biological drugs for earlier osseointegration
and loading in large defect region. Due to their simple
manufacturing and the possibility for the usage as a drug
delivery system, TiO

2
nanotubes can be a useful method

for future implant surface treatment [3]. Therefore, based on
this experiment, preclinical studies confirming the optimal
nanotube diameter for earlier osseointegration, implantation
in large defect area, and drug delivery in large-sized animal
model are necessary.

5. Conclusion

Within the limitations of this study, the results from micro-
CT and histomorphometric analysis showed that the bone
volume, BIC, and micro-BV results at 12 weeks were higher
than at 4 weeks (𝑃 < 0.05). However, BV results in three
consecutive macrothreads at 4 weeks were higher than 12
weeks (𝑃 > 0.05). Also, removal torque test showed that
70 nm experimental group had higher removal torque value
than any other groups at 4 weeks (𝑃 < 0.05). Overall,
micro-CT, histomorphometric analysis, and removal torque
test results all showed similar pattern; 70 nm experimental
group had highest value at 4 weeks and 30 nm experimental
group had highest value at 12 weeks.Therefore, on the basis of
above results, it can be concluded that both 30 nm and 70 nm
TiO
2
nanotubesmay have positive effects on osteogenesis and

osseointegration depending on the healing period.
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