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More than 80 years ago, Born-Infeld electrodynamics was proposed in order to remove the point charge singularity in Maxwell
electrodynamics. In this work, after a brief introduction to Lagrangian formulation of Abelian Born-Infeld model in the presence
of an external source, we obtain the explicit forms of Gauss’s law and the energy density of an electrostatic field for Born-Infeld
electrostatics. The electric field and the stored electrostatic energy per unit length for an infinite charged line and an infinitely long
cylinder in Born-Infeld electrostatics are calculated. Numerical estimations in this paper show that the nonlinear corrections to
Maxwell electrodynamics are considerable only for strong electric fields. We present an action functional for Abelian Born-Infeld
model with an auxiliary scalar field in the presence of an external source. This action functional is a generalization of the action
functional which was presented by Tseytlin in his studies on low energy dynamics of D-branes (Nucl. Phys. B469, 51 (1996); Int. J.
Mod. Phys. A 19, 3427 (2004)). Finally, we derive the symmetric energy-momentum tensor for Abelian Born-Infeld model with an
auxiliary scalar field.

1. Introduction

Maxwell electrodynamics is a very successful theory which
describes a wide range of macroscopic phenomena in elec-
tricity and magnetism. On the other hand, in Maxwell
electrodynamics, the electric field of a point charge 𝑞 at the
position of the point charge is singular; that is,

E (x) =
𝑞

4𝜋𝜖
0 |x|2

x
|x|
|x|→ 0
󳨀→ ∞. (1)

Also, inMaxwell electrodynamics, the classical self-energy of
a point charge is

𝑈 =
𝑞
2

8𝜋𝜖
0

∫

∞

0

𝑑𝑟

𝑟2
󳨀→ ∞. (2)

More than 80 years ago, Born and Infeld proposed a nonlinear
generalization of Maxwell electrodynamics [1]. In their gen-
eralization, the classical self-energy of a point charge was a
finite value [1–6]. Recent studies in string theory show that

the dynamics of electromagnetic fields on 𝐷-branes can be
described by Born-Infeld theory [7–10]. In a paper on Born-
Infeld theory [8], the concept of a BIon was introduced by
Gibbons. BIon is a finite energy solution of a nonlinear theory
with a distributional source. Today, many physicists believe
that the dark energy in our universe can be described by a
Born-Infeld type scalar field [11].The authors of [12] have pre-
sented a non-Abelian generalization of Born-Infeld theory. In
their generalization, they have found a one-parameter family
of finite energy solutions in the case of the 𝑆𝑈(2) gauge group.
In 2013, Hendi [13] proposed a nonlinear generalization
of Maxwell electrodynamics which is called exponential
electrodynamics [14, 15].The black hole solutions of Einstein’s
gravity in the presence of exponential electrodynamics in
a 3+1-dimensional spacetime are obtained in [13]. In 2014,
Gaete and Helayël-Neto introduced a new generalization of
Maxwell electrodynamics which is known as logarithmic
electrodynamics [14]. They proved that the classical self-
energy of a point charge in logarithmic electrodynamics is
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a finite value. Recently, a novel generalization of Born-Infeld
electrodynamics is presented by Gaete and Helayël-Neto in
which the authors show that the field energy of a point-
like charge is finite only for Born-Infeld like electrodynamics
[15]. In [16], a nonlinear model for electrodynamics with
manifestly broken gauge symmetry is proposed. In the above
mentioned model, for nonlinear electrodynamics, there are
nonsingular solitonic solutions which describe charged parti-
cles. Another interesting theory of nonlinear electrodynamics
was proposed and developed by Heisenberg and his stu-
dents Euler and Kockel [17–19]. They showed that classical
electrodynamics must be corrected by nonlinear terms due
to the vacuum polarization effects. In [20], the charged
black hole solutions for Einstein-Euler-Heisenberg theory are
obtained.There are three physical motivations in writing this
paper. First, the exact solutions of nonlinear field equations
are very important in theoretical physics. These solutions
help us to obtain a better understanding of physical reality.
According to the above statements, we attempt to obtain
particular cylindrically symmetric solutions in Born-Infeld
electrostatics. The search for spherically symmetric solutions
in Born-Infeld electrostaticswill be discussed in futureworks.
Second, we want to show that the nonlinear corrections in
electrodynamics are considerable only for very strong electric
fields and extremely short spatial distances. Third, we hope
to remove or at least modify the infinities which appear in
Maxwell electrostatics. This paper is organized as follows.
In Section 2, we study Lagrangian formulation of Abelian
Born-Infeld model in the presence of an external source. The
explicit forms of Gauss’s law and the energy density of an
electrostatic field for Born-Infeld electrostatics are obtained.
In Section 3, we calculate the electric field together with the
stored electrostatic energy per unit length for an infinite
charged line and an infinitely long cylinder in Born-Infeld
electrostatics. Summary and conclusions are presented in
Section 4. Numerical estimations in Section 4 show that the
nonlinear corrections to electric field of infinite charged line
at large radial distances are negligible for weak electric fields.
There are two appendices in this paper. In Appendix A, a
generalized action functional for Abelian Born-Infeld model
with an auxiliary scalar field in the presence of an external
source is proposed. In Appendix B, we obtain the symmetric
energy-momentum tensor for Abelian Born-Infeld model
with an auxiliary scalar field. We use SI units throughout this
paper. The metric of spacetime has the signature (+, −, −, −).

2. Lagrangian Formulation of Abelian Born-
Infeld Model with an External Source

The Lagrangian density for Abelian Born-Infeld model in a
3 + 1-dimensional spacetime is [1–6]

LBI = 𝜖
0
𝛽
2
{

{

{

1 − √1 +
𝑐
2

2𝛽2
𝐹
𝜇]𝐹
𝜇]
}

}

}

− 𝐽
𝜇
𝐴
𝜇
, (3)

where 𝐹
𝜇] = 𝜕

𝜇
𝐴] − 𝜕]𝐴𝜇 is the electromagnetic field tensor

and 𝐽
𝜇
= (𝑐𝜌, J) is an external source for the Abelian field

𝐴
𝜇

= ((1/𝑐)𝜙,A). The parameter 𝛽 in (3) is called the

nonlinearity parameter of the model. In the limit 𝛽 → ∞,
(3) reduces to the Lagrangian density of the Maxwell field;
that is,

LBI
󵄨󵄨󵄨󵄨large𝛽 = L

𝑀
+ O (𝛽

−2
) , (4)

where L
𝑀

= −(1/4𝜇
0
)𝐹
𝜇]𝐹
𝜇]

− 𝐽
𝜇
𝐴
𝜇
is the Maxwell

Lagrangian density. The Euler-Lagrange equation for the
Born-Infeld field 𝐴𝜇 is

𝜕LBI
𝜕𝐴
𝜆

− 𝜕
𝜌
(

𝜕LBI

𝜕 (𝜕
𝜌
𝐴
𝜆
)
) = 0. (5)

If we substitute Lagrangian density (3) in the Euler-Lagrange
equation (5), we will obtain the inhomogeneous Born-Infeld
equations as follows:

𝜕
𝜌
(

𝐹
𝜌𝜆

√1 + (𝑐2/2𝛽2) 𝐹
𝜇]𝐹
𝜇]
) = 𝜇

0
𝐽
𝜆
. (6)

The electromagnetic field tensor 𝐹
𝜇] satisfies the Bianchi

identity:

𝜕
𝜇
𝐹]𝜆 + 𝜕]𝐹𝜆𝜇 + 𝜕𝜆𝐹𝜇] = 0. (7)

Equation (7) leads to the homogeneous Maxwell equations.
In 3 + 1-dimensional spacetime, the components of 𝐹

𝜇] can
be written as follows:

𝐹
𝜇] =

(
(
(
(
(
(
(
(

(

0
𝐸
𝑥

𝑐

𝐸
𝑦

𝑐

𝐸
𝑧

𝑐

−
𝐸
𝑥

𝑐
0 −𝐵

𝑧
𝐵
𝑦

−
𝐸
𝑦

𝑐
𝐵
𝑧

0 −𝐵
𝑥

−
𝐸
𝑧

𝑐
−𝐵
𝑦

𝐵
𝑥

0

)
)
)
)
)
)
)
)

)

. (8)

Using (8), (6) and (7) can be written in the vector form as
follows:

∇ ⋅ (
E (x, 𝑡)

√1 − (E2 (x, 𝑡) − 𝑐2B2 (x, 𝑡)) /𝛽2
) =

𝜌 (x, 𝑡)
𝜖
0

,

∇ × E (x, 𝑡) = −
𝜕B (x, 𝑡)

𝜕𝑡
,

∇ ×(
B (x, 𝑡)

√1 − (E2 (x, 𝑡) − 𝑐2B2 (x, 𝑡)) /𝛽2
)

= 𝜇
0
J (x, 𝑡)

+
1

𝑐2

𝜕

𝜕𝑡
(

E (x, 𝑡)
√1 − (E2 (x, 𝑡) − 𝑐2B2 (x, 𝑡)) /𝛽2

),

∇ ⋅ B (x, 𝑡) = 0.

(9)
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The symmetric energy-momentum tensor for the Abelian
Born-Infeld model in (3) has been obtained by Accioly [21]
as follows:

𝑇
𝜇

𝜆
=

1

𝜇
0

[
𝐹
𝜇]
𝐹]𝜆

Ω
+
𝛽
2

𝑐2
(Ω − 1) 𝛿

𝜇

𝜆
] , (10)

where Ω := √1 + (𝑐2/2𝛽2)𝐹𝛼𝛾𝐹
𝛼𝛾. The classical Born-Infeld

equations (9) for an electrostatic field E(x) are

∇ ⋅ (
E (x)

√1 − E2 (x) /𝛽2
) =

𝜌 (x)
𝜖
0

, (11)

∇ × E (x) = 0. (12)

Equations (11) and (12) are fundamental equations of Born-
Infeld electrostatics [2]. Using divergence theorem, the inte-
gral form of (11) can be written in the form

∮
𝑆

1

√1 − E2 (x) /𝛽2
E (x) ⋅ n 𝑑𝑎 = 1

𝜖
0

∫
𝑉

𝜌 (x) 𝑑3𝑥, (13)

where 𝑉 is the three-dimensional volume enclosed by a two-
dimensional surface 𝑆. Equation (13) is Gauss’s law in Born-
Infeld electrostatics. Using (8) and (10), the energy density of
an electrostatic field in Born-Infeld theory is given by

𝑢 (x) = 𝜖
0
𝛽
2
(

1

√1 − E2 (x) /𝛽2
− 1) . (14)

In the limit 𝛽 → ∞, the modified electrostatic energy
density in (14) smoothly becomes the usual electrostatic
energy density in Maxwell theory; that is,

𝑢(x)|large𝛽 =
1

2
𝜖
0
E2 (x) + O (𝛽

−2
) . (15)

3. Calculation of Stored Electrostatic Energy
per Unit Length for an Infinite
Charged Line and an Infinitely Long
Cylinder in Born-Infeld Electrostatics

3.1. Infinite Charged Line. Let us consider an infinite charged
line with a uniform positive linear charge density 𝜆 which
is located on the 𝑧-axis. Now, we find an expression for the
electric field E(x) at a radial distance 𝜌 from the 𝑧-axis.
Because of the cylindrical symmetry of the problem, the
suitable Gaussian surface is a circular cylinder of radius 𝜌 and
length 𝐿, coaxial with the 𝑧-axis (see Figure 1).

x

y

z

L

𝜆

𝜌

Figure 1: The Gaussian surface for an infinite charged line. The
cylindrical symmetry of the problem implies that E(x) = 𝐸

𝜌
(𝜌)ê
𝜌
,

where ê
𝜌
is the radial unit vector in cylindrical coordinates (𝜌, 𝜑, 𝑧).

Using the cylindrical symmetry of the problem together
with the modified Gauss’s law in (13), the electric field for the
Gaussian surface in Figure 1 becomes

E (x) = 𝜆

2𝜋𝜖
0
𝜌

1

√1 + (𝜆/2𝜋𝜖
0
𝛽𝜌)
2

ê
𝜌
. (16)

In contrast with Maxwell electrostatics, the electric field E(x)
in (16) has a finite value on the 𝑧-axis; that is,

lim
𝜌→0

E (x) = 𝛽ê
𝜌
. (17)

At large radial distances from the 𝑧-axis, the asymptotic
behavior of the electric field in (16) is given by

E (x) = 𝜆

2𝜋𝜖
0
𝜌
ê
𝜌
−

𝜆
3

16𝜋3𝜖
3

0
𝛽2𝜌3

ê
𝜌
+ O (𝜌

−5
) . (18)

The first term on the right-hand side of (18) shows the electric
field of an infinite charged line in Maxwell electrostatics,
while the second and higher order terms in (18) show the
effect of nonlinear corrections. By putting (16) in (14), the
electrostatic energy density for an infinite charged line in
Born-Infeld electrostatics can be written as follows:

𝑢 (x) = 𝜖
0
𝛽
2
(√1 + (

𝜆

2𝜋𝜖
0
𝛽𝜌

)

2

− 1) . (19)
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Figure 2: The Gaussian surface for an infinitely long cylinder of radius 𝑅. (a) Inside the cylinder (𝜌 < 𝑅). (b) Outside the cylinder (𝜌 > 𝑅).

Using (19), the stored electrostatic energy per unit length for
an infinite charged line in the radial interval 0 ≤ 𝜌 ≤ Λ is
given by

𝑈

𝐿
= ∫

Λ

0

∫

2𝜋

0

𝑢 (x) 𝜌𝑑 𝜌𝑑𝜑

= 2𝜋𝜖
0
𝛽
2

{{

{{

{

Λ

2
√Λ2 + (

𝜆

2𝜋𝜖
0
𝛽
)

2

−
Λ
2

2
+
1

2
(

𝜆

2𝜋𝜖
0
𝛽
)

2

⋅ ln(
Λ + √Λ2 + (𝜆/2𝜋𝜖

0
𝛽)
2

(𝜆/2𝜋𝜖
0
𝛽)

)

}}

}}

}

.

(20)

It is necessary to note that the above value for 𝑈/𝐿 has an
infinite value in Maxwell theory. In the limit of large 𝛽, the
expression for 𝑈/𝐿 in (20) diverges logarithmically as ln𝛽.
Hence, it seems that the finite regularization parameter 𝛽
removes the logarithmic divergence in (20).

3.2. Infinitely Long Cylinder. In this subsection, we determine
the electric field E(x) and stored electrostatic energy per unit
length for an infinitely long cylinder of radius 𝑅 and uniform
positive volume charge density 𝜏. As in the previous sub-
section, we assume that the Gaussian surface is a cylindrical
closed surface of radius 𝜌 and length 𝐿 with a common axis
with the infinitely long cylinder (see Figure 2).

According to modified Gauss’s law in (13), the electric
field for the Gaussian surfaces in Figure 2 is given by

E (x) =

{{{{{{

{{{{{{

{

𝜏𝜌

2𝜖
0

1

√1 + (𝜏𝜌/2𝜖
0
𝛽)
2

ê
𝜌
; 𝜌 < 𝑅,

𝜏𝑅
2

2𝜖
0
𝜌

1

√1 + (𝜏𝑅2/2𝜖
0
𝛽𝜌)
2

ê
𝜌
; 𝜌 > 𝑅.

(21)

For the large values of the nonlinearity parameter 𝛽, the
behavior of the electric field E(x) in (21) is as follows:

E (x) =

{{{{{

{{{{{

{

𝜏𝜌

2𝜖
0

ê
𝜌
−

𝜏
3
𝜌
3

16𝜖
3

0
𝛽2

ê
𝜌
+ O (𝛽

−4
) ; 𝜌 < 𝑅,

𝜏𝑅
2

2𝜖
0
𝜌
ê
𝜌
−

𝜏
3
𝑅
6

16𝜖
3

0
𝛽2𝜌3

ê
𝜌
+ O (𝛽

−4
) ; 𝜌 > 𝑅.

(22)

Hence, for the large values of 𝛽, the electric field E(x) in (22)
becomes the electric field of an infinitely long cylinder in
Maxwell electrostatics. If we substitute (21) into (14), we will
obtain the electrostatic energy density for an infinitely long
cylinder in Born-Infeld electrostatics as follows:

𝑢 (x) =

{{{{{{{{

{{{{{{{{

{

𝜖
0
𝛽
2
(√1 + (

𝜏𝜌

2𝜖
0
𝛽
)

2

− 1) ; 𝜌 < 𝑅,

𝜖
0
𝛽
2
(√1 + (

𝜏𝑅
2

2𝜖
0
𝛽𝜌

)

2

− 1) ; 𝜌 > 𝑅.

(23)

Using (23), the stored electrostatic energy per unit length
for an infinitely long cylinder in the radial interval 0 ≤ 𝜌 ≤

Λ (Λ > 𝑅) is given by

𝑈

𝐿
= 2𝜋𝜖

0
𝛽
2

{{

{{

{

∫

𝑅

0

(√1 + (
𝜏𝜌

2𝜖
0
𝛽
)

2

− 1)𝜌𝑑𝜌

+∫

Λ

𝑅

(√1 + (
𝜏𝑅
2

2𝜖
0
𝛽𝜌

)

2

− 1)𝜌𝑑𝜌

}}

}}

}
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= 2𝜋𝜖
0
𝛽
2

{{

{{

{

−
Λ
2

2
+ (

2𝜖
0
𝛽

𝜏√3
)

2

[(1 + (
𝜏𝑅

2𝜖
0
𝛽
)

2

)

3/2

− 1]

+
Λ
2

2

√1 + (
𝜏𝑅
2

2𝜖
0
𝛽Λ

)

2

−
𝑅
2

2
√1 + (

𝜏𝑅

2𝜖
0
𝛽
)

2

+
1

2
(
𝜏𝑅
2

2𝜖
0
𝛽
)

2

⋅ ln(
Λ + Λ√1 + (𝜏𝑅2/2𝜖

0
𝛽Λ)
2

𝑅 + 𝑅√1 + (𝜏𝑅/2𝜖
0
𝛽)
2

)

}}

}}

}

.

(24)

In the limit of large 𝛽, the expression for 𝑈/𝐿 in (24) can be
expanded in powers of 1/𝛽2 as follows:

𝑈

𝐿

󵄨󵄨󵄨󵄨󵄨󵄨󵄨large𝛽
=
𝜋𝜏
2
𝑅
4

4𝜖
0

(
1

4
+ ln Λ

𝑅
) + O (𝛽

−2
) . (25)

The first term on the right-hand side of (25) shows the stored
electrostatic energy per unit length for an infinitely long
cylinder in the radial interval 0 ≤ 𝜌 ≤ Λ (Λ > 𝑅) in Maxwell
electrostatics.

4. Summary and Conclusions

In 1934, Born and Infeld introduced a nonlinear generaliza-
tion of Maxwell electrodynamics, in which the classical self-
energy of a point charge like electron became a finite value [1].
We showed that, in the limit of large 𝛽, the modified Gauss’s
law in Born-Infeld electrostatics is

∮
𝑆

[

[

1 +
1

2

E2 (x)
𝛽2

+
3

8

(E2 (x))
2

𝛽4
+ O (𝛽

−6
)]

]

E (x) ⋅ n 𝑑𝑎

=
1

𝜖
0

∫
𝑉

𝜌 (x) 𝑑3𝑥.

(26)

By using the modified Gauss’s law in (13), we calculated the
electric field of an infinite charged line and an infinitely long
cylinder in Born-Infeld electrostatics.The stored electrostatic
energy per unit length for the above configurations of charge
density has been calculated in the framework of Born-Infeld
electrostatics. Born and Infeld attempted to determine 𝛽 by
equating the classical self-energy of the electron in their
theory with its rest mass energy. They obtained the following
numerical value for the nonlinearity parameter 𝛽 [1]:

𝛽 = 1.2 × 10
20 V/m. (27)

In 1973, Soff et al. [22] have estimated a lower bound on 𝛽.
This lower bound on 𝛽 is

𝛽 ≥ 1.7 × 10
22 V/m. (28)

Recent studies on photonic processes in Born-Infeld theory
show that the numerical value of 𝛽 is close to 1.2 × 1020 V/m
in (27) [23]. In order to obtain a better understanding of
nonlinear effects in Born-Infeld electrostatics, let us estimate
the numerical value of the second termon the right-hand side
of (18). For this purpose, we rewrite (18) as follows:

E (x) = E
0
(x) + ΔE (x) + O (𝜌

−5
) , (29)

where

E
0 (x) :=

𝜆

2𝜋𝜖
0
𝜌
ê
𝜌
,

ΔE (x) := −
𝜆
3

16𝜋3𝜖
3

0
𝛽2𝜌3

ê
𝜌
.

(30)

Using (30), the ratio of ΔE(x) to E
0
(x) is given by

|ΔE (x)|
󵄨󵄨󵄨󵄨E0 (x)

󵄨󵄨󵄨󵄨

=
1

2

E2
0
(x)
𝛽2

. (31)

Let us assume the following approximate but realistic values
[24]:

𝐿 = 1.80m, 𝜌 = 0.10m, 𝑄 = +24 𝜇𝐶,

𝜆 = 1.33 × 10
−5 C/m.

(32)

By putting (27) and (32) into (31), we get

|ΔE (x)| ≈ 2 × 10
−28 󵄨󵄨󵄨󵄨E0 (x)

󵄨󵄨󵄨󵄨 .
(33)

Finally, if we put (28) and (32) in (31), we obtain

|ΔE (x)| ≲ 10
−32 󵄨󵄨󵄨󵄨E0 (x)

󵄨󵄨󵄨󵄨 .
(34)

In fact, as is clear from (33) and (34), the nonlinear
corrections to electric field in (18) are very small for weak
electric fields. The authors of [25] have suggested a non-
linear generalization of Maxwell electrodynamics. In their
generalization, the electric field of a point charge is singular
at the position of the point charge but the classical self-
energy of the point charge has a finite value. Recently, Kruglov
[26, 27] has proposed two different models for nonlinear
electrodynamics. In these models, both the electric field of
a point charge at the position of the point charge and the
classical self-energy of the point charge have finite values. In
future works, we hope to study the problems discussed in this
research from the viewpoint of [25–27].
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Appendices

A. A Generalized Action Functional for
Abelian Born-Infeld Model with an
Auxiliary Scalar Field

Let us consider the following action functional:

𝑆 (𝐴, 𝜓)

=
1

𝑐
∫

𝑡

𝑡0

∫
R3
[𝜖
0
𝛽
2
(1 − 𝜔

1
𝜓
𝜆1 (1 +

𝑐
2

2𝛽2
𝐹
𝜇]𝐹
𝜇]
)

− 𝜔
2
𝜓
𝜆2) − 𝐽

𝜇
𝐴
𝜇
]𝑑
4
𝑥,

(A.1)

where 𝜓 is an auxiliary scalar field and 𝜔
1
, 𝜆
1
, 𝜔
2
, and 𝜆

2
are

four nonzero constants.The variation of (A.1) with respect to
𝜓 and 𝐴

𝜇
leads to the following classical field equations:

𝜓 = [−
𝜔
2
𝜆
2

𝜔
1
𝜆
1

(1 +
𝑐
2

2𝛽2
𝐹
𝜇]𝐹
𝜇]
)

−1

]

1/(𝜆1−𝜆2)

, (A.2)

𝜕
𝜇
(𝜓
𝜆1𝐹
𝜇]
) =

𝜇
0

2𝜔
1

𝐽
]
. (A.3)

Substituting (A.2) into (A.3), we obtain the following classical
field equation:

𝜕
𝜇

{

{

{

[−
𝜔
2
𝜆
2

𝜔
1
𝜆
1

(1 +
𝑐
2

2𝛽2
𝐹
𝛼𝛾
𝐹
𝛼𝛾
)

−1

]

𝜆1/(𝜆1−𝜆2)

𝐹
𝜇]}

}

}

=
𝜇
0

2𝜔
1

𝐽
]
.

(A.4)

By choosing 𝜆
1
= 𝜆, 𝜆

2
= −𝜆 and 𝜔

1
= 𝜔, 𝜔

2
= (1/4𝜔) (𝜔 >

0), (A.1) and (A.4) can be written as follows:

𝑆 (𝐴, 𝜓)

=
1

𝑐
∫

𝑡

𝑡0

∫
R3
[𝜖
0
𝛽
2
(1 − 𝜔𝜓

𝜆
(1 +

𝑐
2

2𝛽2
𝐹
𝜇]𝐹
𝜇]
)

−
1

4𝜔
𝜓
−𝜆
) − 𝐽
𝜇
𝐴
𝜇
]𝑑
4
𝑥,

(A.5)

𝜕
𝜇
(

𝐹
𝜇]

√1 + (𝑐2/2𝛽2) 𝐹
𝛼𝛾
𝐹𝛼𝛾

) = 𝜇
0
𝐽
]
. (A.6)

Equation (A.5) is the generalized action functional for
Abelian Born-Infeld model with an auxiliary scalar field
𝜓. Also, (A.6) is the inhomogeneous Born-Infeld equation

(see (6)). If we choose 𝜔 = 1/2 and 𝜆 = 1 in (A.5), we will
obtain the following action functional:

𝑆 (𝐴, 𝜓)

=
1

𝑐
∫

𝑡

𝑡0

∫
R3
[𝜖
0
𝛽
2
(1 −

𝜓

2
(1 +

𝑐
2

2𝛽2
𝐹
𝜇]𝐹
𝜇]
)

−
1

2𝜓
) − 𝐽
𝜇
𝐴
𝜇
]𝑑
4
𝑥.

(A.7)

The above action functional was presented by Tseytlin in his
studies on low energy dynamics of𝐷-branes [28].

B. The Symmetric Energy-Momentum
Tensor for Abelian Born-Infeld Model with
an Auxiliary Scalar Field

In this appendix, we want to obtain the symmetric energy-
momentum tensor for Abelian Born-Infeld model with an
auxiliary scalar field. According to (A.5), the Lagrangian
density for Abelian Born-Infeld model with an auxiliary
scalar field 𝜓 in the absence of external source 𝐽𝜇 is

L = 𝜖
0
𝛽
2
(1 − 𝜔𝜓

𝜆
(1 +

𝑐
2

2𝛽2
𝐹
𝜇]𝐹
𝜇]
) −

1

4𝜔
𝜓
−𝜆
) . (B.1)

From (B.1), we obtain the following classical field equations:

𝜓
𝜆
=

1

2𝜔
(1 +

𝑐
2

2𝛽2
𝐹
𝜇]𝐹
𝜇]
)

−1/2

,

𝜕
𝜇
(𝜓
𝜆
𝐹
𝜇]
) = 0.

(B.2)

The canonical energy-momentum tensor for (B.1) is

𝑇
𝛼

𝛾

=
𝜕L

𝜕 (𝜕
𝛼
𝐴
𝜂
)
(𝜕
𝛾
𝐴
𝜂
) +

𝜕L

𝜕 (𝜕
𝛼
𝜓)

(𝜕
𝛾
𝜓) − 𝛿

𝛼

𝛾
L

= − 2𝜖
0
𝑐
2
𝜔𝜓
𝜆
𝐹
𝛼𝜂
(𝜕
𝛾
𝐴
𝜂
)

− 𝜖
0
𝛽
2
𝛿
𝛼

𝛾
(1 − 𝜔𝜓

𝜆
(1 +

𝑐
2

2𝛽2
𝐹
𝜇]𝐹
𝜇]
) −

1

4𝜔
𝜓
−𝜆
) .

(B.3)

Using (B.2), the canonical energy-momentum tensor 𝑇𝛼
𝛾
in

(B.3) can be rewritten as follows:

𝑇
𝛼

𝛾

= − 𝜖
0
𝑐
2
(1 +

𝑐
2

2𝛽2
𝐹
𝜇]𝐹
𝜇]
)

−1/2

𝐹
𝛼𝜂
𝐹
𝛾𝜂

− 𝜖
0
𝛽
2
𝛿
𝛼

𝛾
(1 − (1 +

𝑐
2

2𝛽2
𝐹
𝜇]𝐹
𝜇]
)

1/2

) + 𝜕
𝜂
𝑀
𝜂𝛼

𝛾
,

(B.4)
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where

𝑀
𝜂𝛼

𝛾
:=

1

𝜇
0

𝐹
𝜂𝛼

√1 + (𝑐2/2𝛽2) 𝐹
𝜇]𝐹
𝜇]
𝐴
𝛾
,

𝑀
𝛼𝜂

𝛾
= −𝑀

𝜂𝛼

𝛾
.

(B.5)

After dropping the total divergence term 𝜕
𝜂
𝑀
𝜂𝛼

𝛾
in (B.4),

we get the following expression for the symmetric energy-
momentum tensor:

𝑇
𝛼

𝛾
= − 𝜖
0
𝑐
2
(1 +

𝑐
2

2𝛽2
𝐹
𝜇]𝐹
𝜇]
)

−1/2

𝐹
𝛼𝜂
𝐹
𝛾𝜂

− 𝜖
0
𝛽
2
𝛿
𝛼

𝛾
(1 − (1 +

𝑐
2

2𝛽2
𝐹
𝜇]𝐹
𝜇]
)

1/2

) .

(B.6)

If we use (8) and (B.6), we will obtain the electrostatic energy
density for Abelian Born-Infeld model with an auxiliary
scalar field as follows:

𝑢 (x) = 𝑇
0

0
(x) = 𝜖

0
𝛽
2
(

1

√1 − E2 (x) /𝛽2
− 1) . (B.7)
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