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Abstract We present a scheme for the generation of central
exclusive final states in the PYTHIA8 program. The imple-
mentation allows for the investigation of higher-order cor-
rections to such exclusive processes as approximated by the
initial-state parton shower in PYTHIA8. To achieve this, the
spin and colour decomposition of the initial-state shower
has been worked out, in order to determine the probability
that a partonic state generated from an inclusive sub-process
followed by a series of initial-state parton splittings can be
considered as an approximation of an exclusive colour- and
spin-singlet process. We use our implementation to inves-
tigate the effects of parton showers on some examples of
central exclusive processes, and we find sizeable effects on
di-jet production, while the effects on e.g. central exclusive
Higgs production are minor.

1 Introduction

Compared to the fairly clean environment of e+e− annihila-
tion, proton collision events are in general very messy, espe-
cially at the LHC at high luminosity. Even at lower luminos-
ity where pile-up events are absent, the existence of multiple
soft interactions and initial-state parton showers means that
any hard sub-process of interest will be obscured by soft and
semi-hard hadrons smearing the measurements. However, for
some rare events, a central colour-singlet hard sub-process
may appear in complete isolation, with rapidity gaps on both
sides stretching all the way out to the (quasi-) elastically scat-
tered protons, giving a nice and clean environment to study
its properties.
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Such central exclusive processes (CEPs) have been exten-
sively studied in the so-called Durham formalism, first
described by Khoze, Martin and Ryskin in [1] and reviewed
in detail in [2]. The simplest such process is Higgs produc-
tion, where two gluons in a colour- and spin-singlet state fuse
together via a top-quark loop into a Higgs particle as outlined
in Fig. 1. With an additional virtual exchange of a (semi-hard)
gluon, the net colour exchange between the colliding protons
can be zero and we may end up with a very simple and clean
final state consisting only of two (quasi-) elastically scattered
protons along the beam pipe and the Higgs decay products
in the central rapidity region.

The formalism can be generalised to any colour-singlet
hard sub-process, and the main ingredients to construct the
amplitude is the matrix element for this sub-process and the
so-called off-diagonal unintegrated parton densities. The lat-
ter can be interpreted as the amplitude related to the proba-
bility of finding gluons in a proton with equal but opposite
transverse momentum, q⊥, and carrying energy fractions x
and x ′ each, one of which is being probed by a hard scale μ2.
These densities also include a Sudakov form factor describ-
ing the probability that there is no additional initial-state radi-
ation from the incoming gluon between the scales q⊥ and μ,
which could destroy the rapidity gaps. Additional emissions
below q⊥ are then suppressed since they cannot resolve the
individual colours of the two gluons. A third ingredient is the
so-called soft survival probability which gives the probabil-
ity that there are no additional soft or semi-hard interactions
between the colliding protons which could destroy the rapid-
ity gap.

Implementing the Durham formalism for CEP in an event
generator is fairly straightforward since the final states are
quite simple and clean. The cross section for any sub-process
can be decomposed in a central exclusive luminosity function
which is folded with a colour-singlet matrix element in a
specific spin state. Several implementations have been made
[3–5], and in this paper will present yet another.
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Fig. 1 The basic diagram for a
general central exclusive
process pp → p + X + p

Our implementation is provided as an add-on1 to PYTHIA8
[6] and is inspired by the observation that the Sudakov form
factors in the off-diagonal unintegrated parton densities used
within the Durham formalism can be interpreted in terms of
no-emission probabilities in the parton shower language of
PYTHIA8.

In this way, we can reformulate the cross section for pro-
ducing a CEP event in terms of a probability that a standard
inclusive sub-process generated by PYTHIA8 at some scale
during the parton shower evolution is converted to a colour-
singlet, and thereafter be considered a CEP event disallow-
ing further initial-state shower splitting. The main advantage
of this approach is that we actually are allowed to include
initial-state shower splittings, and thus can approximately
model higher-order corrections to the original sub-process.
In addition, we have the option of using the multiple interac-
tions machinery of PYTHIA8 to directly model soft survival
probability as suggested in [7].

Consider, e.g., the central exclusive production of di-jets.
We would start by generating the basic 2 → 2 hard partonic
scattering from the inclusive matrix element. We would then
generate an initial-state parton emission from each of the
incoming partons. This implicitly includes the probability
that no emission has been made at a higher scale than the
two generated splittings. If the colour and spin state of the
original 2 → 2 is consistent with a CEP, we basically take
the ratio of the corresponding exclusive cross section and
the one calculated with the inclusive matrix element, using
the generated scales as factorisation scale. This gives us the
probability to discard the generated splittings and continue
the event as a CEP, or to keep the hardest emission and con-
tinue as a normal inclusive event.

If we continue the event as inclusive, we keep the hardest
splitting and again generate one initial-state splitting from
each side. Now we have a three-parton final state for which it
must be checked if it can be a candidate for CEP, but otherwise
the procedure is repeated. It should be noted that PYTHIA8 in
general does not assign spin states to particles, so the proce-
dure here also involves a spin decomposition of the parton
splitting probabilities and the matrix elements to correctly
get the probability for this to be a CEP. This will become

1 The code uses the PYTHIA8 UserHooks machinery and is available
on request from the authors.

cumbersome when we go up in parton multiplicity, but it is
still fairly straightforward.

The fact that we can stop the parton shower at any stage and
check if we can convert the generated state exclusive, does
not only mean that we can approximate higher-order contri-
butions from initial-state radiation. If we continue the parton
shower evolution to low scales we are also able to investigate
the transition region between the Durham formalism and the
resolved Pomeron formalism [8] which may produce similar
final states.

The outline of this paper is as follows. First, we recapit-
ulate the main features of the Durham formalism in Sect. 2.
Then we describe the different parts of our implementation
in the PYTHIA8 program, starting in Sect. 3 with the rein-
terpretation of the exclusive luminosity function in terms of
the parton shower no-emission probabilities, and followed
by a description (Sect. 4) of the spin and colour decomposi-
tion of a given partonic state generated by a parton shower
from an inclusive hard matrix element. In Sect. 5 we then
present some proof-of-concept results for some sample pro-
cesses before we conclude with a summary and outlook in
Sect. 6.

2 The Durham formalism

Within the Durham model, the amplitude, A, of the central
exclusive process in a pp collision,

pp → p + X + p, (1)

can be written as

iA
s

=
∫

π2 d2qM
q2(q − p1)2(−q − p2)2

× fg(x1, x
′
1, Q

2
1, μ

2; t1) fg(x2, x
′
2, Q

2
2, μ

2; t2), (2)

where the integration runs over the two-dimensional trans-
verse momentum of the screening gluon q (Fig. 1). The trans-
verse momenta of the outgoing protons are denoted p1 and
p2. The scales Q2

1 and Q2
2 are within the Durham model [9]

defined as

Q2
1 = min

[
q2, (q − p1)

2
]
, (3)

Q2
2 = min

[
q2, (−q − p2)

2
]
, (4)

i.e. as the smaller of the virtualities of the screening gluon and
the fusing gluon momenta related to the particular proton.

The proton form factors, FN , are absorbed into off-
diagonal unintegrated PDFs fg . These PDFs are assumed
to factorise as:

fg(x, x
′, Q2, μ2; t) = fg(x, x

′, Q2, μ2)FN (t), (5)
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where t1,2 ≈ −p2
1,2. The proton form factors in the simplest

approach are FN (t) = ebt/2, with b ≈ 4 GeV−2. These off-
diagonal unintegrated densities depend on the momentum
fraction of the fusing (screening) gluon x (x ′) and on two
scales: the scale of the hard sub-process μ2; and the scale
corresponding to the screening gluon transverse momentum
Q2.

The kinematic regime relevant for CEP is Q/
√
s ∼ x ′ �

x ∼ MX/
√
s, which allows one to integrate out the x ′-

dependency of fg and express them using generalised gluon
PDFs Hg and the Sudakov factor TM :

fg(x, x
′, Q2, μ2)

= ∂

∂ ln Q2

[
Hg

( x
2
,
x

2
; Q2

)√
TM (Q2, μ2)

]
. (6)

The Sudakov factor TM describes the probability of no
emission from the fusing gluons between scales Q2 and μ2.
It resumes singularities from virtual diagrams with soft or
collinear emissions up to (modified) next-to-leading loga-
rithmic accuracy and ensures that the integral (2) is finite, as
the Sudakov factors exponentially suppress low q contribu-
tion.

TM (Q2, μ2) = exp

(
−
∫ μ2

Q2

dk2

k2

αs(k2)

2π

×
∫ 1−ε(k/MX )

0
dz
[
zPgg(z) + n f Pqg(z)

] )

(7)

In this expression both the splitting functions Pgg , Pqg and the
running of αs are in the leading-order form. The upper bound
of the z integration2 depends on the mass of the exclusive sys-
tem which makes the Sudakov factor TM also MX -dependent
as indicated by the subscript, M .

The generalised PDF Hg [10] can be approximately calcu-
lated from the ordinary parton distribution function of gluon
g(x, Q2) using the relation

Hg

( x
2
,
x

2
; Q2

)
= 4

π

∫ 1

x
4

dy x
√
y(1 − y) g

(
x

4y
, Q2

)
.

(8)

In a much used approximation the generalised PDF, Hg ,
is simply proportional to the conventional one

Hg

( x
2
,
x

2
; Q2

)
= Rg x g(x, Q

2), (9)

where the constant Rg is about 1.3 for LHC energies [10].

2 Usually simply ε(k/MX ) = k/MX .

The sub-process amplitude M depends on the transverse
momenta of the fusing gluons q1 and q2,

q1 = q − p1 q2 = −q − p2, (10)

and on the gg → X vertex V ab
i j , which is averaged over

identical colour indices a = b. We have

M = 2

M2
X

1

N 2
C − 1

δabqi1q
j

2 V
ab
i j . (11)

The sub-process amplitude is typically known in the helic-
ity basis. In this basis the vertex term qi1q

j
2 V aa

i j takes the form

qi1q
j

2 V aa
i j

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 1
2 (qx1 q

x
2 + qy

1 q
y
2 ) × (A++ + A−−)

− i
2 (qx1 q

y
2 − qy

1 q
x
2 ) × (A++ − A−−)

+ 1
2

[
(qx1 q

x
2 − qy

1 q
y
2 ) + i(qx1 q

y
2 + qy

1 q
x
2 )
]× A−+

+ 1
2

[
(qx1 q

x
2 − qy

1 q
y
2 ) − i(qx1 q

y
2 + qy

1 q
x
2 )
]× A+−

≡

⎧⎪⎪⎨
⎪⎪⎩

S0+(q1, q2) × (A++ + A−−)

S0−(q1, q2) × (A++ − A−−)

S+2+(q1, q2) × A−+
S−2+(q1, q2) × A+−

, (12)

where we have introduced the kinematic spin factors
SJz (q1, q2) for future reference with qi1 = qi − pi1 and
qi2 = −qi − pi2 (i = x, y), and the amplitudes, e.g. A++,
depend on MX , the momenta of outgoing particles, the helic-
ities of outgoing particles as well as the helicities of incoming
gluons (here both +1). The amplitudes also depend on the
colours of the particles in the sub-process. Here, the ampli-
tudes A are the result of averaging over colour indices of the
incoming partons in such a way that the exclusive system is
a colour-singlet.

It is useful to note that in the collinear limit, where q1 =
−q2 = q the kinematic factors are simply

S0+(q,−q) = 1

2
q2, S0−(q,−q) = 0, and

S±2+(q,−q) = −1

2
q2 e±2iφ, (13)

where the azimuthal angle of q was labelled as φ. The state
Jz = 0− is trivially zero as a consequence of cross prod-
uct of two collinear vectors. States |Jz | = 2 become zero
after integration over φ because the remaining part of (2) is
φ independent in the collinear limit. Beyond such collinear
limit also non-spin-singlet states contribute to the cross sec-
tion, but are suppressed as 〈q2〉2/〈p2

1,2〉2 ∼ 0.01 with respect
to the spin-singlet term [5] (if all helicity amplitudes, A, are
of the same size).

Note that Eq. (2) does not include a soft survival prob-
ability which cannot be calculated in a perturbative way. It
reduces the CEP cross section at LHC by typically two orders
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of magnitude and can, e.g., be determined using the eikonal
model [10–12].

3 Reinterpretation of the exclusive cross section

3.1 Prerequisites

In the following discussion it will be beneficial to reformu-
late the CEP amplitude of the Durham model into a more
straightforward form and rather work directly with the exclu-
sive cross section σ exc,

σ exc =
∫

dy d ln M2d2p1d2p2 e−bp2
1 e−bp2

2
1

64π2

1

2M2

×
∣∣∣∣
∫ d2q qi1q

j
2 V aa

i j (M, w,μ2
R)

q2(q − p1)2(−q − p2)2

× f Mg (x1, x
′
1, Q

2
1, μ

2
F ) f Mg (x2, x

′
2, Q

2
2, μ

2
F )

∣∣∣∣
2

d	w.

(14)

The variables y and M denote the rapidity and mass of the
exclusive system and are related to the momenta fractions x1

and x2 by the formulae

x1 = M√
s
ey x2 = M√

s
e−y . (15)

The transverse momenta p1 and p2 of the scattered pro-
tons are assumed to be distributed according the simple one-
channel model with the slope of the exponential equal to
b ∼ 4 GeV−2. The integration inside the absolute value is
performed over transverse momentum q of the “screening”
gluon. The other variables are recognised from the previous
section. For completeness the dependency of the off-diagonal
generalised PDFs on mass M (via a Sudakov form factor) as
well as the arguments of V aa

i j are written explicitly. The kine-
matics of all outgoing particles of the exclusive system X is
denoted by w and d	w is the corresponding phase space ele-
ment. The whole expression is integrated over phase space
of these outgoing momenta w, which satisfy the imposed
kinematic cuts.

Inspired by a similar form of the derivative of the expo-
nential function, we factorise the Sudakov factor in Eq. (6)
in front of the bracket, which leads to

f Mg (x, x ′, Q2, μ2
F ) =

√
TM (Q2, μ2

F ) φM (x, Q2), (16)

where the newly introduced modified PDF φM is defined as

φM (x, Q2) =
⎡
⎣dHg(

x
2 , x

2 ; Q2)

d ln Q2 + αs(Q2)

4π
Hg

( x
2

,
x

2
; Q2

)

×
∫ 1−ε

(
Q
M

)

0
dz
[
zPgg(z) + n f (Q)Pqg(z)

]
⎤
⎦ .

(17)

In the text below, for simplicity, only the dominant spin-
singlet part will be considered and the following abbreviation
is introduced:

D2
1,2 q = d2q

q2(q − p1)2(−q − p2)2 (q−p1)·(−q−p2), (18)

where the indices 1, 2 indicate the dependency of the differ-
ential on transverse momenta p1 and p2 and the dot repre-
sents the scalar product of two-dimensional vectors. In the
collinear limit3 this differential simplifies to −d2q/q4.

Using these notations and assumptions the formula (14)
takes the form

σ exc =
∫

dy d ln M2d2p1d2p2 e−bp2
1 e−bp2

2

× 1

256π2

1

2M2 D
2
1,2 q D2

1,2 q′

× φM (x1, Q
2
1)φM (x2, Q

2
2)φM (x1, Q

′2
1 )φM (x2, Q

′2
2 )

× T 1/2
M (Q2

1, μ
2
F )T 1/2

M (Q2
2, μ

2
F )T 1/2

M (Q′2
1 , μ2

F )T 1/2
M (Q′2

2 , μ2
F )

× |A++ + A−−|2d	w, (19)

where q′ is the transverse momentum of the screening gluon
in the complex conjugate amplitude.

In the next step, the exclusive cross section (19) will be
expressed as a product of the exclusive luminosity and the
exclusive cross section. We define the spin-singlet colour-
singlet cross section of the hard sub-process as

σ s(w,μ2
r ) = 1

4

1

64

1

2M2

∑
λ, j

∣∣∣∣∣
8∑

a=1

(
Aaa→ j

++→λ + Aaa→ j
−−→λ

)∣∣∣∣∣
2

,

(20)

where the factor 1/4 follows from the probability to have
some particular helicity configuration of the incoming glu-
ons and the coefficient 1/64 has an analogous meaning for
the colours. The term 1/2M2 represents the “flux factor”.
The symmetrisation factor, Ns , important if identical parti-
cles occur in the final state, is assumed to be incorporated
in the amplitudes A, i.e. amplitudes are scaled by 1/

√
Ns .

Letters λ and j denote all possible helicity and colour con-
figurations of the exclusive system.

The exclusive luminosity which corresponds to the exclu-
sive cross section of the hard sub-process (20) is

Lexc(M, y, μ2
F )

=
∫

1

π2 d2p1d2p2 e−bp2
1 e−bp2

2 D2
1,2 q D2

1,2 q′

× φM (x1, Q
2
1)φM (x2, Q

2
2)φM (x1, Q

′2
1 )φM (x2, Q

′2
2 )

× T 1/2
M (Q2

1, μ
2
F )T 1/2

M (Q2
2, μ

2
F )

× T 1/2
M (Q′2

1 , μ2
F )T 1/2

M (Q′2
2 , μ2

F ). (21)

3 i.e. |p1| � |q| and |p2| � |q|.
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Fig. 2 Integrand of Eq. (23) for Higgs production at LHC,
√
s =

13 TeV and μF = 125 GeV (left), and for di-jet production at Teva-
tron,

√
s = 1.96 TeV and μF = 25 GeV (right). The dashed lines

depict the medians of the distributions, which are 2.6 GeV for LHC and
1.8 GeV for Tevatron. We calculated the generalised gluon PDF Hg
from MMHT2014 LO PDF using formula (8)

In the collinear limit, where p1 and p2 are neglected with
respect to q and q′, the luminosity can be integrated over p1

and p2 and over the azimuthal angles of q and q′ which leads
to

Lexc(M, y, μ2
F ) = π2

b2

∫
dq2

q4

dq ′2

q ′4

× φM (x1, q
2)φM (x2, q

2)φM (x1, q
′2)

× φM (x2, q
′2)TM (q2, μ2

F )TM (q ′2, μ2
F ),

(22)

Lexc(M, y, μ2
F )

= π2

b2

∣∣∣∣
∫

d ln q2

q2 φM (x1, q
2)φM (x2, q

2) TM (q2, μ2
F )

∣∣∣∣
2

.

(23)

The integrand in (22) is fairly flat if considered as a
function of 1/q2 and 1/q ′2 which makes these variables
suitable for Monte Carlo integration,4 especially because
d(1/q2) = −dq2/q4.

The integrand in (23) is shown in Fig. 2 for ln q2 as an inte-
gration variable. For calculating of the exclusive luminosity
the upper limit of integration is set to the factorisation scale
μF , nevertheless the integrand is typically negligible in the
high q region. Whereas it dominates for q of 2–3 GeV in the
case of LHC Higgs production and for even smaller values
(1–2 GeV) in the case of di-jet production at Tevatron. Values
below the starting scale q0 = 1 GeV of MMHT2014 LO PDF

4 The integral over k⊥ in the definition of the Sudakov factor TM (7) can
be evaluated numerically by means of the Gauss–Kronrod quadrature
formula [13]. The relative error of TM is then typically 10−16 if the
function values in 15 points are used for the numerical integration.

[14] can be extracted using a backward DGLAP evolution
[15]. In reality, it was argued in [16] that for q � 0.85 GeV
the gluon propagator would be modified by non-perturbative
dynamics which effectively suppress such low q contribu-
tions. Rather than a sharp cut-off, the damped gluon PDF
[5] is used to calculate φM below q0 in order to suppress the
region of low transverse momentum:

g(x, q) = g(x, q0)

(
q2

q2
0

)2+(a1−2)(q2/q2
0 )+a2(q2/q2

0 )2

for q < q0. (24)

The coefficients a1,2 are chosen in such a way that the
function is smooth in q0 up to the second derivative.

Finally, the CEP cross section is expressed as a convolu-
tion of the exclusive luminosity (23) and the exclusive cross
section of the hard sub-process (20) takes the form

σ exc =
∫

dy d ln M2 Lexc(M, y, μ2
F ) σ s(M, w,μ2

R) d	w,

(25)

in analogy with the formula for the inclusive cross section

σ inc =
∫

dy d ln M2 L inc(M, y, μ2
F ) σ i (M, w,μ2

R) d	w,

(26)

where the inclusive luminosity L inc is

L inc(M, y, μ2
F ) = x1g(x1, μ

2
F ) x2g(x2, μ

2
F ). (27)
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3.2 Screening gluons in the PYTHIA8 interleaved parton
shower

The way parton showers are included in PYTHIA8 is through
an interleaved process where we normally have three compet-
ing processes, which we will denote ISR, FSR and MPI. ISR
is an initial-state splitting where one of the incoming partons
to the hard sub-process is evolved to lower scale and higher
energy fraction, by emitting a parton into the final state; FSR
is the final-state splitting of a parton in the final state; while
MPI is the appearance of an additional parton–parton interac-
tion. All of these occur at decreasing scale, where the highest
scale is given by the kinematics of the hard sub-process. In
each step in the shower we then pick a process which has
a lower scale than the previous one, and the factorisation
property of the no-emission probability means that we can
generate one of each of the possible processes independently
and simply pick the one which yielded the highest scale in
each step.

For simplicity we will here only consider the ISR, concen-
trating on the initial-state g → gg splittings, and show how
we can reinterpret the formula for CEP as an extra process in
the interleaved shower, which transforms an inclusive event
into an exclusive one.

First, let us consider the inclusive processes with no emis-
sion from the space-like shower between scales μ2 and μ2

F .
The scale μ2

F is considered as a starting scale of the back-
ward space-like parton shower. The cross section for such
processes takes the form

σ inc(μ2) =
∫

dy d ln M2 L inc(M, y, μ2
F )

T x1
M (μ2, μ2

F )T x2
M (μ2, μ2

F )σ i (M, w,μ2
r ) d	w,

(28)

where T x
M is the no-emission probability, quantifying the

probability that no extra emission from parton are present
between two given scales, if the higher scale is taken as a
reference. This no-emission term is used in the backward
evolution of the space-like showers in Pythia and, for the
case of an incoming gluon, it is defined as

T x
M (q2

1 , q2
2 ) = exp

(
−
∫ q2

2

q2
1

dq2

q2

αs(q2)

2π

×
∑
a

∫ 1−ε( q
M )

x

dz

z

fa(
x
z , q

2)

g(x, q2)
Pa→g(z)

)
,

(29)

where the sum runs over gluons and all possible flavours
of quarks and anti-quarks. It can be shown that these no-
emission probabilities are linked to the standard Sudakov
form factors by the relation [17,18]

T x
M (q2

1 , q2
2 ) = g(x, q2

1 )

g(x, q2
2 )

TM (q2
1 , q2

2 ). (30)

The cross section σ inc, differential in the variable ln μ2,
corresponding to the scale of the first parton shower emission
is

dσ inc(μ2)

d ln μ2 =
∫

dy d ln M2 L inc(M, y, μ2
F )

× d

d ln μ2

(
T x1
M (μ2, μ2

F )T x2
M (μ2, μ2

F )
)

× σ i (M, w,μ2
R) d	w. (31)

Employing Eq. (30) the derivative of the no-emission
probabilities can be expressed using the Sudakov factors
only:

d

d ln μ2

(
T x1
M (μ2, μ2

F )T x2
M (μ2, μ2

F )
)

= TM (μ2, μ2
F )2

× g̃(x1, μ
2)x2g(x2, μ

2) + x1g(x1, μ
2)g̃(x2, μ

2)

x1g(x1, μ
2
F )x2g(x2, μ

2
F )

, (32)

where the newly defined distribution function g̃ is5

g̃(x, μ2) = x
∂g(x, μ2)

∂ ln q2 + xg(x, μ2)

× αs(μ
2)

2π

∫ 1−ε(μ/M)

0
dz
[
zPgg(z) + n f (μ)Pqg(z)

]
.

(33)

It allows one to re-express the differential cross section
(31) using the standard Sudakov form factors:

dσ inc(μ2)

d ln μ2 =
∫

dy d ln M2

×
[
g̃(x1, μ

2)x2g(x2, μ
2) + x1g(x1, μ

2)g̃(x2, μ
2)
]

× TM (μ2, μ2
F )2 σ i (M, w,μ2

R) d	w. (34)

The inclusive cross section is then simply

σ inc =
∫ μ2

F
d ln μ2 dσ inc(μ2)

d ln μ2 , (35)

where the lower integration limit is assumed to be so small
that the Sudakov factor between this limit and μ2

F is close to
zero.

We can now apply a similar procedure to the exclusive
cross section where the variable μ2 is now interpreted as
the minimal transverse momentum of the screening gluons
exchanged during the interaction. Let us define

dLexc(M, y, μ2
F , μ2)

d ln μ2

= d

d ln μ2

π2

b2 ×
∣∣∣∣
∫ μ2

F

μ2
d ln q2 1

q2 φM (x1, q
2)φM (x2, q

2) TM (q2, μ2
F )

∣∣∣∣
2

5 The function g̃, resembling φM , depends also on mass M .
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= −π2

b2

2

μ2 φM (x1, μ
2)φM (x2, μ

2)TM (μ2, μ2
F )2

×
∫ μ2

F

μ2

d ln q2

q2 φM (x1, q
2)φM (x2, q

2)
1

TM (μ2, q2)
. (36)

Then the derivative of the exclusive cross section accord-
ing to this variable is simply

dσ exc(μ2)

d ln μ2 =
∫

dy d ln M2

× dLexc(M, y, μ2
F , μ2)

d ln μ2 σ s(M, w,μ2
R) d	w.

(37)

The ratio of the integrands in Eqs. (37) and (34) defines
the exclusive probability

pexc =
− 1

TM (μ2,μ2
F )2

dLexc(M,y,μ2
F ,μ2)

d ln μ2(
g̃(x1, μ2)x2g(x2, μ2) + x1g(x1, μ2)g̃(x2, μ2)

)

×σ s(M, w,μ2
R)

σ i (M, w,μ2
R)

. (38)

This means that we now have for each step in the inter-
leaved shower a probability for a given partonic state to
become exclusive by the exchange of a screening gluon. The
physical picture is the same as in the Durham model, in that
a screening gluon with low transverse momentum cannot
affect the colour structure of an emission at a higher scale. It
also has the nice property that we become somewhat insensi-
tive to the low transverse momentum behaviour of the parton
densities in the integral of the exclusive luminosity.

There is, however, a problem with this approach, in that the
pexc is very peaked at small μ, making the generation of the
exclusive events very inefficient. Although a weighting pro-
cedure could be applied, it would be difficult to incorporate
into the current framework of PYTHIA8. For the purpose of
this paper, we have therefore chosen to implement a simpler
procedure.

3.3 A simpler approach

Instead of adding the exchange of a screening gluon as an
extra process in the interleaved shower, we simply calculate
before each shower step if given state should be made exclu-
sive, using the probability

p′
exc = Lexc(M, y, μ2)

L inc(M, y, μ2)

σ ′s(M, w,μ2
R)

σ ′i (M, w,μ2
R)

, (39)

where μ2 is the scale of the latest emission. We note that the
integration in Lexc now goes down to very low transverse
momenta, but it turns out that the results are the same as in
the more complicated approach above.

The modified cross section σ ′i is defined as

σ ′i = Pn(zn)Pn−1(zn−1) . . . P2(z2)P1(z1)σ
i , (40)

where the Pi splitting functions in principle could be either
initial- or final-state splittings. For a modified singlet sub-
process cross section the definition is the same, only the for-
mula is corrected for the fact that the incoming gluons are
in colour- and spin-singlet state which, for example, makes
H + jet exclusive cross section equal to zero. Note that for
calculation of the modified singlet cross section, not only
classical matrix element squared but also amplitudes for all
possible helicity configuration must be known. The proce-
dure for calculating σ ′

s will be provided in the next section.
The full procedure would be to start the generation of an

inclusive process in PYTHIA8 and calculate the probability in
(39) of that process being exclusive. Then, after each ISR or
FSR step in the interleaved shower, we would again check
if the current state can be made exclusive by (39). If the
event is to be considered to be exclusive we would rearrange
the colour flow accordingly and insert the quasi-elastically
scattered protons, but we let the shower continue without the
ISR process.

Note that the soft survival probability, which we have so
far left out of the exclusive luminosity function, corresponds
exactly to the probability of having no additional multi-
parton interactions, so any MPI in the interleaved shower
(before or after the event has been made exclusive) will mean
that the event will stay inclusive.

To make the generation of exclusive events more efficient
we have here decided to simplify the procedure even more. A
final-state emission does not modify the parton densities used
in the luminosity functions, and although they may affect the
exclusive cross section, we have here decided to leave them
out and generate them separately. Also the calculation of the
soft survival probability by vetoing any exclusive event in
the case the shower gives a MPI is extremely inefficient, and
we instead calculate that separately and simply multiply the
inclusive cross section with that factor.6 It should be noted
that using the MPI model in PYTHIA8 presented in [7] has
not been carefully investigated. It has the interesting feature
that the probability for additional scattering depends on the
hardness of the primary scattering, since harder processes
have larger overlap (smaller impact parameter). It also has a
natural dependence on the collision energy. The downside is
that it is sensitive to the soft behaviour of MPI model and may
vary strongly between different tunings of the parameters. In
this paper we will simply use the default tune in PYTHIA8 and
postpone a proper investigation of the procedure to a future
publication.

6 In reality we calculate the exclusive cross sections with MPI switched
on in several bins of the calculated variables to control possible kine-
matic dependence of the soft survival probability.
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In the end, the procedure will look as follows:

1. Generate the hard sub-process of interest in PYTHIA8, use
the standard inclusive cross section.

2. Use only the initial-state shower in PYTHIA8.
3. Before generating the next initial-state emission, make

the event exclusive with the probability in (39).
4. If the event is made exclusive, switch off the initial-state

cascade, rearrange colours, remove the proton remnants,
insert the scattered protons and continue with final-state
radiation from the exclusive state.

5. If the event stays inclusive, generate the next initial-state
emission (continue with step 3).

As an alternative, to enable detailed studies of the exclu-
sive processes we will below also use a procedure where
we study a specific number of initial-state splittings or only
initial-state splittings above a certain scale, μexc, in which
case we run the initial-state shower without modification to
get the desired states and only afterwards decide if the states
should become exclusive.

This approach is efficient if the ratio σ ′s
σ ′i does not heavily

depend on the number of emissions. This is normally the
case for higher emission multiplicities in contrast the first
few emissions where the interference effects play a role. In
the program both approaches are implemented and we use
each of them in such a frequency so that the event weights
variation is minimal.

3.4 Modified luminosity for all possible helicity
configurations

Before proceeding to calculate σ ′s in (39) we have to gen-
eralise the expression to include all possible helicity com-
binations contributing to the exclusive production. First, we
define four kinds of the “luminosity amplitudes”, L(Jz), for
Jz = {0+, 0−,+2+,−2+}, using the notation in (12):

L(Jz) =
∫

d2q 2SJz (q1, q2)

q2(q − p1)2(−q − p2)2

× φM (x1, Q2
1)φM (x2, Q2

2)T 1/2
M (Q2

1, μ2
F )T 1/2

M (Q2
2, μ2

F ).

(41)

For future use, it is more convenient to work with L
directly related to some particular helicity configuration of
the partons entering to the hard sub-process. Let us define

L++ = L(0+) + L(0−), L−− = L(0+) − L(0−), (42)

L−+ = L(+2+), L+− = L(−2+). (43)

These relations allow us to rewrite the CEP cross section
(14) as

σ exc =
∫

dy d ln M2 d2p1d2p2 e−bp2
1 e−bp2

2
1

256π2

1

2M2

×
∑
λ, j

∣∣∣∣
8∑

a=1

(
L++Aaa→ j

++→λ + L+−Aaa→ j
+−→λ

+ L−+Aaa→ j
−+→λ + L−−Aaa→ j

−−→λ

)∣∣∣∣
2

d	w, (44)

where j and λ denote the colour state and helicity state of
all final-state particles of the hard sub-process. The index i
denotes the colour of the fusing gluons.

Finally, it is possible to formally factorise the cross section
formula into process independent luminosity part and the
cross section part:

σ exc =
∫

dy d ln M2
∫

1

π2 d2p1d2p2 e−bp2
1 e−bp2

2
∑
λlλr
λ′
lλ

′
r

LλlλrL∗λ′
lλ

′
r

× 1

512M2

∑
λ, j
aa′

Aaa→ j
λlλr→λA

∗a′a′→ j
λ′
lλ

′
r→λ

d	w

≡
∫

dy d ln M2 Lexc
(

λlλr
λ′
lλ

′
r

)
σ s
(

λlλr
λ′
lλ

′
r

)
d	w, (45)

where there is an implicit summation in the last expression
over all four helicity indices, and the generalised colour-
singlet cross section σ s incorporates the normalisation fac-
tor 1

512M2 . The origin of this factor is explained below Eq.
(20). Notice that the cross section formula (45) is a direct
generalisation of Eq. (25), where only the spin-singlet com-
ponent was considered.

A more general expression for the probability pexc of the
event being exclusive is then

pexc =
Lexc

(
λlλr
λ′
lλ

′
r

)
σ ′s
(

λlλr
λ′
lλ

′
r

)

L inc σ ′i , (46)

where the modified inclusive cross section σ ′i which incor-
porates the splitting functions is defined by formula (40),
whereas the corresponding cross section σ ′s will be derived
in the next section. Both luminosities are evaluated at the
scale of the latest initial-state emission.

4 Approximation of matrix elements using shower
splittings

To calculate the central exclusive cross section, the amplitude
for every helicity and colour combination of the studied sub-
process must be known, rather than the spin- and colour-
averaged sub-process cross section. For 2 → 2 processes
the amplitude Aλl1λr1→λ3λ4

al1ar1→x3x4 depends on the helicities of the
incoming (λl1, λr1) and outgoing particles (λ3, λ4) as well
as on the colours of the corresponding particles al1, ar1, x3,
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x4. The additional dependency on particle momenta is not
written out explicitly.

It is useful to introduce the “generalised cross section” σ

of the hard sub-process:

σ
(
al1ar1
a′
l1a

′
r1

∣∣∣λl1λr1
λ′
l1λ

′
r1

)

= 1

512M2

∑
x3x4
λ3λ4

Aλl1λr1→λ3λ4
al1ar1→x3x4

(
A

λ′
l1λ

′
r1→λ3λ4

a′
l1a

′
r1→x3x4

)∗
, (47)

which is summed over the helicities and colours of the final-
state particles but not over initial-state one. Moreover, the
colour and helicity indices of the incoming particles are in
general considered to be different for the amplitude and its
complex conjugated. The generalisation of this cross section
to 2 → n processes is straightforward.

Knowing the generalised cross section, the inclusive cross
section takes the form

σ inc =
∑

λl1λr1
λ′
l1λ

′
r1

δλl1λ
′
l1
δλr1λ

′
r1

∑
al1ar1
a′
l1a

′
r1

δal1a′
l1
δar1a′

r1

× σ
(
al1ar1
a′
l1a

′
r1

∣∣∣λl1λr1
λ′
l1λ

′
r1

)
, (48)

where the nominal and complex conjugate indices were put
to be equal by means of delta functions.

The colour-singlet spin-singlet cross section σ S(0+) is
obtained by an analogous formula (imposing “left” and
“right” colours and helicities to be identical):

σ S(0+) =
∑

λl1λr1
λ′
l1λ

′
r1

δλl1λr1δλ′
l1λ

′
r1

∑
al1ar1
a′
l1a

′
r1

δal1ar1δa′
l1a

′
r1

× σ
(
al1ar1
a′
l1a

′
r1

∣∣∣λl1λr1
λ′
l1λ

′
r1

)
, (49)

or using another notation

σ S(0+) = σ s (++++
)+ σ s (−−−−

)+ σ s (++−−
)+ σ s (−−++

)
, (50)

where the summation over helicities is made explicit and the
generalised colour-singlet cross section σ s , first used in (45),
is

σ s
(

λl1λr1
λ′
l1λ

′
r1

)
=
∑
al1ar1
a′
l1a

′
r1

δal1ar1δa′
l1a

′
r1

σ
(
al1ar1
a′
l1a

′
r1

∣∣∣λl1λr1
λ′
l1λ

′
r1

)
. (51)

The aim of the following sections is to derive an approx-
imative form of the generalised cross section for the case
where we have initial-state parton shower splittings from the
left and right incoming partons. These emissions are assumed
to be strongly ordered in their p⊥.

To be specific, let us consider the gluon emission from the
“left” incoming parton. The new generalised cross section
will then take the form

σ
(
al2ar1
a′
l2a

′
r1

∣∣∣λl2λr1
λ′
l2λ

′
r1

)
= fal2,e1,al1 f

∗
a′
l2,e1,a′

l1

× Pgg
λle1

(
zl1, φl1
λl2→λl1

)
Pgg∗

λle1

(
zl1, φl1
λ′
l2→λ′

l1

)

× σ̂
(
al1ar1
a′
l1a

′
r1

∣∣∣λl1λr1
λ′
l1λ

′
r1

)
, (52)

where the splitting g → gg was considered. The Ein-
stein summation convention is employed, in particular it is
summed over the helicity λle1 and colour e1 of the emitted
gluon.

For splittings that includes quarks, the SU(3) structure
constants, fabc, must be replaced by the Gell-Mann matrices,
T a
i j , and the splitting amplitude, Pgg , by the corresponding

one.
It is obvious that the spin-momentum and colour parts

describing emissions factorise and the resulting generalised
cross section after n − 1 emission from the left parton and
m − 1 emissions from the right parton is given by

σ
(
alnarm
a′
lna

′
rm

∣∣∣λlnλrmλ′
lnλ

′
rm

)
= T em

l

(
aln→al1
a′
ln→a′

l1

)
Pem
l

(
λln→λl1
λ′
ln→λ′

l1

)

× T em
r

(
arm→ar1
a′
rm→a′

r1

)
Pem
r

(
λrm→λr1
λ′
rm→λ′

r1

)

× σ̂
(
al1ar1
a′
l1a

′
r1

∣∣∣λl1λr1
λ′
l1λ

′
r1

)
, (53)

where the colour emission tensor T em depends on type and
order of the splittings and its indices correspond to nominal
(1 − 3) or adjoint (1 − 8) SU(3) representations depending
on the type of the first and last parton in the shower. The
space-like emission tensor Pem depends on type, order and
kinematics of the splittings. Both of these tensors will be
discussed in the following.

4.1 The colour emission tensor

In case the first parton in the parton shower as well as the
parton entering to the hard sub-process are gluons, the general
form of the colour emission tensor can be expressed as

T em
gg

(x2→x1
x4→x3

) = A12Tr (Tx1 Tx2)Tr (Tx3 Tx4)

+ A13Tr (Tx1 Tx3)Tr (Tx2 Tx4)

+ A14Tr (Tx1 Tx4)Tr (Tx2 Tx3)

+ B234Tr (Tx1 Tx2 Tx3 Tx4)

+ B243Tr (Tx1 Tx2 Tx4 Tx3)

+ B324Tr (Tx1 Tx3 Tx2 Tx4)

+ B342Tr (Tx1 Tx3 Tx4 Tx2)

+ B423Tr (Tx1 Tx4 Tx2 Tx3)

+ B432Tr (Tx1 Tx4 Tx3 Tx2), (54)

where Tr (Tx1 Tx2) = 1
2 δx1x2 . In our notation the trace pre-

scription is used for gluon colour indices and delta func-
tion for quark colour indices that means especially that
Tr (Tx1 Tx1) = 4 and δx1x1 = 3. Consequently, any colour
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emission tensor between gluon and gluon is fully deter-
mined by nine real numbers irrespectively on the parton
shower composition between these two gluons. Especially,
the colour emission tensor representing no emissions in the
parton shower has only one non-zero coefficient A12 = 4. A
colour tensor with one extra gluon emission is related to the
original one by linear transformation (provided in Appendix
A) applied to the coefficients Ai j , Bi jk .

In an analogous way, the colour emission tensor can be
constructed for the transition between (anti-)quark and (anti-
)quark:

T em
qq

(
i2→i1
i ′2→i ′1

)
= K1 δi1i ′1δi2i ′2 + K2 δi1i ′2δi2i ′1 + K3 δi1i2δi ′1i ′2 .

(55)

The case of no emissions will here correspond to K3 = 1,
K1,2 = 0.

The last alternative is the transition between quarks and
gluons, which is given by

T em
gq

(
x2→i1
x ′

2→i ′1

)
= Di j δi1i ′1 Tr Tx2 Tx′

2 + C1 (Tx2 Tx′
2)i1i′1

+ C2 (T x ′
2T x2)i1i ′1 + C1c (T x2T x ′

2)i ′1i1

+ C2c (T x ′
2T x ′

2)i ′1i1 (56)

and

T em
qg

(
i2→x1
i ′2→x ′

1

)
= Di j δi2i ′2 Tr Tx1 Tx′

1 + C1 (Tx1 Tx′
1)i2i′2

+ C2 (T x ′
1T x1)i2i ′2 + C1c (T x1T x ′

1)i ′2i2

+ C2c (T x ′
1T x ′

1)i ′2i2 , (57)

where in the last expression the coefficients, C1,2 are zero if
the first parton is a quark andC1c,2c are zero if the first parton
is an anti-quark.

In appendix A we provide the complete list of linear trans-
formations, necessary for calculating the colour emission ten-
sor with an extra emission in the beginning of the shower.
Considering the initial-state parton shower described by the
tensor7 T em

p f ph , if the first parton p f is gluon it can be evolved
backward to a quark, anti-quark, or a gluon, making this par-
ton the starting one. A quark can be evolved backward to a
quark or a gluon and, finally, an anti-quark can be evolved
to an anti-quark or a gluon. This gives in total seven possi-
bilities. The parton ph attached to the hard sub-process can
be quark, anti-quark, or gluon making the overall number of
possible linear transformation equal to 7×3 = 21. In reality,
some of these transformations are independent of whether the
parton is quark or anti-quark which reduces the number of
non-identical linear transformations to 13.

7 p f denotes flavour of parton which initiates the parton shower and ph
is the flavour of parton entering to the hard sub-process. Both partons
are assumed to be on the “left” or on the “right” side.

In the procedure we have developed, the two colour emis-
sion tensors are constructed, one for “left” side and one for
“right”. Before starting the backward parton shower evolu-
tion these tensors describe the shower with zero emissions
and the particular type (T em

gg or T em
qq ) is chosen according to

the “left” and “right” type of the parton entering to the hard
sub-process. After every step in the backward evolution, one
of these tensors is modified using the appropriate transfor-
mation.

4.2 The spin emission tensor

The leading-order amplitudes corresponding to the possible
splitting will depend on the helicities of incoming, outgoing
and emitted parton, as well as on the momentum fraction z
and the azimuthal angle φ of the emission. These can all be
found in the literature [19]. Using these splitting amplitudes,
the spin emission tensor can be defined, and in the particular
case of only one emission, this tensor has the form

P1em
(

λ2→λ1
λ′

2→λ′
1

)
= Pλe1

(
z1, φ1
λ2→λ1

)
P∗

λe1

(
z1, φ1
λ′

2→λ′
1

)
, (58)

which depends on the helicity and “conjugate” helicity of the
incoming and outgoing parton. If two emissions are consid-
ered this tensor is determined by summing over the interme-
diate helicity and “conjugate” helicity

P2em
(

λ3→λ1
λ′

3→λ′
1

)
= P1em

(
λ3→λ2
λ′

3→λ′
2

)
P1em

(
λ2→λ1
λ′

2→λ′
1

)
. (59)

Introducing the helicity index λ̄, which takes integer val-
ues between 1 and 4 and incorporates information as regards
the helicity and “conjugate” helicity index the form of the
last equation,

P2em
λ̄3λ̄1

= P1em
λ̄3λ̄2

P1em
λ̄2λ̄1

, (60)

resembles simple matrix multiplication. To add the emission
one therefore only need to multiply the current spin tensor
(matrix) with matrix corresponding to the particular emis-
sion. The different forms of these matrices for all possible
splittings are provided in Appendix B.

4.3 Amplitude definition

Within the process library the amplitude of each process is
defined in the colour trace basis, in a form similar to that
used for example in MadGraph [20]. For the gg → gg pro-
cess, which has the most complicated colour topology, the
colour trace basis has six terms.8 It means that 6 amplitudes

8 The colour basis of, for example, qq̄ → gg process has two terms
only.
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depending on Mandelstam variables s, t , u must be provided
for every helicity combination (together 6 × 16 = 96 ampli-
tudes). Fortunately, most of these amplitudes are equal to zero
or are identical to each other, e.g. due to parity invariance.

The general form of the amplitude decomposition in the
colour trace basis is

Aλ
al1ar1→x3x4

= Aλ
1 B1

al1ar1→x3x4
+ Aλ

2 B2
al1ar1→x3x4

+ · · · + Aλ
K Bn

al1ar1→x3x4
, (61)

where the Bi are the colour basis vectors. The amplitudes
Aλ
i depend on Mandelstam variables and helicities of the

particles but not on their colours.
To calculate the generalised cross section, σ̂ , defined

above, the product of every two basis vectors Mi j must be
known:

Mi j
(
al1ar1
a′
l1a

′
r1

)
=
∑
x3x4

Bi
al1ar1→x3x4

B∗ j
a′
l1a

′
r1→x3x4

. (62)

This product does not depend on the final-state colours but
only on the colours and “conjugate” colours of the incom-
ing particles. In analogy with the procedure used for colour
emission tensor, each of these products can be expressed as
a linear combination of few colour tensors Bα creating basis.

If the partons entering the sub-process are gluons then the
tensors Bα can be one of the following:

Tr (Tal1 Tar1)Tr (Ta′
l1 Ta′

r1),

Tr (Tal1 Ta′
l1)Tr (Tar1 Ta′

r1),

Tr (Tal1 Ta′
l1)Tr (Tar1 Ta′

r1)

Tr (Tal1 Tar1 Ta′
l1 Ta′

r1),

Tr (Tal1 Tar1 Ta′
r1 Ta′

l1),

Tr (Tal1 Ta′
l1 Ta′

r1 Tar1), or

Tr (Tal1 Ta′
r1 Ta′

l1 Tar1),

and for sub-processes with the incoming quarks or anti-
quarks the possible colour tensors Bα are

δal1,a′
l1
δar1,a′

r1
, δal1,a′

r1
δar1,a′

l1
, or δal1,ar1δa′

l1,a
′
r1

. (63)

To be able to calculate the exclusive cross section, the
amplitudes Aλl1λr1→λ3λ4

i and the linear decompositions of the
Mi j into colour tensor basis listed above must be provided
for each sub-process (see Appendix C for an example). If the
coefficients in the decomposition of Mi j are denoted Mi j

α

then the generalised sub-process cross section, σ̂ , takes the
form

σ̂
(
al1ar1
a′
l1a

′
r1

∣∣∣λl1λr1
λ′
l1λ

′
r1

)
= 1

512M2

∑
i j, α

Mi j
α Bα

(
al1ar1
a′
l1a

′
r1

)

×
∑
λ3λ4

Aλl1λr1→λ3λ4
i (s, t, u)

× A
∗λ′

l1λ
′
r1→λ3λ4

j (s, t, u) (64)

and the generalised colour-singlet cross section, σ s , defined
in (51), can be calculated (if initial-state radiation is present)
using the following formula:

σ s
(

λlnλrm
λ′
lnλ

′
rm

)
= Pem

l

(
λln→λl1
λ′
ln→λ′

l1

)
Pem
r

(
λrm→λr1
λ′
rm→λ′

r1

)

× δalnarm δa′
lna

′
rm

× T em
l

(
aln→al1
a′
ln→a′

l1

)

× T em
r

(
arm→ar1
a′
rm→a′

r1

)
σ̂
(
al1ar1
a′
l1a

′
r1

∣∣∣λl1λr1
λ′
l1λ

′
r1

)
. (65)

The term in the last line does not depend on the colours but
only on the helicities and “conjugate” helicities entering into
the hard sub-process. To calculate this term, first the contrac-
tions between colour emission tensors T em and all members
of the Bα basis must be calculated. Using these numbers
the coefficients Mi j (the colour indices were contracted) are
evaluated and consequently the whole term in the last line
of (65). It represents 16 values, corresponding to all possi-
ble helicity combinations. The full generalised colour-singlet
cross section, σ s , is finally obtained by multiplying by the
“left” and “right” spin emission matrices Pem

l and Pem
r .

5 Sample results

In this section we present a few sample results from our
implementation of the Durham formalism. We will focus the
discussion of the unique feature of our implementation, i.e.
possibility of generation the exclusive states with higher par-
ticle multiplicities. Currently, the process library includes all
hard QCD 2 → 2 processes; Higgs boson production via
gg → H ; the single Z0 production via qq̄ → Z0; and two
photon production via gg → γ γ and qq̄ → γ γ . The pro-
gram is modular, however, and new processes can easily be
added.

All presented calculations of the CEP cross sections are
made for pp collisions at

√
s = 13 TeV and are based on

MMHT2014 LO PDF [14]. They incorporate hadronisation
as well as the final-state radiation. The initial-state shower
is evolved down to μexc = 1.5 GeV if not stated otherwise.
All predictions incorporate the soft survival probability esti-
mated using veto on MPI. This probability is around 0.06
with little kinematic dependency.

5.1 Di-jet production

We start by studying the properties of our Monte Carlo model
for di-jet production at the LHC. In contrast to other imple-
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Fig. 3 The differential exclusive di-jet cross section for pp collisions
at

√
s = 13 TeV as a function of M12/MX . The phase space is defined

by pjet1,2
⊥ > 40 GeV, |ηjet1,2| < 2.5 and ξ1,2 < 0.03. The blue curve

represents the cross section with the final-state shower only in contrast to

the black curve where the initial-state shower is included as well (down
to 1.5 GeV). Cross sections with no initial-state radiation correspond to
the classical implementation of the Durham formalism

mentations of the Durham formalism, our program allows
for the generation the exclusive di-jet event from any 2 → 2
QCD hard sub-process, as long as the partons which initi-
ate the space-like parton shower are gluons that can be in a
colour-singlet state.9

The variable which describes the size of the phase space
available for the space-like parton shower is μexc, which is the
lowest allowed transverse momentum of the emission. The
maximal allowed p⊥ of an emission is set to be equal to the
hard scale of the sub-process, given by the transverse momen-
tum of the leading jet. For ordinary inclusive events the cut-
off scale for the initial-state radiation (ISR) in PYTHIA8 is
around 2 GeV. In our discussion, we study the events with
transverse momenta of the emissions starting at 1.5 GeV.

The inclusion of possible initial-state splittings in our
approach will naturally increase the exclusive cross section
for di-jet production and cause a smearing towards low values
in the distribution of M12/MX . The M12/MX observable can
be seen as an experimental measure of the “exclusivity” of
the particular event. M12 is here the invariant mass of the two
leading jets, and the total mass, MX , of the exclusive system
X can, in principle, be calculated from the outgoing protons
relative momentum loss, ξ , as

√
ξ1ξ2s. Without any parton

showers this ratio equals 1 on the parton level. The final-state
radiation and hadronisation can smear this distribution, espe-
cially if the jet radius of the jet algorithm is small, since a
final-state parton may radiate outside the jet cone, giving the
smaller value of the invariant di-jet mass M12.

9 There is a possible extension of this approach to showers initiated by
qq̄ , where a screening quark rather than a screening gluon is exchanged
in the loop to compensate the colour flow but this is not implemented
in our current version.

We have here used the “anti-k⊥” jet algorithm [21] with
R = 0.7, a minimum transverse momentum of the jets of
40 GeV, and the absolute value of the pseudorapidity of jets
smaller than 2.5. As seen in Fig. 3 there is indeed a smearing
from the final-state radiation (blue curve), but the smearing
increases significantly if initial-state radiation is included
(black curve). The distribution with initial-state radiation
resembles what one would expect form the double Pomeron
scattering and the final states generated by these two mech-
anisms overlap. However, the physical nature of both pro-
cesses are different since, in DPE, where the Pomeron in
the simplest approximation is a gg object, the colour neu-
tralisation of the hard system comes from the Pomeron rem-
nant gluons, while for CEP it is due to an additional gluon
exchange. Despite different pictures, the final states could
still be indistinguishable, as low-p⊥ initial-state emission on
either side of the hard scattering in CEP could look exactly
like Pomeron remnants.

The exclusive cross section is less sensitive to the
space-like emissions if only the events with, for example,
M12/MX > 0.8 are accepted as is demonstrated in Fig. 4.

Here, the left plot shows that the di-jet cross section con-
sists of events either with plast⊥ ∼ 40 GeV where there was
typically no space-like emission and plast⊥ was identified with
the hard scale of the process, or events with plast⊥ ∼ 3 GeV. In
this case, there are usually many emissions and plast⊥ denotes
the transverse momentum of the latest one with the smallest
p⊥.

It can be seen the di-jet cross section differential in the
p⊥ of the last ISR emission peaks for plast⊥ ∼ 3 GeV and
decreases for lower transverse momenta.

More comprehensive picture of the situation provides the
two-dimensional plot (Fig. 5), where the correlation of the
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Fig. 4 The exclusive di-jet cross section for pp collisions at
√
s =

13 TeV differential in ln(plast⊥ )2 (left). The variable plast⊥ denotes the
scale of the “softest” ISR emission. For events absent from any ISR
emissions plast⊥ is identified with the scale of the sub-process. The total
exclusive cross section as a function of the cut-off scale μexc is shown
on the right. This scale means that only events with plast⊥ > μexc are

accepted. As is seen from the right plot the incorporation of the ISR
with μexc = 1.5 GeV increases the CEP cross section from 19 pb to
63 pb. The phase space is defined by pjet1,2

⊥ > 40 GeV, |ηjet1,2| < 2.5,
M12/MX > 0.8 and ξ1,2 < 0.03

mass ratio and plast⊥ for a particular event is shown. The deple-
tion of the emissions for plast⊥ slightly below 40 GeV is par-
tially due to the small gg → ggg colour-singlet cross section
and partially just a statistical effects given by the low proba-
bility of having no further emission below such high p⊥. The
tree-level gg → ggg spin-singlet colour-singlet cross section
in the analytic form is provided in [22]. This cross section
is zero in the “parton-shower” limit where one of the outgo-
ing gluons has small pT compared to the remaining two and
t̂ = û = −ŝ/2, where the Mandelstam variables are derived
from the two hardest gluons whereas the softest one is sup-
posed to be part of the shower. Such a behaviour agrees with
our calculations based on procedure introduced in Sect. 4.

The cut-off parameter μexc can be understood as a vari-
able which describes the transition between perturbative and
non-perturbative region. Not only due to the possible overlap
with the double Pomeron exchange process but also because
the scale μexc denotes the minimal allowed p⊥ of the ISR
emission and p⊥ of the softest emission is simultaneously
the highest allowed transverse momentum of the screening
gluon. Choosing small μexc leads to low plast⊥ and conse-
quently the main contribution to the exclusive luminosity
given by integral (23) stems from small transverse momenta,
i.e. smaller than 1 GeV, where the perturbative QCD is not
justified [16].

Finally in Table 1 we show the contribution to the exclu-
sive cross section from the different possible hard sub-
process.

One can see that even with space-like parton showers
enabled, the gg → gg sub-process dominates. The second
largest cross section is given by the qg → qg process which

Fig. 5 The exclusive di-jet cross section for pp collisions at
√
s =

13 TeV double differential in M12/MX and ln (plast⊥ )2. For the sake of
clarity the vertical axis is denominated directly in plast⊥ . The phase space

is defined by pjet1,2
⊥ > 40 GeV, |ηjet1,2| < 2.5 and ξ1,2 < 0.03

is forbidden without ISR. Consequently, the fraction of di-
jet events where at least one of them is quark-induced with
respect to the total exclusive di-jet cross section is much
higher than ∼10−4 predicted in [2]. This fact makes it prob-
lematic to use the CEP as a pure source of gluonic jets.

Within the collinear approximation the gg → qq̄ cross
section is predicted to be suppressed as m2

q/s with respect
to the gg → gg cross section. This is a well-known conse-
quence of the spin-singlet selection rule. It is interesting that
without using such a collinear approximation the exclusive
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Table 1 The table demonstrates how the particular hard sub-processes
in PYTHIA8 contribute to the total exclusive cross section of the di-jet
production at LHC (

√
s = 13 TeV). The hard processes are defined

using the Pythia convention and are accompanied by the Pythia pro-
cess Id [23]. The letter q denotes any light quark flavour, therefore,
e.g. gg → qq̄ represents the sum of gg → uū, gg → dd̄ and
gg → ss̄ cross sections. The jets in the di-jet system are required to have

pjet1,2
⊥ > 40 GeV and |ηjet1,2| < 2.5. In addition the leading protons

momentum loss ξ must be ξ1,2 < 0.03. The σ
nEm=0
exc are the exclusive

cross sections with no initial-state radiation. σexc and σ
M12/MX>0.8
exc are

the exclusive cross section with allowed initial-state radiation down to
1.5 GeV; the last one has an additional constraint, M12/MX > 0.8

Id Process σ
nEm=0
exc [pb] σexc [pb] σ

M12/MX>0.8
exc [pb]

111 gg → gg 23 173 57

112 gg → qq̄ 10.6 × 10−3 0.6 56 × 10−3

113 qg → qg − 30 5.8

114 qq ′ → qq ′ − 1.3 94 × 10−3

115 qq̄ → gg − 10.5 × 10−3 83 × 10−6

116 qq̄ → q ′q̄ ′ − 16 × 10−3 0.5 × 10−3

121 gg → c′c̄′ 4.8 × 10−3 0.2 21 × 10−3

122 qq̄ → c′c̄′ − 4.5 × 10−3 57 × 10−6

123 gg → b′b̄′ 20 × 10−3 0.3 51 × 10−3

124 qq̄ → b′b̄′ − 4.4 × 10−3 53 × 10−6

All 23 205 63

production of light flavourqq̄ jets is not so heavily suppressed
since the |Jz | = 2 contribution, absent in the collinear case,
has a similar size and is quark-mass independent [2]. This
effect is even stronger if the ISR is included.

Nevertheless, for higher M12/MX the fraction of the heavy
flavours jets with respect to the whole CEP’s di-jet sample is
still predicted to be lower compared to the DPE which makes
such quantity a vital experimental variable for studying the
transition region between CEP and DPE as was first done at
the Tevatron [24].

In Fig. 6 we have tried to compare the results from our
CEP program for the distribution in M12/MX with data pub-
lished by the CDF collaboration [24]. The comparison is a
bit uncertain as the data has not been corrected to the hadron-
level, and the acceptance in different regions of phase space
is difficult to disentangle. Nevertheless we have checked that
our implementation of the DPE gives results similar to what
was published in [24] for normalised distributions.

Our DPE implementation uses diffractive parton densi-
ties, as measured e.g. by HERA. Specifically, we will here
use the HERA H1 2006 Fit B DPDFs [25] with, for simplic-
ity, the same soft survival probability as for the CEP pro-
cess, although we are aware that the soft survival probability
may very well be different for the DPE process as compared
to the CEP one. Technically the DPE simulation is done in
Pythia (with the same setting as for the CEP) by colliding two
hadrons, the Pomerons, with energies 1

2ξ1
√
s and 1

2ξ2
√
s and

with parton densities described by the HERA DPDFs.10

10 For single Pomeron processes this is now a standard option in
PYTHIA8 [26], but we have here made our own simplified implementa-
tion of double Pomeron processes.

In Fig. 6a and b we show the results of simply adding
our CEP generated events for two different selection cuts
(two jets above 10 and 25 GeV, respectively, and no third jet
above 5 GeV). Further selection criteria, identical for both
phase spaces, are given in [24]. We see that the addition of
CEP severely overshoots the data in the exclusive region of
high M12/MX . There are, however, many uncertainties, espe-
cially when it comes to the soft survival probability, both for
the CEP and DPE contribution. As a demonstration we show
in Fig. 6c, d the effect of introducing a relative normalisa-
tion factor of 0.25 between the CEP and DPE contribution,
which gives a quite reasonable description of the data. We
note that our CEP, as expected, contributes quite noticeably
also away from the purely exclusive region. A more detailed
study of the differences between our new CEP procedure
and the DPE one, especially in the regions of the Pomeron
remnants in DPE, may result in observables that could fur-
ther improve the experimental separation between the two
processes.

5.2 Higgs production

The possibility to measure the Higgs boson in the cen-
tral exclusive production was studied extensively in the last
decade [27,28]. The discussion was mainly focussed on the
dominant decay channel gg → H → bb̄ with a standard
model branching ratio of 59%.

The main advantage of this production mechanism is a
huge suppression of the irreducible standard model back-
ground from gg → bb̄ due to the Jz = 0 selection rule
in CEP. Furthermore, the scalar nature of the Higgs boson
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(a) (b)

(c) (d)

Fig. 6 The di-jet event counts binned in M12/MX variable as mea-
sured by the CDF collaboration [24] in p p̄ collisions at energy

√
s =

1.96 TeV. These measured event counts (not corrected for the detector
related effects) are compared with the DPE contribution (black dashed
line) and CEP contribution (red line) and their sum (black solid line).

The normalisation of these curves is fixed in such a way that the total
predicted event count is the same as in data. In c and d the CEP contri-
butions were scaled down by a factor of 0.25 compared to their nominal
value

means that the ratio of exclusive to inclusive cross sections
is relatively enhanced as compared to the background,11 as
the spin and colours have to match also in the inclusive sub-
process. Both these effects improve the signal/background
ratio for the Higgs boson production compared to the inclu-
sive production.

11 Quantitatively, σ̂ s

σ̂ i (gg → H) = 16 (2 from spin × 8 from colour),

whereas σ̂ s

σ̂ i (gg → bb̄) = 128
7

m2
b
ŝ ≈ 0.02.

The main background to the exclusive Higgs boson pro-
duction comes from the gg → gg sub-process, which can be
substantially suppressed using b-jet tagging techniques. The
other experimental challenge is the detection of the scattered
protons in the forward detectors in a high pile-up environment
where protons from several interactions can simultaneously
hit the forward detector within one bunch crossing.12

12 The background protons typically originate from single diffractive
excitation. Two such soft single diffractive events together with one
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Note that the cross section of the Higgs boson produc-
tion in CEP is only around 2 fb, including the calculated soft
survival probability of 0.06, which is about four order lower
than the inclusive Higgs cross section ∼ 20 pb. The signal
event’s count is further reduced due to selection criteria and
inefficiency of the b-jet tagging. In particular, the QCD back-
ground must be suppressed by selecting only high p⊥ b-jets
(comparable to MH/2) because the Higgs boson decay is
isotropic whereas the QCD jet production is suppressed at
high p⊥ at least as 1./p4⊥.

We included the Higgs boson production in the process
library of our program to study the production rates com-
pared to the background processes. The simulation incor-
porates the parton showers as well as hadronisation of the
resulting partons into “stable” particles, where the particles
with lifetime higher than 0.01 mm/c are considered to be
stable. The inclusion of initial-state showers have negligible
effect on the exclusive Higgs cross section but can substan-
tially increase the gg → bb̄ background and spoil the signal
significance (see Table 1).

We have simulated Higgs production at the LHC at
√
s =

13 TeV. The hard scale is set to be equal to the Higgs mass
for the signal, and to p⊥ of the leading jet for the back-
ground, the cut-off for the space-like showers is 1.5 GeV in
both cases. To pass the selection cuts, the events are required
to contain at least two b-jets with p⊥ higher than 50 GeV and,
additionally, the ratio M12/MX must be higher than 0.9. As
before, the jets are identified using anti-k⊥ jet algorithm with
R = 0.7 and a jet is tagged as a b-jet if it contains at least
one bottom hadron. For now, the kinematics of the scattered
protons is not constrained. The result of these calculations is
presented in Fig. 7, where the dotted lines indicate the frac-
tion of the cross section without space-like emissions. It is
obvious that events with space-like emissions play a role only
for the gg → bb̄ process and their rate can be probably fur-
ther reduced using more sophisticated selection techniques.
Note that the signal peak is a little bit shifted towards lower
values compared to the Higgs mass mH = 125 GeV, due
to the fact that sometimes not all produced particles in the
hadronisation of the b-quarks are incorporated into the b-jets.

In reality, the forward proton spectrometers installed to
ATLAS and CMS have a limited acceptance in ξ , the lowest
measurable value of ξ is projected to be around 0.015, which
restricts the minimal value of the exclusive system mass to
MX = ξ

√
s = 195 GeV. This acceptance limit makes the

observation of single Higgs boson production without no
other activity impossible. On the other hand, there is still
a hope of the signal of the Higgs boson accompanied by jets

Footnote 12 continued
inclusive can fake the CEP topology. Fortunately, this kind of exper-
imental background is suppressed for higher masses of the exclusive
system (higher ξ ).

Fig. 7 The differential distribution of the invariant mass of two leading
b-jets for pp CEP at LHC (

√
s = 13 TeV). To enhance the signal

fraction the additional cuts pjet1,2
T > 50 GeV and M12/MX > 0.9 were

applied. The differential cross section stemming from the Higgs decay
is given by the red solid curve and the QCD background from gg → bb̄
process is given by the black curve. In addition, the dashed curves
indicate the corresponding cross section if initial-state showers are not
considered

originating from the space-like emissions.13 To see the size
of such a cross section we plot the b-jets cross section (both
of them must still have p⊥ > 50 GeV) in the mass window
between 116 and 127 GeV where the signal peak is expected.
This cross section is shown in Fig. 8 as a function of the
M12/MX ratio both for signal and background Monte Carlo
sample. The ratio of these cross sections roughly matches the
signal/background estimate. It is quite good for M12/MX >

0.9, which is the kinematic phase space shown in Fig. 7,
whereas it deteriorates for lower values of M12/MX .

To reach the acceptance of LHC forward detectors,
the mass ratio must be lower than 0.6. Assuming 0.5 <

M12/MX < 0.6 the signal cross section of the b-jets pro-
duction is around 0.05 fb14 and is around 200 times smaller
than the QCD background. This small signal cross section
and huge background contamination leads to a luminosity
of ∼ 60, 000 fb−1 to reach 4-sigma precision. Although the
possibility of measure the Higgs production in this experi-
mental setup is rather academic, our framework allows one
to determine such cross sections as well as more realistically
evaluate the contamination from the QCD background pro-
cesses.

In Fig. 8 we also show the corresponding calculation from
the DPE process, which becomes significant at low values of

13 Due to the colour-singlet nature of Higgs production, at least two
emissions are needed.
14 Compare to 0.4 fb for M12/MX > 0.9.
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Fig. 8 The cross section for the CEP production of two b-jets at LHC
with pjet1,2

⊥ > 50 GeV and invariant mass 116 < M12 < 127 GeV
differential in M12/MX . The red and black solid lines denote the cross
section rising from the Higgs boson decay and the QCD background,
respectively. The dashed lines denoted the corresponding cross sections
with no initial-state radiation. In addition, the double Pomeron cross
sections for Higgs production and the QCD gg → bb̄ process are
plotted by the dotted lines

M12/MX both for the signal and background, but clearly does
not give any increase in the significance.

5.3 Z0 production

Considering the acceptance of the forward proton spectrom-
eters of the ATLAS and CMS detectors, which is around
0.015 < ξ < 0.1, the mass of Z0 resonance is much smaller
than the acceptance limit MX ≈ 200 GeV. This makes the
study of direct production15 of the Z0 within the CEP mech-
anism even more impossible than the Higgs. Moreover, Z0

is produced by the qq̄ → Z0 sub-process, which cannot
be handled directly in the standard implementations of the
Durham model.

However, our model allows for initial-state radiation from
the partons entering to the hard sub-process, which can
change the identity of incoming quarks to gluons, which can
then be treated using the standard Durham exclusive lumi-
nosity. To do so, at least one g → qq̄ emission from each
side is needed.

Due to the colour-singlet nature of Z0 and the fusing
quarks, there will probably be a non-negligible cross section
for no space-like emissions and qq̄ CEP luminosity with a
screening quark as discussed briefly above. Here, we will
make no attempt to evaluate such cross section although our

15 Without additional hadronic activity.

model can, in principle, be extended to cover this production
mechanism as well.

The other mechanism for central (semi-)exclusive produc-
tion of a Z0 is through DPE. To estimate such a cross section
we use the procedure described in Sect. 5.1, where we again
we assume that the DPE soft survival probability is the same
as in CEP. Contrary to the CEP where the MX mass is higher
than MZ mostly due to space-like emissions, in DPE both the
space-like emissions and the Pomeron remnants contribute
to the mass.

We will look at semi-exclusive Z0 → μ−μ+ production
at the LHC at

√
s = 13 TeV, requiring a minimum transverse

momentum of 30 GeV for the muons in the pseudorapidity
region of |η| < 2.5. Both quasi-elastically scattered protons
are required to have 0.015 < ξ1,2 < 0.1 in accordance to
the acceptance of forward proton spectrometers. The elec-
troweak process qq̄ → μμ̄ includes both Z0 exchange and
γ exchange as well as the interference terms. We find that the
resulting DPE cross section is about ten times higher than for
CEP. Quantitatively the CEP cross section is around 3.5 fb,
to be compared to 40 fb for DPE. Z0 can be produced also via
the exclusive photoproduction. The predicted cross section
for this process, including Z0 → μ−μ+ branching ratio, is,
however, about 0.3 fb [29] and would be even smaller if the
selection criteria for muons pT and pseudorapidity had been
applied.

The shapes of the Mμμ and Mμμ/MX distributions are
compared in Fig. 9. The shapes of Mμμ/MX are rather similar
for both processes, with the DPE curve somewhat shifted
towards lower values as compared to the CEP one which
prefers more “exclusive” configurations.

6 Conclusions

In this paper we introduced a new Monte Carlo implementa-
tion of the Durham formalism to calculate the central exclu-
sive processes in pp and p p̄ collisions. Our model is based
on PYTHIA8 generator, and naturally incorporates partonic
showers and hadronisation, as well as multi-parton interac-
tions.

The main advantage of our implementation is the possi-
bility to study the effects of initial-state parton radiation on
CEPs. This is done by allowing any inclusively produced
sub-process to be converted to an exclusive at any stage in
the shower. To do this we have implemented a colour and
spin decomposition of the initial-state shower in PYTHIA8
which, together with a similarly decomposed (user supplied)
matrix element, can be used to determine the probability that
a given partonic state can be exclusive.

We have shown that this way of approximating higher jet
multiplicities gives rise to new, non-trivial, physical conse-
quences. In particular, for exclusive di-jet production, it leads
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Fig. 9 The differential cross section of pp → p + μ−μ+X ′ + p pro-
cess as a function of the invariant mass of the μ−μ+ pair (left plot)
and of the ratio Mμμ/MX (right plot). The black lines show the CEP

contribution whereas the DPE result is given by the red lines. The DPE
cross sections are normalised by a factor of 0.1. In the CEP calculations
the μexc cut-off parameter is set to 1.5 GeV

to event topologies with medium values of M12/MX , which
naturally fill the gap between double Pomeron exchange and
pure central exclusive production. Moreover, the incorpora-
tion of the parton showers enables the generation of quark-
initiated processes such as Z0 production.

All predicted cross sections depend on the parameter μexc,
the scale relating the transition between the perturbative and
non-perturbative region in the parton shower. The actual
value of μexc will have to be determined from experiment.
For the time being we set its value equal to 1.5 GeV.

The cross sections also depend on the soft survival prob-
ability used. Here we have used the MPI model in PYTHIA8
to simply estimate the probability of having no additional
scatterings, equating this to the soft survival probability.
Although this procedure was suggested long ago, it has not
been properly investigated, and we intend to return with a
detailed study of this model in a future publication.

Currently, the program process library includes QCD
2 → 2 processes, H production, Z0 production and γ γ pro-
duction, but it can easily be extended. In particular, it would
be interesting to add production of vector mesons (ρ, φ, …)
and/or quarkonia χc,b. These processes have large cross sec-
tions which make them experimentally accessible even at low
luminosities.

Our framework to treat colour and spin states within the
partonic shower is rather general and can, in principle, be
extended to simulate the central exclusive processes initi-
ated by qq̄ fusion, in addition to standard gg-initiated pro-
cesses. Here a screening quark rather than screening gluon is
exchanged to cancel the colour flow. Such processes would
be especially interesting for e.g. central exclusive Z0 produc-
tion.

It should also be possible to extend our treatment of the
colour and spin structure of the parton showers to treat final-

state splittings. This would give an additional way of study-
ing approximate higher-order effects in the hard sub-process
matrix elements.

These and other possible improvements will be discussed
in a future publication.
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Appendix A: Colour emission tensors

In this section the list of all linear transformations which
relate the colour emission tensor before and after the emission
is given. New coefficients are labelled by the prime symbol.
If the expression for any coefficient of the colour emission
tensor is missing, this coefficient is zero.

Adding of gluon:

� g → (g → g):

A′
12 = −1

2
B432 − 1

2
B234,

A′
13 = +1

2
B423 + 1

2
B342 + 1

2
B324 + 1

2
B243 + 3A13,

A′
14 = −1

2
B432 − 1

2
B234,
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B ′
234 = −1

2
A14 − 1

2
A12,

B ′
243 = +3

2
B243 + 1

2
A12,

B ′
324 = +3

2
B324 + 1

2
A14,

B ′
342 = +3

2
B342 + 1

2
A12,

B ′
423 = +3

2
B423 + 1

2
A14,

B ′
432 = −1

2
A14 − 1

2
A12.

� g → (q → q) or g → (q → q̄):

D′
i j = K1,

C ′
1 = K3,

C ′
1c = K2.

� g → (q̄ → q) or g → (q̄ → q̄):

D′
i j = K1,

C ′
1c = K3,

C ′
2 = K2.

� g → (g → q) or g → (g → q̄):

Di j = 1

2
C2c + 1

2
C1c + 1

2
C2 + 1

2
C1 + 3Di j ,

C1 = 3

2
C1,

C1c = 3

2
C1c,

C2 = 3

2
C2,

C2c = 3

2
C2c.

� g → (q → g):

A′
13 = Di j ,

B ′
243 = C2c,

B ′
324 = C1c.

� g → (q̄ → g):

A′
13 = Di j ,

B ′
423 = C2,

B ′
342 = C1.

Adding of quark:

� q → (q → q) or q → (q → q̄):

K ′
1 = 1

2
K3 + 1

2
K2 + 4

3
K1,

K ′
3 = −1

6
K3,

K ′
2 = −1

6
K2.

� q → (q → g):

D′
i j = 1

2
C2c + 1

2
C1c + 4

3
Di j ,

C ′
1c = −1

6
C1c,

C ′
2c = −1

6
C2c.

� q → (g → q) or q → (g → q̄):

K ′
1 = 5

18
C2c + 1

36
C1c + 5

18
C2 + 1

36
C1 + 2

3
Di j ,

K ′
3 = −1

6
C2 + 7

12
C1,

K ′
2 = −1

6
C2c + 7

12
C1c.

� q → (g → g):

D′
i j = + 1

36
B432 + 5

18
B423 + 5

18
B342,

+ 1

36
B324 + 1

36
B243 + 1

36
B234 + 2

3
A13,

C ′
1c = − 1

12
B432 − 1

6
B342 + 7

12
B324,

− 1

12
B234 + 1

4
A14,

C ′
2c = − 1

12
B432 − 1

6
B423 + 7

12
B243,

− 1

12
B234 + 1

4
A12.

Adding of anti-quark:

� q̄ → (q̄ → q) or q̄ → (q̄ → q̄):

K ′
1 = 1

2
K3 + 1

2
K2 + 4

3
K1,

K ′
3 = −1

6
K3,

K ′
2 = −1

6
K2.

� q̄ → (q̄ → g):

D′
i j = 1

2
C2 + 1

2
C1 + 4

3
Di j ,

C ′
1 = −1

6
C1,

C ′
2 = −1

6
C2.
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� q̄ → (g → q) or q̄ → (g → q̄):

K ′
1 = + 1

36
C2c + 5

18
C1c + 1

36
C2 + 5

18
C1 + 2

3
Di j ,

K ′
3 = − 7

12
C2c − 1

6
C1c,

K ′
2 = − 7

12
C2 − 1

6
C1.

� q̄ → (g → g):

D′
i j = + 1

36
B432 + 1

36
B423 + 1

36
B342

+ 5

18
B324 + 5

18
B243 + 1

36
B234 + 2

3
A13,

C ′
1 = − 1

12
B432 + 7

12
B342 − 1

6
B324

− 1

12
B234 + 1

4
A12,

C ′
2 = − 1

12
B432 + 7

12
B423 − 1

6
B243 − − 1

12
B234 + 1

4
A14.

Appendix B: Spin emission tensors

In this section the spin emission matrices are provided for
all possible kinds of splittings. In reality approximate the
higher-order matrix element squared, these splitting matri-
ces should incorporate an additional normalisation factor
(4π)2 αs

2π
1−z
z

1
p2⊥

. Since only the ratio σ ′s
σ ′i is relevant in our

framework and the normalisation factors would be the same
in numerator and denominator; these factors can be simply
omitted as they cancel in the ratio.

Note that the spin averaged splittings Pavg used in Eq.
(40) can be obtained (up to the normalisation arising from
the colour part) as a sum of the “corner” elements of the spin
emission matrix:

Pavg(z) ∼ P1em
11 + P1em

14 + P1em
41 + P1em

44 .

The spin emission matrices are the following:

P1em
g→g =

⎛
⎜⎜⎜⎝

1
z + 2

1−z − 1 − z − z2 −z(1 − z) e+2iφ −z(1 − z) e−2iφ 1
z − 3 + 3z − z2

− 1−z
z e−2iφ 2z

1−z 0 − 1−z
z e−2iφ

− 1−z
z e+2iφ 0 2z

1−z − 1−z
z e+2iφ

1
z − 3 + 3z − z2 −z(1 − z) e+2iφ −z(1 − z) e−2iφ 1

z + 2
1−z − 1 − z − z2

⎞
⎟⎟⎟⎠

P1em
g→q =

⎛
⎜⎜⎝
z2 −z(1 − z)e+2iφ −z(1 − z)e−2iφ (1 − z)2

0 0 0 0
0 0 0 0
(1 − z)2 −z(1 − z)e+2iφ −z(1 − z)e−2iφ z2

⎞
⎟⎟⎠

P1em
q→g =

⎛
⎜⎜⎜⎝

1
z 0 0 (1−z)2

z
− 1−z

z e−2iφ 0 0 − 1−z
z e−2iφ

− 1−z
z e+2iφ 0 0 − 1−z

z e+2iφ

(1−z)2

z 0 0 1
z

⎞
⎟⎟⎟⎠ P1em

q→q =

⎛
⎜⎜⎜⎝

1+z2

1−z 0 0 0
0 2z

1−z 0 0
0 0 2z

1−z 0

0 0 0 1+z2

1−z

⎞
⎟⎟⎟⎠ .

Appendix C: Example of the sub-process definition

In this section an example of the sub-process definition is pre-
sented for qq̄ → gg process. The amplitude of this process,
written in the colour basis, has the following form:

Aλ
al1ar1→x3x4

= Aλ
1 (T x3T x4)ar1al1 + Aλ

2 (T x4T x3)ar1al1 ,

where λ denotes helicity state of both incoming and outgoing
particles. The indices al1, ar1 and x3, x4 denote the colour of
incoming and outgoing particles and T x3,4 are the Gell-Mann
matrices.

Within our framework, the colour matrix Mi j of the pro-
cess must be provide by means of three colour basis vectors:

Bll ′ = δal1a′
l1
δar1a′

r1
Blr = δal1ar1δa′

l1a
′
r1

Blr ′ = δal1a′
r1

δa′
l1ar1

.

The colour matrix has the following form:

M11 = 7

12
Bll ′ + 1

36
Blr M12 = −1

6
Bll ′ + 5

18
Blr

M21 = −1

6
Bll ′ + 5

18
Blr M22 = 7

12
Bll ′ + 1

36
Blr .

(C.1)
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Therefore, for example, the M11
α coefficients for this pro-

cess are

M11
ll ′ = 7

12
M11

lr = 1

36
M11

lr ′ = 0. (C.2)

In addition to the colour matrix, the amplitudes for every
helicity configuration must be given as well. These ampli-
tudes are

A+−→+−
1 = + 1√

2
2g2 1

s

√
tu eiφ (C.3)

A+−→+−
2 = − 1√

2
2g2 u

s

√
u

t
eiφ, (C.4)

A+−→−+
1 = + 1√

2
2g2 t

s

√
t

u
eiφ, (C.5)

A+−→−+
2 = − 1√

2
2g2 1

s

√
tu eiφ. (C.6)

s, t and u are the Mandelstam variables, φ is the azimuthal
angle of first outgoing gluon and g = √

4παs . The ampli-
tudes related by a parity transformation −+ → −+ and
−+ → +− can be obtained by the complex conjugation.
The amplitudes of other helicity configurations are equal to
zero. The normalisation factor 1√

2
accounts for the identical

particles in the final state. The fact that the outgoing particles
are identical allows one to derive the amplitudes (C.5)–(C.6)
for the second helicity configuration +− → −+ from the
first one, see Eqs. (C.3)–(C.4), by swapping the final-state
gluons (t ↔ u).

To summarise, each process in the process library is
defined by the helicity amplitudes (C.3)–(C.6) and the cor-
responding colour matrix (C.1).
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