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Circulant matrices have become a satisfactory tools in control methods for modern complex systems. In the paper, VanderLaan
circulant type matrices are presented, which include VanderLaan circulant, left circulant, and 𝑔-circulant matrices. The
nonsingularity of these special matrices is discussed by the surprising properties of VanderLaan numbers. The exact determinants
of VanderLaan circulant type matrices are given by structuring transformation matrices, determinants of well-known tridiagonal
matrices, and tridiagonal-like matrices. The explicit inverse matrices of these special matrices are obtained by structuring
transformation matrices, inverses of known tridiagonal matrices, and quasi-tridiagonal matrices. Three kinds of norms and lower
bound for the spread of VanderLaan circulant and left circulant matrix are given separately. And we gain the spectral norm of
VanderLaan 𝑔-circulant matrix.

1. Introduction

It is well known that the circulant matrices are one of
the most important research tools in control methods for
modern complex systems.There aremany results on circulant
systems. The concept of “chart” was used to investigate
structural controllability and fixed models in [1] while more
attention was paid to properties and controller design for
a special class of circulant systems, called symmetrically
circulant systems [2–5].

Systems with block symmetric circulant structure are a
kind of complex systems and constitute an important class
of large-scale systems where there may be a clear advantage
of using multivariable control and where it is actually used
in practice. Typical application examples can be found in
the control of paper machine [6–8] and control of power
systemswith parallel structure [7]. Other examples, including
multizone crystal growth furnaces and dyes for plastic films,
were also listed in [7, 8] and the references therein. For
those symmetric circulant composite systems, due to the
high dimensionality of the overall system and information
structural constraints, the control problem is more complex
and few results on regional pole assignment are available in
the literature. In [9], the authors considered the problem of
placing the poles of uncertain symmetric circulant composite

systems in a specified disk, which is also presented as the
problem of quadratic D stabilisation. Lee et al. [10] presented
linear quadratic (LQ) repetitive control (RC) methods for
processes represented by a conventional FIR model and a
circulant FIRmodel.The latter, which represents a FIR system
under the assumption of a cyclic steady state, is named its
input-output map. The map is represented by a circulant
matrix. Using the complete frequency resolving property of a
circulant matrix, a special tuning method for the LQ weights
is proposed. Lee and Won considered properties of pulse
response circulant matrix and applied that to MIMO control
and identification in [11].

Furthermore, circulant type matrices have been put on
the firm basis with the work in [12–18] and so on. These spe-
cial matrices have significant applications in various disci-
plines.

The VanderLaan sequences are defined by the following
recurrence relation [19]:

𝑉
𝑛
= 𝑉
𝑛−2
+ 𝑉
𝑛−3
, (1)

where

𝑉
0
= 0, 𝑉

1
= 1, 𝑉

2
= 0. (2)
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For the convenience of readers, we gave the first few
values of the sequences as follows:

𝑛 0 1 2 3 4 5 6 7 8 ⋅ ⋅ ⋅

𝑉
𝑛
0 1 0 1 1 1 2 2 3 ⋅ ⋅ ⋅

. (3)

The characteristic equation of VanderLaan numbers is
𝑥
3

− 𝑥 − 1 = 0, and its roots are denoted by 𝑟
1
, 𝑟
2
, 𝑟
3
; then

𝑟
1
+ 𝑟
2
+ 𝑟
3
= 0,

𝑟
1
𝑟
2
+ 𝑟
1
𝑟
3
+ 𝑟
2
𝑟
3
= −1,

𝑟
1
𝑟
2
𝑟
3
= 1.

(4)

The Binet form for VanderLaan sequence is

𝑉
𝑛
= 𝑐
1
𝑟
𝑛

1
+ 𝑐
2
𝑟
𝑛

2
+ 𝑐
3
𝑟
𝑛

3
, (5)

where

𝑐
1
=

𝑟
2
+ 𝑟
3

(𝑟
2
− 𝑟
1
) (𝑟
1
− 𝑟
3
)
,

𝑐
2
=

𝑟
1
+ 𝑟
3

(𝑟
2
− 𝑟
1
) (𝑟
3
− 𝑟
2
)
,

𝑐
3
=

𝑟
1
+ 𝑟
2

(𝑟
2
− 𝑟
3
) (𝑟
3
− 𝑟
1
)
.

(6)

Some authors have presented the explicit determinants
and inverse of circulant typematrices involving famous num-
bers in recent years. For example, in [14], the nonsingularity
of circulant type matrices with the sum and product of
Fibonacci and Lucas numbers is discussed. And the exact
determinants and inverses of these matrices are given. Deter-
minants and inverses of circulant matrices with Jacobsthal
and Jacobsthal-Lucas numbers are given in [20]. Jiang et
al. [15] studied circulant type matrices with the 𝑘-Fibonacci
and 𝑘-Lucas numbers and obtained the explicit determinants
and inverse matrices. Lin [21] proposed the determinants of
the Fibonacci-Lucas quasi-cyclic matrices. In [22], Jiang et
al. discussed the nonsingularity of the skew circulant type
matrices and presented explicit determinants and inverse
matrices of these special matrices. Furthermore, four kinds
of norms and bounds for the spread of these matrices are
given separately. In [23], Shen et al. discussed circulant ma-
trices with Fibonacci and Lucas numbers and gave their
explicit determinants and inverses. Authors [24] discussed
the nonsingularity of the circulant matrix and presented
the explicit determinant and inverse matrices. Moreover, the
nonsingularity of the left circulant and 𝑔-circulantmatrices is
also studied. The explicit determinants and inverse matrices
of the left circulant and 𝑔-circulant matrices are obtained
by utilizing the relationship between left circulant and 𝑔-
circulant matrices and circulant matrix, respectively.

This paper is aimed at getting the more beautiful results
for the determinants and inverses of circulant type matrices
via some surprising properties of VanderLaan numbers.

A VanderLaan circulant matrix is an 𝑛 × 𝑛 matrix of the
following form:

Circ (𝑉
𝑟+1
, 𝑉
𝑟+2
, . . . , 𝑉

𝑟+𝑛
) =

[
[
[
[

[

𝑉
𝑟+1

𝑉
𝑟+2

. . . 𝑉
𝑟+𝑛

𝑉
𝑟+𝑛

𝑉
𝑟+1

. . . 𝑉
𝑟+𝑛−1

.

.

.
.
.
.

.

.

.

𝑉
𝑟+2

𝑉
𝑟+3

. . . 𝑉
𝑟+1

]
]
]
]

]

. (7)

A VanderLaan left circulant matrix is an 𝑛 × 𝑛 matrix of
the following form:

𝐿Circ (𝑉
𝑟+1
, 𝑉
𝑟+2
, . . . , 𝑉

𝑟+𝑛
) =

[
[
[
[

[

𝑉
𝑟+1

𝑉
𝑟+2

. . . 𝑉
𝑟+𝑛

𝑉
𝑟+2

𝑉
𝑟+3

. . . 𝑉
𝑟+1

.

.

.
.
.
.

.

.

.

𝑉
𝑟+𝑛

𝑉
𝑟+1

. . . 𝑉
𝑟+𝑛−1

]
]
]
]

]

.

(8)

A VanderLaan 𝑔-circulant matrix is an 𝑛 × 𝑛matrix with
the following form:

𝐴
𝑔,𝑛
=(

𝑉
𝑟+1

𝑉
𝑟+2

. . . 𝑉
𝑟+𝑛

𝑉
𝑟+𝑛−𝑔+1

𝑉
𝑟+𝑛−𝑔+2

. . . 𝑉
𝑟+𝑛−𝑔

𝑉
𝑟+𝑛−2𝑔+1

𝑉
𝑟+𝑛−2𝑔+2

. . . 𝑉
𝑟+𝑛−2𝑔

.

.

.
.
.
. d

.

.

.

𝑉
𝑟+𝑔+1

𝑉
𝑟+𝑔+2

. . . 𝑉
𝑟+𝑔

), (9)

where 𝑔 is a nonnegative integer and each of the subscripts is
understood to be reduced modulo 𝑛.

Lemma 1. Define the 𝑛 × 𝑛matrix by

𝐴
𝑛
=(

(

𝜅
1
𝜅
2
⋅ ⋅ ⋅ 0 0

𝜅
3
𝜅
1
⋅ ⋅ ⋅ 0 0

0 𝜅
3
⋅ ⋅ ⋅ 0 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ d ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 ⋅ ⋅ ⋅ 𝜅
1
𝜅
2

0 0 ⋅ ⋅ ⋅ 𝜅
3
𝜅
1

)

)

; (10)

then determinant of the matrix 𝐴
𝑛
is

det𝐴
𝑛

=

{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{

{

((

𝜅
1
+ √𝜅2
1
− 4𝜅
2
𝜅
3

2
)

𝑛+1

−(

𝜅
1
− √𝜅2
1
− 4𝜅
2
𝜅
3

2
)

𝑛+1

)

×(√𝜅2
1
− 4𝜅
2
𝜅
3
)

−1

, 𝜅
2

1
̸= 4𝜅
2
𝜅
3
,

(𝑛 + 1) (
𝜅
1

2
)

𝑛

, 𝜅
2

1
= 4𝜅
2
𝜅
3
.

(11)

Proof. A calculation using the expansion of the last column
for determinant of matrix 𝐴

𝑛
shows that det𝐴

𝑛
= 𝜅
1
⋅

det𝐴
𝑛−1
− 𝜅
2
𝜅
3
⋅ det𝐴

𝑛−2
; let 𝑥 + 𝑦 = 𝜅

1
, 𝑥𝑦 = 𝜅

2
𝜅
3
; then

let 𝑥, 𝑦 be the roots of the equation 𝑥2 − 𝜅
1
𝑥 + 𝜅
2
𝜅
3
= 0.
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We have

det𝐴
𝑛
= 𝑦
𝑛

+ 𝑥𝑦
𝑛−1

+ ⋅ ⋅ ⋅ + 𝑥
𝑛−1

𝑦 + 𝑥
𝑛

=

{{

{{

{

𝑥
𝑛+1

− 𝑦
𝑛+1

𝑥 − 𝑦
, 𝑥 ̸= 𝑦,

(𝑛 + 1) 𝑥
𝑛

, 𝑥 = 𝑦,

(12)

where

𝑥 =

𝜅
1
+ √𝜅2
1
− 4𝜅
2
𝜅
3

2
, 𝑦 =

𝜅
1
− √𝜅2
1
− 4𝜅
2
𝜅
3

2
.

(13)

We obtain
det𝐴
𝑛

=

{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{

{

((

𝜅
1
+ √𝜅2
1
− 4𝜅
2
𝜅
3

2
)

𝑛+1

−(

𝜅
1
− √𝜅2
1
− 4𝜅
2
𝜅
3

2
)

𝑛+1

)

×(√𝜅2
1
− 4𝜅
2
𝜅
3
)

−1

, 𝜅
2

1
̸= 4𝜅
2
𝜅
3
,

(𝑛 + 1) (
𝜅
1

2
)

𝑛

, 𝜅
2

1
= 4𝜅
2
𝜅
3
.

(14)

Lemma 2. Let

𝐵
𝑛
=(

(

𝑎
1
𝑎
2
⋅ ⋅ ⋅ 𝑎
𝑛−1

𝑎
𝑛

𝜅
1
𝜅
2
⋅ ⋅ ⋅ 0 0

𝜅
3
𝜅
1
⋅ ⋅ ⋅ 0 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ d ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 ⋅ ⋅ ⋅ 𝜅
2

0

0 0 ⋅ ⋅ ⋅ 𝜅
1
𝜅
2

)

)

(15)

be a 𝑛 × 𝑛matrix; then

det𝐵
𝑛
=

𝑛

∑

𝑖=1

(−1)
1+𝑖

𝜅
𝑛−𝑖

2
𝑎
𝑖
⋅ det𝐴

𝑖−1
, (16)

where, for 𝑛 ≥ 3,

det𝐴
𝑖−1

=

{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{

{

((

𝜅
1
+ √𝜅2
1
− 4𝜅
2
𝜅
3

2
)

𝑖

−(

𝜅
1
− √𝜅2
1
− 4𝜅
2
𝜅
3

2
)

𝑖

)

×(√𝜅2
1
− 4𝜅
2
𝜅
3
)

−1

, 𝜅
2

1
̸= 4𝜅
2
𝜅
3
,

𝑖 (
𝜅
1

2
)

𝑖−1

, 𝜅
2

1
= 4𝜅
2
𝜅
3
,

(17)

and det𝐴
0
= 1.

Proof. Expanding the last column for the determinant of
matrix 𝐵

𝑛
and according to Lemma 1, we obtain

det𝐵
𝑛
= 𝜅
2
⋅ det𝐵

𝑛−1
+ (−1)

𝑛+1

𝑎
𝑛
⋅ det𝐴

𝑛−1

= 𝜅
𝑛−1

2
𝑎
1
+ (−1)

3

𝜅
𝑛−2

2
𝑎
2
⋅ det𝐴

1

+ ⋅ ⋅ ⋅ + (−1)
𝑛+1

𝑎
𝑛
⋅ det𝐴

𝑛−1

=

𝑛

∑

𝑖=1

(−1)
1+𝑖

𝜅
𝑛−𝑖

2
𝑎
𝑖
⋅ det𝐴

𝑖−1
.

(18)

This completes the proof.

Lemma 3. Let Φ = ( 𝑎 𝐵
𝐶 𝐴
) be a partitioned matrix; then

Φ
−1

= (

1

ℓ
−
1

ℓ
𝐵𝐴
−1

−
1

ℓ
𝐴
−1

𝐶 𝐴
−1

+
1

ℓ
𝐴
−1

𝐶𝐵𝐴
−1

), (19)

where ℓ = 𝑎 − 𝐵𝐴−1𝐶, 𝐵 is a row vector, and 𝐶 is a column
vector.

Proof. From direct calculation by matrix multiplication, we
get

ΦΦ
−1

= 𝐼
𝑛
, Φ

−1

Φ = 𝐼
𝑛
, (20)

where

Φ = (
𝑎 𝐵

𝐶 𝐴
) ,

Φ
−1

= (

1

ℓ
−
1

ℓ
𝐵𝐴
−1

−
1

ℓ
𝐴
−1

𝐶 𝐴
−1

+
1

ℓ
𝐴
−1

𝐶𝐵𝐴
−1

).

(21)

Lemma 4. Let the matrixG = [ℎ
𝑖,𝑗
]
𝑛−3

𝑖,𝑗=1
be of the form

ℎ
𝑖,𝑗
=

{{{{

{{{{

{

𝑐, 𝑖 = 𝑗,

𝑏, 𝑖 = 𝑗 + 1,

𝑑, 𝑖 = 𝑗 + 2,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒;

(22)

then the inverseG−1 = [ℎ󸀠
𝑖,𝑗
]
𝑛−3

𝑖,𝑗=1
of the matrixG is equal to

ℎ
󸀠

𝑖,𝑗
=

{{

{{

{

1

𝑐
(
𝛽
𝑖−𝑗+1

− 𝛼
𝑖−𝑗+1

𝛽 − 𝛼
) , 𝑖 ≥ 𝑗,

0, 𝑖 < 𝑗,

(23)
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where

𝑐 = 𝑉
𝑟+1
− 𝑉
𝑟+𝑛+1

,

𝑏 = 𝑉
𝑟+2
− 𝑉
𝑟+𝑛
− 𝑉
𝑟+𝑛−1

,

𝑑 = 𝑉
𝑟
− 𝑉
𝑟+𝑛
,

𝛼 =
−𝑏 + √𝑏2 − 4𝑐𝑑

2𝑐
,

𝛽 =
−𝑏 − √𝑏2 − 4𝑐𝑑

2𝑐
.

(24)

Proof. Let 𝑐󸀠
𝑖,𝑗
= ∑
𝑛−3

𝑘=1
ℎ
𝑖,𝑘
ℎ
󸀠

𝑘,𝑗
; if 𝑖 = 𝑗, we have 𝑐󸀠

𝑖,𝑖
= ℎ
𝑖,𝑖
ℎ
󸀠

𝑖,𝑖
= 1;

distinctly, 𝑐󸀠
𝑖,𝑗
= 0 for 𝑖 < 𝑗. And, for 𝑖 ≥ 𝑗 + 1, we have

𝑐
󸀠

𝑖,𝑗
= ℎ
𝑖,𝑖−2
ℎ
󸀠

𝑖−2,𝑗
+ ℎ
𝑖,𝑖−1
ℎ
󸀠

𝑖−1,𝑗
+ ℎ
𝑖,𝑖
ℎ
󸀠

𝑖,𝑗

=
𝑑

𝑐
(
𝛽
𝑖−𝑗−1

− 𝛼
𝑖−𝑗−1

𝛽 − 𝛼
) +

𝛽
𝑖−𝑗+1

− 𝛼
𝑖−𝑗+1

𝛽 − 𝛼

+
𝑏

𝑐
(
𝛽
𝑖−𝑗

− 𝛼
𝑖−𝑗

𝛽 − 𝛼
)

= 0.

(25)

We obtainGG−1 = 𝐼
𝑛−3

, where 𝐼
𝑛−3

is (𝑛−3)× (𝑛−3) identity
matrix. Evidenced by the same token,G−1G = 𝐼

𝑛−3
.The proof

is completed.

We first introduce the following notations:

] = 𝑒 +
𝑛−1

∑

𝑖=2

𝛿
𝑖+1
Δ
𝑛−𝑖

,

Δ =
−𝑏 ± √𝑏2 − 4𝑐𝑑

2𝑐
,

𝑒 = 𝑉
𝑟+1
−
𝑉
𝑟+2
𝑉
𝑟+𝑛

𝑉
𝑟+1

,

𝛿
𝑖+1
= 𝑉
𝑟+𝑖+1

−
𝑉
𝑟+2
𝑉
𝑟+𝑖

𝑉
𝑟+1

(𝑖 = 2, 3, . . . , 𝑛 − 1) ,

𝜅 =

𝑛−2

∑

𝑖=2

(−1)
𝑖+1

𝑐
𝑛−𝑖−2

𝜖
𝑛−𝑖
𝜙
𝑖−1
+ 𝜖
1
𝑐
𝑛−3

,

𝜖
1
= 𝑉
𝑟+1
−
𝑉
𝑟+3
𝑉
𝑟+𝑛−1

𝑉
𝑟+1

,

𝜖
𝑖
= 𝑉
𝑟+𝑖+2

−
𝑉
𝑟+3
𝑉
𝑟+𝑖

𝑉
𝑟+1

(𝑖 = 2, 3, . . . , 𝑛 − 2) ,

𝜙
𝑖−1
=

{{{{{{{{{{{{

{{{{{{{{{{{{

{

((
𝑏 + √𝑏2 − 4𝑐𝑑

2
)

𝑖

−(
𝑏 − √𝑏2 − 4𝑐𝑑

2
)

𝑖

)

× (√𝑏2 − 4𝑐𝑑)
−1

, 𝑏
2

̸= 4𝑐𝑑,

𝑖 (
𝑏

2
)

𝑖−1

, 𝑏
2

= 4c𝑑,

𝜃 = 𝑓 +

𝑛−2

∑

𝑖=2

𝜖
𝑖
Δ
𝑛−𝑖

,

𝑓 = 𝑉
𝑟+2
−
𝑉
𝑟+3
𝑉
𝑟+𝑛

𝑉
𝑟+1

+ 𝜖
1
Δ,

𝜏 =

𝑛−2

∑

𝑖=1

(−1)
𝑖+1

𝑐
𝑛−𝑖−2

𝛿
𝑛−𝑖+1

𝜙
𝑖−1
,

𝑝 = 𝑉
𝑟+2
− 𝑉
𝑟+𝑛+2

.

(26)

2. Determinant and Inverse of VanderLaan
Circulant Matrix

In this segment, letV
𝑟,𝑛

be aVanderLaan circulantmatrix. To
begin with, we give the determinant of the matrixV

𝑟,𝑛
. And

thenwe draw a conclusion thatV
𝑟,𝑛

is an invertiblematrix for
𝑛 ̸= 2𝑘𝜋/ arctan(√4𝑐𝑑 − 𝑝2/ ± 𝑝); finally we find the inverse
of the matrixV

𝑟,𝑛
.

Theorem 5. Let V
𝑟,𝑛

= 𝐶𝑖𝑟𝑐(𝑉
𝑟+1
, 𝑉
𝑟+2
, . . . , 𝑉

𝑟+𝑛
) be a

VanderLaan circulant matrix, so its determinant is

detV
𝑟,𝑛
= 𝑉
𝑟+1
(]𝜅 − 𝜃𝜏) , (27)

where 𝑉
𝑟+𝑛

is the (𝑟 + 𝑛)th VanderLaan number.

Proof. Apparently, detV
0,4
= 3meets formula (27). If 𝑛 > 4,

let

Γ
1
=

(
(
(
(
(
(
(
(
(
(

(

1

−
𝑉
𝑟+2

𝑉
𝑟+1

1

−𝑉
𝑟+3

𝑉
𝑟+1

0 0

−1 c −1

0 c −1

.

.

. c c c c
.
.
.

0 1 0 −1 −1 ⋅ ⋅ ⋅ 0

)
)
)
)
)
)
)
)
)
)

)

,
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Π
1
=
(
(

(

1 0 0 ⋅ ⋅ ⋅ 0 0

0 Δ
𝑛−2

0 ⋅ ⋅ ⋅ 0 1

0 Δ
𝑛−3

0 ⋅ ⋅ ⋅ 1 0

.

.

.
.
.
.

.

.

. c
.
.
.
.
.
.

0 Δ 1 ⋅ ⋅ ⋅ 0 0

0 1 0 ⋅ ⋅ ⋅ 0 0

)
)

)

(28)

be two 𝑛 × 𝑛matrices; we have

Γ
1
V
𝑟,𝑛
Π
1
=

(
(
(
(

(

𝑉
𝑟+1

𝜇 𝑉
𝑟+𝑛−1

⋅ ⋅ ⋅ 𝑉
𝑟+2

0 ] 𝛿
𝑛

⋅ ⋅ ⋅ 𝛿
3

0 𝜃 𝜖
1

⋅ ⋅ ⋅ 𝜖
2

0 0 𝑏 ⋅ ⋅ ⋅ 0

0 0 𝑑 ⋅ ⋅ ⋅ 0

.

.

.
.
.
.

.

.

.
.
.
.

0 0 0 ⋅ ⋅ ⋅ 𝑐

)
)
)
)

)

, (29)

where

𝜇 =

𝑛

∑

𝑖=2

𝑉
𝑟+𝑖
Δ
𝑛−𝑖

; (30)

we obtain

det Γ
1
detV

𝑟,𝑛
detΠ
1
= 𝑉
𝑟+1
⋅ (]𝜅 − 𝜃𝜏) . (31)

Let

B
𝑛−2
=
(
(

(

𝜖
1
𝜖
𝑛−2

𝜖
𝑛−3

⋅ ⋅ ⋅ 𝜖
2

𝑏 𝑐 0 ⋅ ⋅ ⋅ 0

𝑑 𝑏 𝑐 ⋅ ⋅ ⋅ 0

.

.

.
.
.
.

.

.

. ⋅ ⋅ ⋅
.
.
.

0 0 0 ⋅ ⋅ ⋅ 0

0 0 0 ⋅ ⋅ ⋅ 𝑐

)
)

)

,

C
𝑛−2
=
(
(

(

𝛿
𝑛
𝛿
𝑛−1

𝛿
𝑛−2

⋅ ⋅ ⋅ 𝛿
3

𝑏 𝑐 0 ⋅ ⋅ ⋅ 0

𝑑 𝑏 𝑐 ⋅ ⋅ ⋅ 0

.

.

.
.
.
.

.

.

. ⋅ ⋅ ⋅
.
.
.

0 0 0 ⋅ ⋅ ⋅ 0

0 0 0 ⋅ ⋅ ⋅ 𝑐

)
)

)

(32)

be two (𝑛 − 2) × (𝑛 − 2)matrices, and

𝜅 = detB
𝑛−2
, 𝜏 = detC

𝑛−2
. (33)

By Lemmas 1 and 2, the following equations hold:

𝜏 =

𝑛−2

∑

𝑖=1

(−1)
𝑖+1

𝑐
𝑛−𝑖−2

𝛿
𝑛−𝑖+1

𝜙
𝑖−1
,

𝜅 =

𝑛−2

∑

𝑖=2

(−1)
𝑖+1

𝑐
𝑛−𝑖−2

𝜖
𝑛−𝑖
𝜙
𝑖−1
+ 𝜖
1
𝑐
𝑛−3

;

(34)

while

det Γ
1
= detΠ

1
= (−1)

(𝑛−1)(𝑛−2)/2

, (35)

we have

detV
𝑟,𝑛
= 𝑉
𝑟+1
(]𝜅 − 𝜃𝜏) , (36)

which completes the proof.

Theorem 6. Let V
𝑟,𝑛

= 𝐶𝑖𝑟𝑐(𝑉
𝑟+1
, 𝑉
𝑟+2
, . . . , 𝑉

𝑟+𝑛
) be a

VanderLaan circulant matrix; in the case of 𝑛 ̸= 2𝑘𝜋/ arctan
(√4𝑐𝑑 − 𝑝2/±𝑝),V

𝑟,𝑛
is a nonsingular matrix.

Proof. According to Theorem 5, in case of 𝑛 ≤ 4, we have
detV

𝑟,𝑛
̸= 0. When 𝑛 > 4, since 𝑉

𝑛
= 𝑐
1
𝑟
𝑛

1
+ 𝑐
2
𝑟
𝑛

2
+ 𝑐
3
𝑟
𝑛

3
,

where

𝑐
1
=

𝑟
2
+ 𝑟
3

(𝑟
2
− 𝑟
1
) (𝑟
1
− 𝑟
3
)
,

𝑐
2
=

𝑟
1
+ 𝑟
3

(𝑟
2
− 𝑟
1
) (𝑟
3
− 𝑟
2
)
,

𝑐
3
=

𝑟
1
+ 𝑟
2

(𝑟
2
− 𝑟
3
) (𝑟
3
− 𝑟
1
)
,

(37)

we get

𝑓 (𝜔
𝑘

) =

𝑛

∑

𝑗=1

𝑉
𝑟+𝑗
(𝜔
𝑘

)
𝑗−1

=

𝑛

∑

𝑗=1

(𝑐
1
𝑟
𝑟+𝑗

1
+ 𝑐
2
𝑟
𝑟+𝑗

2
+ 𝑐
3
𝑟
𝑟+𝑗

3
) (𝜔
𝑘

)
𝑗−1

=
𝑑𝜔
2𝑘

+ (𝑉
𝑟+2
− 𝑉
𝑟+𝑛+2

) 𝜔
𝑘

+ 𝑐

𝜎
,

(38)

where

𝜎 = (1 − 𝑟
1
𝜔
𝑘

) (1 − 𝑟
2
𝜔
𝑘

) (1 − 𝑟
3
𝜔
𝑘

) ,

(𝑘 = 1, . . . , 𝑛 − 1) .

(39)

If there exists 𝜔𝑙 (𝑙 = 1, 2, . . . , 𝑛 − 1) showing that 𝑓(𝜔𝑙) = 0,
here we get 𝑑𝜔2𝑘 + 𝑝𝜔𝑘 + 𝑐 = 0 for (1 − 𝑟

1
𝜔
𝑘

)(1 − 𝑟
2
𝜔
𝑘

)(1 −

𝑟
3
𝜔
𝑘

) ̸= 0. If 𝑝2 − 4𝑐𝑑 ≥ 0, thus, 𝜔𝑙 = (−𝑝 ± √𝑝2 − 4𝑐𝑑)/2 is
a real number. While

𝜔
𝑙

= exp(2𝑙𝜋𝑖
𝑛
) = cos(2𝑙𝜋

𝑛
) + 𝑖 sin(2𝑙𝜋

𝑛
) , (40)

sin(2𝑙𝜋/𝑛) = 0, we obtain 𝜔𝑙 = −1 for 0 < (2𝑙𝜋/𝑛) < 2𝜋.
But 𝑥 = −1 is not the root of the equation 𝑑𝑥2 + 𝑝𝑥 + 𝑐 = 0.
We have 𝑓(𝜔𝑘) ̸= 0 for any 𝜔𝑘 (𝑘 = 1, 2, . . . , 𝑛 − 1), while
𝑓(1) = ∑

𝑛

𝑗=1
𝑉
𝑟+𝑗
= ((𝑉
𝑟
+ 𝑉
𝑟+4
− 𝑉
𝑟+𝑛
− 𝑉
𝑟+𝑛+4

)/((1 − 𝑟
1
)(1 −

𝑟
2
)(1−𝑟

3
))) ̸= 0. If𝑝2−4𝑐𝑑 < 0, we get that𝜔𝑘 is an imaginary

number, if and only if

cos(2𝑘𝜋
𝑛
) =

−𝑝

2𝑑
, sin(2𝑙𝜋

𝑛
) =

±√4𝑐𝑑 − 𝑝2

2𝑑
.

(41)

We obtain 𝑛 = 2𝑘𝜋/ arctan(√4𝑐𝑑 − 𝑝2/ ± 𝑝), such that
𝑓(𝜔
𝑘

) = 0. If (1−𝑟
1
𝜔
𝑘

)(1−𝑟
2
𝜔
𝑘

)(1−𝑟
3
𝜔
𝑘

) = 1−𝜔
2𝑘

−𝜔
3𝑘

= 0,
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we have 𝜔𝑘 = 1/𝑟
1
, 1/𝑟
2
, or 1/𝑟

3
; obviously, 𝜔𝑘 ̸= 0 and

𝜔
𝑘

̸= ±1. In the same way, we know that 1/𝑟
𝑖
̸= 0 and

1/𝑟
𝑖
̸= ±1. So, 𝑓(1/𝑟

𝑖
) = ∑

𝑛

𝑗=1
𝑉
𝑟+𝑗
(1/𝑟
𝑖
)
𝑗−1

̸= 0, (𝑖 = 1, 2, 3).
By Lemma 1 in [14], the proof is obtained.

Theorem 7. Let V
𝑟,𝑛
= 𝐶𝑖𝑟𝑐(𝑉

𝑟+1
, 𝑉
𝑟+2
, . . . , 𝑉

𝑟+𝑛
) be a Van-

derLaan circulantmatrix. If 𝑛 ̸= 2𝑘𝜋/ arctan(√4𝑐𝑑 − 𝑝2/±𝑝),
so its inverse is

V
−1

𝑟,𝑛

= 𝐶𝑖𝑟𝑐 (
1

]
−
𝜃

]
𝑦
󸀠

3
− 𝑦
󸀠

4
− 𝑦
󸀠

5
, −
𝑉
𝑟+2

]𝑉
𝑟+1

+ (
𝜃𝑉
𝑟+2

]𝑉
𝑟+1

−
𝑉
𝑟+3

𝑉
𝑟+1

)𝑦
󸀠

3

−𝑦
󸀠

4
, 𝑦
󸀠

𝑛
, . . . , 𝑦

󸀠

3
− 𝑦
󸀠

5
− 𝑦
󸀠

6
) ,

(42)

where
𝑦
󸀠

1
= 0,

𝑦
󸀠

2
=
1

]
,

𝑦
󸀠

3
=
𝑏
3

𝜉
−
𝑐∑
𝑛−2

𝑖=2
ℎ
𝑖1
𝑏
𝑖+2

𝜉
,

𝑦
󸀠

4
= −

𝑏
3
∑
𝑛−3

𝑖=1
ℎ
𝑖1
𝜌
𝑖+3

𝜉
+

𝑛−3

∑

𝑖=1

ℎ
𝑖1
𝑏
𝑖+3

−
𝑐∑
𝑛−3

𝑖=1
ℎ
𝑖1
𝜌
𝑖+3
∑
𝑛−2

𝑖=2
ℎ
𝑖1
𝑏
𝑖+2

𝜉
,

.

.

.

𝑦
󸀠

𝑘
= −

𝑏
3
∑
𝑛−𝑘+1

𝑖=1
ℎ
𝑖1
𝜌
𝑖+𝑘−1

𝜉
+

𝑛−𝑘+1

∑

𝑖=1

ℎ
𝑖1
𝑏
𝑖+𝑘−1

−
𝑐∑
𝑛−𝑘+1

𝑖=1
ℎ
𝑖1
𝜌
𝑖+𝑘−1

∑
𝑛−2

𝑖=2
ℎ
𝑖1
𝑏
𝑖+2

𝜉
, (𝑘 ≥ 4) ,

𝜉 = 𝜌
3
− 𝑏

𝑛−3

∑

𝑖=1

ℎ
𝑖1
𝜌
𝑖+3
− 𝑑

𝑛−4

∑

𝑖=1

ℎ
𝑖1
𝜌
𝑖+4
,

𝜌
3
= 𝑉
𝑟+1
−
𝑉
𝑟+3
𝑉
𝑟+𝑛−1

𝑉
𝑟+1

−
𝜃

]
𝛿
𝑛
,

𝜌
𝑖
= 𝑉
𝑟+𝑛−𝑖+4

−
𝜃

]
𝛿
𝑛−𝑖+3

−
𝑉
𝑟+3
𝑉
𝑟+𝑛+2−𝑖

𝑉
𝑟+1

(𝑖 = 4, . . . , 𝑛) ,

𝑏
𝑗
=
𝑉
𝑟+2
𝑉
𝑟+𝑛+2−𝑗

− 𝑉
𝑟+1
𝑉
𝑟+𝑛+3−𝑗

]𝑉
𝑟+1

(𝑗 = 3, . . . , 𝑛) .

(43)

Proof. Let

Γ
2
=(

1 0 0 ⋅ ⋅ ⋅ 0

0 1 0 ⋅ ⋅ ⋅ 0

0 −
𝜃

]
1 ⋅ ⋅ ⋅ 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ d ⋅ ⋅ ⋅

0 0 0 ⋅ ⋅ ⋅ 1

); (44)

thus

Γ𝑉
𝑛
Π
1
=(

(

𝑉
𝑟+1

𝜇 𝑉
𝑟+𝑛−1

⋅ ⋅ ⋅ 𝑉
𝑟+2

0 ] 𝛿
𝑛

⋅ ⋅ ⋅ 𝛿
3

0 0 𝜌
3

⋅ ⋅ ⋅ 𝜌
𝑛

0 0 𝑏 ⋅ ⋅ ⋅ 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 0 ⋅ ⋅ ⋅ 𝑐

)

)

. (45)

Also we have Γ = Γ
2
Γ
1
, according to Lemma 3; letting

Ψ = (
𝜌
3
𝑉

𝑈 G
) , (46)

be a (𝑛 − 2) × (𝑛 − 2) partitioned matrix, we obtain

Ψ
−1

= (

1

𝜉
−
𝑉G−1

𝜉

−
G−1𝑈

𝜉
G−1 +

𝑈𝑉G−1

𝜉

) , (47)

where

𝜉 = 𝜌
3
− 𝑉G

−1

𝑈,

𝑈 = (𝑏, 𝑑, 0, . . . , 0)
𝑇

,

𝑉 = (𝜌
4
, 𝜌
5
, . . . , 𝜌

𝑛
) .

(48)

Let

Π
2
=(

(

1 −
𝜇

𝑉
𝑟+1

󰜚
3
⋅ ⋅ ⋅ 󰜚
𝑛

0 1 𝑏
3
⋅ ⋅ ⋅ 𝑏
𝑛

0 0 1 ⋅ ⋅ ⋅ 0

.

.

.
.
.
.

.

.

. d
.
.
.

0 0 0 ⋅ ⋅ ⋅ 1

)

)

, (49)

where

󰜚
𝑖
=
𝜇𝑏
𝑖
− 𝑉
𝑟+𝑛−𝑖+2

𝑉
𝑟+1

(𝑖 = 3, . . . , 𝑛) . (50)

So

ΓV
𝑟,𝑛
Π
1
Π
2
= D ⊕ Ψ, (51)
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where D = diag(𝑉
𝑟+1
, ]) is a diagonal matrix and D ⊕ Ψ is

the direct sum ofD and Ψ. If we denote Π = Π
1
Π
2
, then we

obtain

V
−1

𝑟,𝑛
= Π (D

−1

⊕ Ψ
−1

) Γ,

Γ =

(
(
(
(
(
(
(
(
(
(
(

(

1 0 0

−
𝑉
𝑟+2

𝑉
𝑟+1

0 0 1

𝜒 c 1 −
𝜃

]
−1 c c 0 −1

0 c −1 −1

.

.

. c c c c c 0

0 0 1 0 −1 c 0
.
.
.

0 1 0 −1 −1 0 ⋅ ⋅ ⋅ 0

)
)
)
)
)
)
)
)
)
)
)

)

,

(52)

where

𝜒 =
𝜃𝑉
𝑟+2

]𝑉
𝑟+1

−
𝑉
𝑟+3

𝑉
𝑟+1

. (53)

Since the last row elements of the matrix Π are
0, 1, (𝑉

𝑟+2
𝑉
𝑟+𝑛−1

− 𝑉
𝑟+1
𝑉
𝑟+𝑛
)/]𝑉
𝑟+1
, . . . , (𝑉

2

𝑟+2
− 𝑉
𝑟+1
𝑉
𝑟+3
)/

]𝑉
𝑟+1

, then for Π(D−1
1
⊕ Ψ
−1

) its last row elements are given
by the following equations:

𝑦
󸀠

1
= 0,

𝑦
󸀠

2
=
1

]
,

𝑦
󸀠

3
=
𝑏
3

𝜉
−
𝑐∑
𝑛−2

𝑖=2
ℎ
𝑖1
𝑏
𝑖+2

𝜉
,

𝑦
󸀠

4
= −

𝑏
3
∑
𝑛−3

𝑖=1
ℎ
𝑖1
𝜌
𝑖+3

𝜉
+

𝑛−3

∑

𝑖=1

ℎ
𝑖1
𝑏
𝑖+3

−
𝑐∑
𝑛−3

𝑖=1
ℎ
𝑖1
𝜌
𝑖+3
∑
𝑛−2

𝑖=2
ℎ
𝑖1
𝑏
𝑖+2

𝜉
,

.

.

.

𝑦
󸀠

𝑘
= −

𝑏
3
∑
𝑛−𝑘+1

𝑖=1
ℎ
𝑖1
𝜌
𝑖+𝑘−1

𝜉
+

𝑛−𝑘+1

∑

𝑖=1

ℎ
𝑖1
𝑏
𝑖+𝑘−1

−
𝑐∑
𝑛−𝑘+1

𝑖=1
ℎ
𝑖1
𝜌
𝑖+𝑘−1

∑
𝑛−2

𝑖=2
ℎ
𝑖1
𝑏
𝑖+2

𝜉
, (𝑘 ≥ 4) .

(54)

By Lemma 4, if V−1
𝑟,𝑛
= Circ(𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
), we have its

last row elements as follows:

𝑦
2
= −

𝑉
𝑟+2

]𝑉
𝑟+1

+ (
𝜃𝑉
𝑟+2

]𝑉
𝑟+1

−
𝑉
𝑟+3

𝑉
𝑟+1

)𝑦
󸀠

3
− 𝑦
󸀠

4
,

𝑦
3
= 𝑦
󸀠

𝑛
,

𝑦
4
= 𝑦
󸀠

𝑛−1
,

𝑦
5
= 𝑦
󸀠

𝑛−2
− 𝑦
󸀠

𝑛
,

.

.

.

𝑦
𝑘
= 𝑦
󸀠

𝑛−𝑘+3
− 𝑦
󸀠

𝑛−𝑘+5
− 𝑦
󸀠

𝑛−𝑘+6
(5 < 𝑘 ≤ 𝑛) ,

𝑦
1
=
1

]
−
𝜃

]
𝑦
󸀠

3
− 𝑦
󸀠

4
− 𝑦
󸀠

5
.

(55)

Proof is completed.

3. Norms and Bound of Spread for
VanderLaan Circulant Matrix

In this section, we gain three kinds of norms and lower bound
for the spread of VanderLaan circulant matrix separately.

Theorem 8. Let V
𝑟,𝑛

= 𝐶𝑖𝑟𝑐(𝑉
𝑟+1
, 𝑉
𝑟+2
, . . . , 𝑉

𝑟+𝑛
) be a

VanderLaan circulant matrix. One has its two kinds of norms:

󵄩󵄩󵄩󵄩V𝑟,𝑛
󵄩󵄩󵄩󵄩1
=
󵄩󵄩󵄩󵄩V𝑟,𝑛

󵄩󵄩󵄩󵄩∞
= 𝑉
𝑟+𝑛+5

− 𝑉
𝑟+5
. (56)

Proof. By definition of norms in [25] and (4), we obtain

󵄩󵄩󵄩󵄩V𝑟,𝑛
󵄩󵄩󵄩󵄩1
=
󵄩󵄩󵄩󵄩V𝑟,𝑛

󵄩󵄩󵄩󵄩∞

=

𝑛

∑

𝑗=1

𝑉
𝑟+𝑗

=
𝑉
𝑟
+ 𝑉
𝑟+1
+ 𝑉
𝑟+2
− 𝑉
𝑟+𝑛
− 𝑉
𝑟+𝑛+1

− 𝑉
𝑟+𝑛+2

(1 − 𝑟
1
) (1 − 𝑟

2
) (1 − 𝑟

3
)

=
𝑉
𝑟+5
− 𝑉
𝑟+𝑛+5

(1 − 𝑟
1
) (1 − 𝑟

2
) (1 − 𝑟

3
)

=
𝑉
𝑟+5
− 𝑉
𝑟+𝑛+5

1 − (𝑟
1
+ 𝑟
2
+ 𝑟
3
) + (𝑟
1
𝑟
2
+ 𝑟
2
𝑟
3
+ 𝑟
1
𝑟
3
) − 𝑟
1
𝑟
2
𝑟
3

= 𝑉
𝑟+𝑛+5

− 𝑉
𝑟+5
.

(57)

Theorem 8 is proved.

Theorem 9. Let V
𝑟,𝑛

= 𝐶𝑖𝑟𝑐(𝑉
𝑟+1
, 𝑉
𝑟+2
, . . . , 𝑉

𝑟+𝑛
) be a

VanderLaan circulant matrix. So one has

󵄩󵄩󵄩󵄩V𝑟,𝑛
󵄩󵄩󵄩󵄩2
=

𝑛

∑

𝑗=1

𝑉
𝑟+𝑗
= 𝑉
𝑟+𝑛+5

− 𝑉
𝑟+5
. (58)
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Proof. According toTheorem 2 in [26] and (4), we get

󵄩󵄩󵄩󵄩V𝑟,𝑛
󵄩󵄩󵄩󵄩2
=

𝑛

∑

𝑗=1

𝑉
𝑟+𝑗

=
𝑉
𝑟
+ 𝑉
𝑟+1
+ 𝑉
𝑟+2
− 𝑉
𝑟+𝑛
− 𝑉
𝑟+𝑛+1

− 𝑉
𝑟+𝑛+2

(1 − 𝑟
1
) (1 − 𝑟

2
) (1 − 𝑟

3
)

=
𝑉
𝑟+5
− 𝑉
𝑟+𝑛+5

1 − (𝑟
1
+ 𝑟
2
+ 𝑟
3
) + (𝑟
1
𝑟
2
+ 𝑟
2
𝑟
3
+ 𝑟
1
𝑟
3
) − 𝑟
1
𝑟
2
𝑟
3

= 𝑉
𝑟+𝑛+5

− 𝑉
𝑟+5
.

(59)

The proofs are completed.

Theorem 10. Let V
𝑟,𝑛

= 𝐶𝑖𝑟𝑐(𝑉
𝑟+1
, 𝑉
𝑟+2
, . . . , 𝑉

𝑟+𝑛
) be a

VanderLaan circulant matrix; the lower bound for the spread
ofV
𝑟,𝑛

is

𝑠 (V
𝑟,𝑛
) ≥

𝑛 (𝑉
𝑟+𝑛+5

− 𝑉
𝑟+6
)

𝑛 − 1
. (60)

Proof. By (19) in [27] and (4), we obtain

𝑠 (V
𝑟,𝑛
) ≥

𝑛

𝑛 − 1

𝑛

∑

𝑗=2

𝑉
𝑟+𝑗
. (61)

Since

𝑛

∑

𝑗=2

𝑉
𝑟+𝑗
=
𝑐
1
𝑟
1

𝑟+2

(1 − 𝑟
1

𝑛−1

)

(1 − 𝑟
1
)

+
𝑐
2
𝑟
2

𝑟+2

(1 − 𝑟
2

𝑛−1

)

(1 − 𝑟
2
)

+
𝑐
3
𝑟
3

𝑟+2

(1 − 𝑟
3

𝑛−1

)

(1 − 𝑟
3
)

=
𝑉
𝑟+1
+ 𝑉
𝑟+2
+ 𝑉
𝑟+3
− 𝑉
𝑟+𝑛
− 𝑉
𝑟+𝑛+1

− 𝑉
𝑟+𝑛+2

(1 − 𝑟
1
) (1 − 𝑟

2
) (1 − 𝑟

3
)

=
𝑉
𝑟+6
− 𝑉
𝑟+𝑛+5

1 − (𝑟
1
+ 𝑟
2
+ 𝑟
3
) + (𝑟
1
𝑟
2
+ 𝑟
2
𝑟
3
+ 𝑟
1
𝑟
3
) − 𝑟
1
𝑟
2
𝑟
3

= 𝑉
𝑟+𝑛+5

− 𝑉
𝑟+6
,

(62)

we get

𝑠 (V
𝑟,𝑛
) ≥

𝑛 (𝑉
𝑟+𝑛+5

− 𝑉
𝑟+6
)

𝑛 − 1
, (63)

which completes the proof.

4. Determinant, Inverse, and Norms and
Spread of VanderLaan Left Circulant Matrix

In this part, let U
𝑟,𝑛

be a VanderLaan left circulant matrix.
By using the obtained conclusions, we give a determinant
formula for the matrix U

𝑟,𝑛
. Afterwards, we prove that U

𝑟,𝑛

is an nonsingular matrix for 𝑛 ̸= 2𝑘𝜋/ arctan(√4𝑐𝑑 − 𝑝2/±

𝑝). The inverse of the matrix U
𝑟,𝑛

is also presented. Finally,
three kinds of norms and lower bound for the spread of
VanderLaan left circulant matrix are given.

According to Lemma 2 in [15] and Theorems 5, 6, and 7,
we can obtain the following theorems.

Theorem 11. Let U
𝑟,𝑛

= 𝐿𝐶𝑖𝑟𝑐(𝑉
𝑟+1
, 𝑉
𝑟+2
, . . . , 𝑉

𝑟+𝑛
) be a

VanderLaan left circulant matrix; then one has

detU
𝑟,𝑛
= (−1)

(𝑛−1)(𝑛−2)/2

[𝑉
𝑟+1
(]𝜅 − 𝜃𝜏)] , (64)

where 𝑉
𝑟+𝑛

is the (𝑟 + 𝑛)th VanderLaan number.

Theorem 12. LetU
𝑟,𝑛
= 𝐿𝐶𝑖𝑟𝑐(𝑉

𝑟+1
, 𝑉
𝑟+2
, . . . , 𝑉

𝑟+𝑛
) be a Van-

derLaan left circulantmatrix; if 𝑛 ̸= 2𝑘𝜋/ arctan(√4𝑐𝑑 − 𝑝2/±
𝑝), thenU

𝑟,𝑛
is a nonsingular matrix.

Theorem 13. Let U
𝑟,𝑛

= 𝐿𝐶𝑖𝑟𝑐(𝑉
𝑟+1
, 𝑉
𝑟+2
, . . . , 𝑉

𝑟+𝑛
) be

a VanderLaan left circulant matrix; in case of 𝑛 ̸=

2𝑘𝜋/ arctan(√4𝑐𝑑 − 𝑝2/ ± 𝑝), its inverse is

U
−1

𝑟,𝑛
= 𝐿𝐶𝑖𝑟𝑐 (

1

]
−
𝜃

]
𝑦
󸀠

3
− 𝑦
󸀠

4
− 𝑦
󸀠

5
, 𝑦
󸀠

3
− 𝑦
󸀠

5
− 𝑦
󸀠

6
, . . . , 𝑦

󸀠

𝑛
,

−
𝑉
𝑟+2

]𝑉
𝑟+1

+ (
𝜃𝑉
𝑟+2

]𝑉
𝑟+1

−
𝑉
𝑟+3

𝑉
𝑟+1

)𝑦
󸀠

3
− 𝑦
󸀠

4
) ,

(65)

where

𝑦
󸀠

1
= 0,

𝑦
󸀠

2
=
1

]
,

𝑦
󸀠

3
=
𝑏
3

𝜉
−
𝑐∑
𝑛−2

𝑖=2
ℎ
𝑖1
𝑏
𝑖+2

𝜉
,

𝑦
󸀠

4
= −

𝑏
3
∑
𝑛−3

𝑖=1
ℎ
𝑖1
𝜌
𝑖+3

𝜉

+

𝑛−3

∑

𝑖=1

ℎ
𝑖1
𝑏
𝑖+3

−
𝑐∑
𝑛−3

𝑖=1
ℎ
𝑖1
𝜌
𝑖+3
∑
𝑛−2

𝑖=2
ℎ
𝑖1
𝑏
𝑖+2

𝜉
,

.

.

.

𝑦
󸀠

𝑘
= −

𝑏
3
∑
𝑛−𝑘+1

𝑖=1
ℎ
𝑖1
𝜌
𝑖+𝑘−1

𝜉
+

𝑛−𝑘+1

∑

𝑖=1

ℎ
𝑖1
𝑏
𝑖+𝑘−1

−
𝑐∑
𝑛−𝑘+1

𝑖=1
ℎ
𝑖1
𝜌
𝑖+𝑘−1

∑
𝑛−2

𝑖=2
ℎ
𝑖1
𝑏
𝑖+2

𝜉
, (𝑘 ≥ 4) .

(66)

Theorem 14. Let U
𝑟,𝑛

= 𝐿𝐶𝑖𝑟𝑐(𝑉
𝑟+1
, 𝑉
𝑟+2
, . . . , 𝑉

𝑟+𝑛
) be a

VanderLaan left circulant matrix, so one can get two kinds of
norms ofU

𝑟,𝑛
:
󵄩󵄩󵄩󵄩U𝑟,𝑛

󵄩󵄩󵄩󵄩1
=
󵄩󵄩󵄩󵄩U𝑟,𝑛

󵄩󵄩󵄩󵄩∞
= 𝑉
𝑟+𝑛+5

− 𝑉
𝑟+5
. (67)
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Proof. By definition of norms in [25] and (57), we have
󵄩󵄩󵄩󵄩U𝑟,𝑛

󵄩󵄩󵄩󵄩1
=
󵄩󵄩󵄩󵄩U𝑟,𝑛

󵄩󵄩󵄩󵄩∞

=

𝑛

∑

𝑗=1

𝑉
𝑟+𝑗

= 𝑉
𝑟+𝑛+5

− 𝑉
𝑟+5
.

(68)

This completes the proof.

Theorem 15. Let U
𝑟,𝑛

= 𝐿𝐶𝑖𝑟𝑐(𝑉
𝑟+1
, 𝑉
𝑟+2
, . . . , 𝑉

𝑟+𝑛
) be a

VanderLaan left circulant matrix; then one has the spectral
norm ofU

𝑟,𝑛
:

󵄩󵄩󵄩󵄩U𝑟,𝑛
󵄩󵄩󵄩󵄩2
= 𝑉
𝑟+𝑛+5

− 𝑉
𝑟+5
. (69)

Proof. FromTheorem 2 in [26] and (57), we can have

󵄩󵄩󵄩󵄩U𝑟,𝑛
󵄩󵄩󵄩󵄩2
=

𝑛

∑

𝑗=1

𝑉
𝑟+𝑗
= 𝑉
𝑟+𝑛+5

− 𝑉
𝑟+5
. (70)

The proofs are completed.

Theorem 16. Let U
𝑟,𝑛

= 𝐿𝐶𝑖𝑟𝑐(𝑉
𝑟+1
, 𝑉
𝑟+2
, . . . , 𝑉

𝑟+𝑛
) be a

VanderLaan left circulant matrix; the lower bound for the
spread ofU

𝑟,𝑛
is

𝑠 (U
𝑟,𝑛
) ≥ {

𝑉
𝑟+𝑛+5

− 𝑉
𝑟+5
, 𝑛 𝑖𝑠 𝑜𝑑𝑑,

𝑡, 𝑛 𝑖𝑠 𝑒V𝑒𝑛,
(71)

where

𝑡 =
𝑛

𝑛 − 1
(𝑉
𝑟+𝑛+5

− 𝑉
𝑟+5
) −

2

𝑛 − 1
(𝑉
𝑟+𝑛+2

− 𝑉
𝑟+2
) . (72)

Proof. By (19) in [27], we obtain

𝑠 (U
𝑟,𝑛
) ≥

1

𝑛 − 1
∑

𝑗 ̸=𝑖

𝑉
𝑟+𝑗
. (73)

When 𝑛 is odd

1

𝑛 − 1
∑

𝑗 ̸=𝑖

𝑉
𝑟+𝑗
=

1

𝑛 − 1

[

[

𝑛

𝑛

∑

𝑗=1

𝑉
𝑟+𝑗
−

𝑛

∑

𝑗=1

𝑉
𝑟+𝑗

]

]

=

𝑛

∑

𝑗=1

𝑉
𝑟+𝑗

= 𝑉
𝑟+𝑛+5

− 𝑉
𝑟+5
.

(74)

If 𝑛 is even

1

𝑛 − 1
∑

𝑗 ̸=𝑖

𝑉
𝑟+𝑗
=

1

𝑛 − 1

[

[

𝑛

𝑛

∑

𝑗=1

𝑉
𝑟+𝑗
− 2

𝑛/2

∑

𝑗=1

𝑉
𝑟+2𝑗−1

]

]

=
𝑛

𝑛 − 1
(𝑉
𝑟+𝑛+5

− 𝑉
𝑟+5
) −

2

𝑛 − 1

𝑛/2

∑

𝑗=1

𝑉
𝑟+2𝑗−1

=
𝑛

𝑛 − 1
𝑉
𝑟+𝑛+5

− 𝑉
𝑟+5
−

2

𝑛 − 1
(𝑉
𝑟+𝑛+2

− 𝑉
𝑟+2
)

= 𝑡.

(75)

We get

𝑠 (U
𝑟,𝑛
) ≥ {

𝑉
𝑟+𝑛+5

− 𝑉
𝑟+5
, 𝑛 is odd,

𝑡, 𝑛 is even.
(76)

The proofs are completed.

5. Determinant, Inverse, and Spectral Norm of
VanderLaan 𝑔-Circulant Matrix

In this section, letW
𝑔,𝑟,𝑛

be aVanderLaan 𝑔-circulantmatrix.
We give a determinant formula for the matrix W

𝑔,𝑟,𝑛
by the

means of the gained results. Afterwards, we get the inverse
of the matrix W

𝑔,𝑟,𝑛
and obtain that W

𝑔,𝑟,𝑛
is an invertible

matrix for 𝑛 ̸= 2𝑘𝜋/ arctan(√4𝑐𝑑 − 𝑝2/ ± 𝑝). At last, we gain
the spectral norm of VanderLaan 𝑔-circulant matrix.

From Lemmas 3 and 4 in [15] and Theorems 5, 6, and 7,
the following results are deduced.

Theorem 17. Let W
𝑔,𝑟,𝑛

= 𝑔-𝐶𝑖𝑟𝑐(𝑉
𝑟+1
, 𝑉
𝑟+2
, . . . , 𝑉

𝑟+𝑛
) be a

VanderLaan 𝑔-circulant matrix and (𝑛, 𝑔) = 1; one obtains

detW
𝑔,𝑟,𝑛

= 𝑉
𝑟+1
(]𝜅 − 𝜃𝜏) detQ

𝑔
, (77)

where𝑉
𝑟+𝑛

is the (𝑟+𝑛)th VanderLaan number and the matrix
Q
𝑔
is given Lemma 3 in [15].

Theorem 18. Let W
𝑔,𝑟,𝑛

= 𝑔-𝐶𝑖𝑟𝑐(𝑉
𝑟+1
, 𝑉
𝑟+2
, . . . , 𝑉

𝑟+𝑛
) be

a VanderLaan 𝑔-circulant matrix and (𝑛, 𝑔) = 1; if 𝑛 ̸=

2𝑘𝜋/ arctan(√4𝑐𝑑 − 𝑝2/ ± 𝑝),W
𝑔,𝑟,𝑛

is a nonsingular matrix.

Theorem 19. Let W
𝑔,𝑟,𝑛

= 𝑔-𝐶𝑖𝑟𝑐(𝑉
𝑟+1
, 𝑉
𝑟+2
, . . . , 𝑉

𝑟+𝑛
) be a

VanderLaan 𝑔-circulant matrix and (𝑛, 𝑔) = 1; when 𝑛 ̸=

2𝑘𝜋/ arctan(√4𝑐𝑑 − 𝑝2/ ± 𝑝), the inverse of matrixW
𝑔,𝑟,𝑛

is

W
−1

𝑔,𝑟,𝑛
= [𝐶𝑖𝑟𝑐 (

1

]
−
𝜃

]
𝑦
󸀠

3
− 𝑦
󸀠

4
− 𝑦
󸀠

5
, −
𝑉
𝑟+2

]𝑉
𝑟+1

+(
𝜃𝑉
𝑟+2

]𝑉
𝑟+1

−
𝑉
𝑟+3

𝑉
𝑟+1

)𝑦
󸀠

3
− 𝑦
󸀠

4
, 𝑦
󸀠

𝑛
, . . . , 𝑦

󸀠

3

−𝑦
󸀠

5
− 𝑦
󸀠

6
)]Q

𝑇

𝑔
,

(78)

where

𝑦
󸀠

1
= 0,

𝑦
󸀠

2
=
1

]
,

𝑦
󸀠

3
=
𝑏
3

𝜉
−
𝑐∑
𝑛−2

𝑖=2
ℎ
𝑖1
𝑏
𝑖+2

𝜉
,
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𝑦
󸀠

4
= −

𝑏
3
∑
𝑛−3

𝑖=1
ℎ
𝑖1
𝜌
𝑖+3

𝜉
+

𝑛−3

∑

𝑖=1

ℎ
𝑖1
𝑏
𝑖+3

−
𝑐∑
𝑛−3

𝑖=1
ℎ
𝑖1
𝜌
𝑖+3
∑
𝑛−2

𝑖=2
ℎ
𝑖1
𝑏
𝑖+2

𝜉
,

.

.

.

𝑦
󸀠

𝑘
= −

𝑏
3
∑
𝑛−𝑘+1

𝑖=1
ℎ
𝑖1
𝜌
𝑖+𝑘−1

𝜉
+

𝑛−𝑘+1

∑

𝑖=1

ℎ
𝑖1
𝑏
𝑖+𝑘−1

−
𝑐∑
𝑛−𝑘+1

𝑖=1
ℎ
𝑖1
𝜌
𝑖+𝑘−1

∑
𝑛−2

𝑖=2
ℎ
𝑖1
𝑏
𝑖+2

𝜉
,

(𝑘 ≥ 4) .

(79)

Theorem 20. Let W
𝑔,𝑟,𝑛

= 𝑔-𝐶𝑖𝑟𝑐(𝑉
𝑟+1
, 𝑉
𝑟+2
, . . . , 𝑉

𝑟+𝑛
) be a

VanderLaan 𝑔-circulant matrix and (𝑛, 𝑔) = 1. One has its
spectral norm

󵄩󵄩󵄩󵄩󵄩
W
𝑔,𝑟,𝑛

󵄩󵄩󵄩󵄩󵄩2
= 𝑉
𝑟+𝑛+5

− 𝑉
𝑟+5
. (80)

Proof. According to the definition of norms, Lemmas 3 and 4
in [15], and Theorem 9, if (𝑔, 𝑛) = 1, we get W𝑇

𝑔,𝑟,𝑛
W
𝑔,𝑟,𝑛

=

V𝑇
𝑟,𝑛
Q𝑇
𝑔
Q
𝑔
V
𝑟,𝑛
= V𝑇
𝑟,𝑛
V
𝑟,𝑛
; then ‖W

𝑔,𝑟,𝑛
‖
2
= ‖V

𝑟,𝑛
‖
2
=

𝑉
𝑟+𝑛+5

− 𝑉
𝑟+5

.
This completes the proofs.

6. Conclusion

In this paper, we considered VanderLaan circulant type
matrices. We discussed the nonsingularity of these special
matrices and presented the exact determinants and inverse
matrices of VanderLaan circulant type matrices. Three kinds
of norms and lower bound for the spread of VanderLaan
circulant and left circulant matrix are given separately. And
we gain the spectral norm of VanderLaan 𝑔-circulant matrix.

Furthermore, based on circulant matrices technology we
will consider solving the problem in [28–31].
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