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Abstract. We define a numerical scheme that allows to approximate a given Hamiltonian by an
effective one, by requiring several constraints determined by exact properties of generic ”short
range” Hamiltonians. In this way the standard lattice fixed node is also improved as far as the
variational energy is concerned. The effective Hamiltonian is defined in terms of a guiding function
ψG and can be solved exactly by Quantum Monte Carlo methods. We argue that, for reasonableψG
and away from phase transitions, the long distance, low energy properties are rather independent
on the chosen guiding function, thus allowing to remove the well known problem of standard
variational Monte Carlo schemes based only on total energy minimizations, and therefore insensitive
to long distance low energy properties.

INTRODUCTION

After many years of intense numerical and theoretical efforts the problem of strong cor-
relation in 2d or higher dimensional systems is still open. The main difficulty is to calcu-
late the ground state of a many-body strongly correlated Hamiltonian with a technique
which is systematically convergent to the exact solution with a reasonable computational
effort. Quite generally all the known approximate techniques rely on the variational prin-
ciple. The many-electron wavefunction is determined by an appropriate minimization of
the energy within a particular class of wavefunctions. The Hartree-Fock method is the
first clear example: here the many-electron wavefunction isapproximated by a single
Slater determinant. Indeed also a very recent technique like the Density-Matrix Renor-
malization Group (DMRG)[1] falls in this class, being certainly a variational approach,
based on a particularly smart iteration scheme to define a variational wavefunction very
good for low dimensional systems. However, within the variational approach, one faces
the following problem: By increasing the system size the gapto the first excited state
scales generally to zero quite rapidly. Thus between the ground state energy and the
variational energy there may be a very large number of stateswith completely different
correlation functions. In this way one can generally obtaindifferent variational wave-
functions with almost similar energy, but with completely different correlation functions
and therefore compelling physical meaning. By the above consideration it is easily un-
derstood that, within a straightforward variational technique and limited accuracy in
energy -say 1%, there is no hope to obtain sensible results for large system size, unless
for model Hamiltonians with a finite gap to all excitations, such as the simplest band
insulators. The most striking example of this limitation ofthe variational approach is
given by the Heisenberg modelH = J ∑<i, j>

~Si ·~S j where it was shown in[2] that two
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wavefunctions with completely different long-distance properties, with or without anti-
ferromagnetic long range order, provide almost similar (and very accurate within 0.1%
accuracy) energy per site in the thermodynamic limit.

In the following we will consider a possibility to overcome the above limitation by
means of the ”effective Hamiltonian” approach. The main task is not to approximate
a wavefunction as in the variational approach, but more conveniently our effort is
to approximate the HamiltonianH as closely as possible by means of a correlated
HamiltonianHe f f that can be solved numerically by Quantum Monte Carlo schemes.
The important point is that, within this construction, someimportant properties of
physical short range Hamiltonians are preserved, providing in this way a much better
control of correlation functions.

HAMILTONIAN AS MATRIX ELEMENTS: BACK TO
HEISENBERG

Let us consider the configuration basis{x}, where all theN electrons have definite spin
(↑ or ↓) and positions on a lattice withL number of sites. The matrix elements of an
HamiltonianH̄ in this physical basis will be indicated bȳHx,x′. Obviously the chosen
basis is crucial to define the concept of locality, a propertyof the hamiltonian. A physical
short range Hamiltonian̄H has non zero off-diagonal matrix elements̄Hx,x′ only for
configurationsx andx′ differing one another by local short-range moves of electrons,
more precisely:

H̄x′,x 6= 0 if |x− x′| ≤ Λ (1)

where|x − x′| indicates the distance in thed ×N dimensional space, andΛ << L is
a suitable constant denoting the short-range character of the HamiltonianH̄. In this
definition the diagonal matrix elements do not play any role,so not only conventional
Hubbard-Heisenberg-t-J model are short range Hamiltonian(with Λ = 1), but also
models with long range interactions, provided these interactions-like the Coulomb one-
are defined in the basis of configurationsx, thus representing classical interactions in
absence of the kinetic term. We believe that within this definition, essentially all physical
Hamiltonian can be considered to belong to this class.

The J1− J2 model

The simplest model that describes frustration of antiferromagnetism is the Heisen-
berg model with superexchange couplings extended up to nearest (J1) and next nearest
neighbor (J2) couplings:

H = J1 ∑
<i, j>n.n.

~Si ·~S j + J2 ∑
<i, j>n.n.n

~Si ·~S j (2)

where summations< i, j >n.n. ( < i, j >n.n.n. ) are over the nearest neighbor (next nearest
neighbor) lattice sitesRi,R j and periodic boundary conditions (PBC) are assumed.
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Whenever the next-nearest neighbor exchangeJ2 is large enough compared to the
nearest neighbor oneJ1, it is widely believed that the antiferromagnetic phase is desta-
bilized, until a second order transition takes place and a phase with a spin gap and a
finite correlation length appears forJ2 large enough.

THE EFFECTIVE HAMILTONIAN

We will define here a simpler effective Hamiltonian matrixHe f f closely related toH, by
means of the matrix elementsHe f f

x′,x in the basis{x} of configurations where all electrons
have a definite spin↑ or ↓ in all lattice sitesRi. Such an extension of the Hamiltonian
H, whose matrix elements are analogously denoted byHx′,x, is obtained by means of the
so called guiding functionψG(x). This wavefunction is required to be non zero for all
configurationsx. Once the guiding function is defined for given{Ji} the modelHe f f can
be solved exactly and, as we will show in some simple case, thelow energy properties
are independent of the low energy properties ofψG. The effective Hamiltonian approach
allows to obtain ground state (GS) wavefunctions with non trivial signs (the one ofψG),
in this sense representing a more generic GS of strongly correlated models. For instance
the spin Hamiltonians that can be solved exactly by QMC methods are the ones for
which:

sx′,x = ψG(x
′)Hx′,xψG(x)≤ 0 (3)

for particularly simpleψG(x) satisfying the Marshall sign rule

ψG(x) ∝ (−1)Number of spin down in one sublattice.

This is the case for the Heisenberg model 1d (gapless), 2chains (gapped but not spin
liquid), 2d (gapless antiferromagnet), where it is also clear that with the same sign of
the wavefunction different low energy properties can be obtained by solving exactlyH
or He f f = H being an exact equality in these simple cases.

Though there are particular models where the Marshall sign and (3) are satisfied even
in presence of strong frustration[3, 4], it is clear that these are just particular and not
generic models, since Eq.(3) is generally violated even when the GS ofH is used in
Eq.(3). The reason is that for generic frustrated Hamiltonian (with sign problem) there
are off diagonal matrix elements withsx,x′ > 0, namely some matrix elements do not
decrease the expectation value of the energy: they are ”unhappy” even in the ground
state as can be simply tested in theJ1− J2 model forJ2 6= 0 or in even simpler model.

In this case the effective HamiltonianHe f f is defined in terms of the matrix elements
of H, in order to generate a dynamic as close as possible to the exact one. An obvi-
ous condition to require, is that ifψG is exact the ground state ofHe f f has to coincide
with the one ofH. In order to fulfill this condition the so called lattice fixednode was
proposed[5],He f f = HFN , andHe f f was obtained by strict analogy with the continuous
fixed node scheme. In the following we will argue that there isa better way to choose
the effective Hamiltonian, which not only provides better variational energies, but also
allows a better accuracy of low energy long distance properties of the ground state.
In the standard fixed node approach all the matrix elements that satisfy Eq.(3) are un-
changed, whereas the remaining off-diagonal matrix elements are dealt semiclassically
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and traced to the diagonal term ofHe f f
x,x . The FN-effective hamiltonian can be obtained

by modifying the diagonal termHe f f
x,x , in order to have the same local energy of the exact

Hamiltonian for any configurationx, namely:eH(x) = eHe f f (x), where the local energy
is defined in terms of the guiding functionψG and an Hamiltonian̄H by:

eH̄(x) = ∑
x′

ψG(x
′)H̄x′,x/ψG(x) (4)

This approach was inspired from the similarity of the fixed node on continuous systems,
and indeed is a well established approach giving also variational upper bounds of the
ground state energy[5]. However in the lattice case there isan important difference.

Even for the fixed node ground state the number of matrix elements that do not
satisfy the condition (3) may be a relevant fraction of the total number of matrix
elements, whereas in the continuous case the so called nodalsurface (the analogous
of this frustrating matrix elements) represents just an irrelevant ”surface” of the phase
space.

In order to compensate for this bias in the dynamic, here we propose to modify slightly
the fixed node scheme on a lattice, by compensating this errorin the diffusion of the
electrons:

He f f =

{

KHx′,x if x′ 6= x and sx′,x < 0
0 if x′ 6= x and sx′,x > 0 (5)

whereK is a constant that can be determined in a way that the ground state ofHe f f has
the lowest possible expectation value of the energy on the exact HamiltonianH. This
procedure has been attempted previously but is very computer and time demanding, so
its practical implementation is difficult[6].

The diffusion constantK and the Lieb-Schultz-Mattis theorem

In order to determine efficiently the value of the constantK we use a relation which is
well known in the continuous fixed node[7] and was used to correct efficiently the error
due to the finite time slice discretization of the diffusion process.[7] The method uses
that, for small imaginary time (∆τ) , the electron positions change by means of the exact
Hamiltonian propagationψG → exp(−H∆t)ψG, with a diffusion coefficient determined
only by the free Kinetic operator (the analogous of the off-diagonal matrix elements of
a lattice Hamiltonian). It is possible then to correct the approximate finite∆t dynamic,
by requiring that it satisfies exactly this short time condition, that mathematically can be
simply written as:

[~x, [H,~x]] = D (6)

whereD = 3h̄2/m is the diffusion coefficient,~x is the electron position operator, andm
the electron mass.

In a lattice case, or more generally for a system with periodic boundary conditions, the
lattice position operator~x is not well defined, as it cannot be matched with the boundary
conditions, namely the same lattice point with(x,y) and(x+L,y) coordinates, related
by PBC in aL×L lattice, have different values for~x. Analogously to the Berry’s phase
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calculation[8] the spin and charge position operators are more appropriately defined in
the exponential form:

Oρ,µ(x) = exp(i∑
R
(τµ ·R)nR) (7)

Oσ ,µ(x) = exp(i∑
R
(τµ ·R)Sz

R) (8)

whereµ = x,y, · · · labels the spatial coordinates, e.g.τx = (2π/L,0), τy = (0,2π/L) for
a L×L square lattice. Both operators are defined in the basis of configurationsx, as the
analogous~x does in the continuous case.

Remarkably the spin position operatorOσ ,µ is exactly equivalent to the well known
Lieb-Schultz-Mattis operator, used to show a well known properties on the low energy
spectrum of spin one-half Heisenberg Hamiltonians.[9] Fora generic spin-12 Hamilto-
nian there may be two independent coupling constantsKρ ,Kσ that can be used to rescale
the off-diagonal matrix elements and correct the spin and charge lattice diffusion con-
stants independently. For instance in thet − J model the charge diffusion is determined
by the hopping matrix elements proportional tot and the spin-diffusion is set by theJ
matrix elements.

After simple inspection the following relation holds both for Oµ,σ andOρ,σ (thus we
omit σ ,ρ labels):

〈ψG|
[

O†
µ ,
[

H̄,Oµ
]

]

|ψG〉=

− ∑
x6=x′

ψG(x)ψG(x
′)H̄x,x′|Oµ(x)−Oµ(x

′)|2 (9)

This quantity can be very simply calculated by standard variational Monte Carlo both
for H̄ = H and H̄ = He f f , at fixed guiding functionψG. In this way the value of the
undetermined constantKσ (Kρ ) is very well determined with high degree of statistical
accuracy by imposing that both the effective Hamiltonian and the exact one have the
same expectation value for the above quantity.

The final scheme

The constantK and therefore the effective modelHe f f (5) areuniquely defined in
terms of ψG and the exact HamiltonianH. The ground stateψe f f

0 and low energy
excitations ofHe f f can be computed without sign problem. For a spin Hamiltonian,
only the value ofKσ < 1 is required, whereas for the Hubbard model onlyKρ < 1 is
important.

In order to compute the expectation value of the energy〈ψe f f
0 |H|ψe f f

0 〉 over this
approximate ground state forH (or at least an upper bound as in the standard lattice FN),
one can use the method described in[6], which typically sizably improves the standard
FN upper bound even in the standard case withKσ = Kρ = 1. As remarked in[6], it is
not true (as in the continuous case) that in the lattice the lowest variational energy value
correspond toK = 1.
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The clear advantage of the effective HamiltonianHe f f is that it remains in the same
physical Hilbert space ofH (compare for instance with largeN or infinite dimension
schemes) and, if universal low energy properties for generic model Hamiltonians are
concerned,it is just irrelevant that He f f is slightly different fromH. In fact when we
write down a model Hamiltonian in order to understand low energy properties (such
as order, spin gap etc.) the underlying assumption is that between similar Hamiltonians
(with similar matrix elements) the low energy properties cannot be too much different.
If this is not the case, it is not even justified to write downH itself, rather the complete
solution of theall electron problem with electron-electron and electron-ionCoulomb
interaction should be fully considered: a clearly prohibitive task so far.

In a lattice case the effective HamiltonianHe f f does not even imply a restriction of the
Hilbert space (as in the continuous case where fixing the nodes determines a boundary
condition that may not be satisfied by the excitations) and therefore it represents also a
meaningful approximation to study the properties of its excitation spectrum.

RESULTS AND CONCLUSIONS

We have shown in a previous work[10] that, with the simple variational method, it is
possible to obtain an almost exact representation of the GS wavefunction on small sizes,
up to 6x6 sites, where exact diagonalization is possible. This remains true even in the
strongly frustrated regime where also the Marshall sign rule is violated. That the correct
signs of the wavefunction can be obtained with a BCS wavefunction (an uncorrelated
one) is one of the most important facts that comes out from exact diagonalization on
small sizes.

We present here preliminary results on theJ1−J2 model, by comparing the variational
approach (VMC) the standard Fixed node method (FN) and the proposed one (FNSR)
with Kσ 6= 1. As it is seen from Tab.(1) the value ofKσ is sizably different from zero in
the spin liquid region and allows a remarkable improvement in the variational energy,
significantly closer to the exact results available on this small clusters. The value ofKσ
can reach values as small as 0.5, much different from the standard approach.

The reason of such a difference from the continuous case is easily understood. In the
lattice case the number of matrix elements that can provide asign change to a given
configurationx, may be a considerable fraction of all the possible ones. Forinstance
if we take forψG a guiding function with the Marshall sign and considerJ2 > 0, all
the spin-flip matrix elements determined byJ2 -namely almost half of all possible spin-
flips-, are removed by the fixed node scheme (5). In the continuous case instead only
the configurations that are on the so called nodal surface (where ψG(x) = 0) may be
considered in an analogous situation, implying that the short time diffusion (6) is exactly
satisfied for almost all configurationsx, implyingK = 1 in the limit when the fixed node
is implemented exactly, namely with vanishing small∆t time step error.

As far as correlation functions are concerned we present in Tab. (2) the estimate of
the static spin structure factor obtained with standard forward walking technique[11]:

S(π ,π) = ∑
R

ei(π,π)R〈ψe f f
0 |Sz

0Sz
R|ψ

e f f
0 〉 (10)
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TABLE 1. Comparison of energies between standard fixed node (FN) and
the present improved one (FNSR) as a function ofJ2/J1

J2/J1 VMC FN K−1
σ FNSR Exact

0.00 -0.65112(5) -0.6752(5) 1 -0.6752(5) -0.6789
0.10 -0.61869(6) -0.6326(1) 1.1093(1) -0.6342(2) -0.6381
0.20 -0.58700(4) -0.5942(1) 1.2365(3) -0.5962(1) -0.5990
0.30 -0.55646(4) -0.55937(3) 1.3831(5) -0.56063(4) -0.5625
0.40 -0.52732(1) -0.52832(2) 1.5406(8) -0.52891(2) -0.5297
0.45 -0.51372(2) -0.51441(2) 1.6146(9) -0.51490(2) -0.5157
0.50 -0.50117(2) -0.50203(2) 1.677(1) -0.50265(2) -0.5038
0.55 -0.49024(2) -0.49144(2) 1.732(1) -0.49241(2) -0.4952

TABLE 2. Comparison of the static magnetic struc-
ture factorS(π ,π) between standard fixed node (FN)
and the present improved one (FNSR) as a function of
J2/J1. The values ofKσ are the ones of the previous
table.

J2/J1 VMC FN FNSR Exact

0.00 1.903(4) 3.06(13) 3.06(13) 2.518
0.10 1.840(8) 3.27(2) 2.94(9)
0.20 1.733(7) 2.86(1) 2.94(2) 2.2295
0.30 1.645(7) 2.26(1) 2.47(1) 2.0132
0.40 1.505(7) 1.687(7) 1.766(7) 1.6604
0.45 1.394(6) 1.430(5) 1.439(7) 1.4309
0.50 1.258(5) 1.214(5) 1.167(5) 1.1695
0.55 1.124(5) 1.012(4) 0.927(5) 0.8946

and using as guiding function the variational wavefunctionobtained in [10].
From the table we see that the value atJ2 = 0 slightly departs from the exact value

both for theFN and theFNSR technique, which in this case should be the same and
exact. The problem is that the guiding functionψG vanishes on a small size for a con-
siderable fraction of configurations, preventing us to obtain the exact result. The large
number of zero’s forψG affects also the smallJ2 region, where indeed the FNSR does
not improve the FN technique. However the situation drastically changes in the strongly
frustrated regime, where the number of zero’s is vanishingly small, the wavefunction
being much more accurate, and the FNSR provides essentiallyexact results, by consid-
erably improving both the standard VMC and FN approaches.

It is clear however that further and more systematic work is necessary to clarify
the relevance of the proposed method compared with the conventional ones. Certainly
it greatly simplifies -being equivalent in spirit- the standard SR technique[6], as the
latter one may also provide even better variational energies, but very similar correlation
functions, which should represent our main task in the studyof strongly correlated
systems.
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