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In the present paper, I study a prey-predatormodelwithmultiple time delayswhere the predator population is regarded as generalist.
For this regard, I consider a Holling-Tanner prey-predator systemwhere a constant time delay is incorporated in the logistic growth
of the prey to represent a delayed density dependent feedback mechanism and the second time delay is considered to account for
the length of the gestation period of the predator. Predator’s interference in predator-prey relationship provides better descriptions
of predator’s feeding over a range of prey-predator abundances, so the predator’s functional response here is considered to be Type
II ratio-dependent. In accordance with previous studies, it is observed that delay destabilizes the system, in general, and stability
loss occurs via Hopf bifurcation. There exist critical values of delay parameters below which the coexistence equilibrium is stable
and above which it is unstable. Hopf bifurcation occurs when delay parameters cross their critical values. When delay parameters
are large enough than their critical values, the system exhibits chaotic behavior and this abnormal behavior may be controlled by
refuge. Numerical computation is also performed to validate different theoretical results. Lyapunov exponent, recurrence plot, and
power spectral density confirm the chaotic dynamical behaviors.

1. Introduction

In ecology, predation describes a biological interaction where
a predator (an organism that is hunting) feeds on its prey
(the organism that is attacked). Predators may or may not
kill their prey prior to feeding on them, but the act of
predation often results in the death of its prey and the
eventual absorption of the prey’s tissue through consumption.
Predators can have profound impacts on the dynamics of
their prey that depend on how predator consumption is
affected by prey density (the predator’s functional response).
A generalist species is able to thrive in a wide variety of
environmental conditions and can make use of a variety
of different resources (e.g., a heterotroph with a varied
diet). Omnivores are usually generalists. Herbivores are often
specialists, but those that eat a variety of plants may be
considered generalists. Consumption by a generalist predator
is expected to depend on the densities of all its major prey

species (its multispecies functional response, or MSFR), but
most studies of generalists have focused on their functional
response to only one prey species [1–4]. Recently, many
authors have explored the dynamics of a class of the semi-
ratio-dependent [5–8]/Holling-Tanner [9–12]/Leslie-Grower
[13, 14] predator-prey systems with functional responses as
follows:

𝑑𝑥

𝑑𝑡
= 𝑟𝑥 (1 −

𝑥

𝑘
) − 𝑥𝑓 (𝑥, 𝑦) ,

𝑑𝑦

𝑑𝑡
= 𝑠𝑦(1 −

ℎ𝑦

𝑥
) ,

(1)

where 𝑥(𝑡) and 𝑦(𝑡) are, respectively, the prey and predator
densities at time 𝑡. The prey population is assumed to grow
logistically to its carrying capacity 𝑘 with intrinsic growth
rate 𝑟 in absence of predator. 𝛼 is the maximal per capita prey
consumption rate, and 𝑎 is the amount of prey necessary for
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the relative biomass growth rate of the predator to be half
its maximum; the predator consumes the prey according to
the functional response 𝑓(𝑥, 𝑦) and grows logistically with
growth rate 𝑠 and carrying capacity 𝑥(𝑡)/ℎ proportional to
the population size of the prey (or prey abundance). ℎ is the
measure of the food quality that the prey provides, which
is converted to predator birth. For more background and
biological adjustments of system (1), one can see [7, 15, 16]
and the references cited therein.

Predator’s functional response 𝑓(𝑥, 𝑦) is considered as
Type II ratio-dependent [17–25] because a ratio-dependent
predator-prey model does not show the so called paradox of
enrichment [17, 26, 27] and biological control paradox [28].
The simplification of the food web structure due to predator
interference allows qualitative predictions concerning the
response of a food web to an external perturbation [25, 29–
32]. Ginzburg and Akcakaya [33] demonstrated a positive
relationship between the abundances of all trophic levels
and concluded that the ratio-dependent models provide a
better representation of predator-prey interactions than prey
dependent models. Predator’s functional response, defined as
the amount of prey catch per predator per unit of time, is
affected by the structure of prey habitat and predator’s hunt-
ing ability [34, 35]. Anderson [36] and Johnson [37] showed
that the dynamics of a local population largely depend upon
attributes of the local habitats. In addition, a spatial refuge
protects a constant proportion of prey from predation. Mite
predator-prey interactions often exhibit spatial refugia which
afford the prey some degree of protection from predation and
reduce the chance of extinction due to predation. Maynard
Smith [38] shows that the presence of a constant proportion
refuge does not alter the dynamical stability of the neutrally
stable Lotka-Volterra model, while a constant number refuge
of any size replaces the neutrally stable behaviourwith a stable
equilibrium. Hassel [39] shows that adding a large refuge to
a model, which in the absence of a refuge exhibits divergent
oscillations, replaces the oscillatory behaviour with a stable
equilibrium. These mathematical models and a number of
experiments indicate that refugia have a stabilizing effect on
predator-prey interactions, but, as Taylor [40] hasmentioned,
it would be an over simplification to assume this is always the
case. Kar [41] and Jana [42] proposed and studied a predator-
prey system where prey population is subjected to refuge
from their predator population. These papers lead a model
by incorporating a refuge protecting 𝑚𝑥 of the prey, where 𝑥

is the density of prey population and 𝑚 ∈ [0, 1) is constant
measures of the degree or strength of prey refuge. This leaves
(1 − 𝑚)𝑥 of the prey available to the predator, so the Holling-
Tanner predator-preymodel with ratio-dependent functional
response with prey refuge is given by

𝑑𝑥

𝑑𝑡
= 𝑟𝑥 (1 −

𝑥

𝑘
) −

𝛼 (1 − 𝑚) 𝑥𝑦

𝑎𝑦 + (1 − 𝑚) 𝑥
,

𝑑𝑦

𝑑𝑡
= 𝑠𝑦 [1 −

ℎ𝑦

(1 − 𝑚) 𝑥
] .

(2)

Delay is frequently used in a predator-preymodel tomake
the model biologically more realistic. Recently, researchers
are using more than one delay to study the effect of past

history of the system populations [43–47]. In the second
phase of this study, I consider two delays in the model system
(2). One discrete delay 𝜏

1
is considered in the specific growth

rate of prey to incorporate the effect of density dependence
feedback mechanism which takes 𝜏

1
units of time to respond

to changes in the prey population [48].The second delay 𝜏
2
is

incorporated in the negative feedback of the predator density
[49–52]. I thus obtain the following multidelayed predator-
prey model:

𝑑𝑥

𝑑𝑡
= 𝑟𝑥(1 −

𝑥 (𝑡 − 𝜏
1
)

𝑘
) −

𝛼 (1 − 𝑚) 𝑥𝑦

𝑎𝑦 + (1 − 𝑚) 𝑥
,

𝑑𝑦

𝑑𝑡
= 𝑠𝑦 [1 −

ℎ𝑦 (𝑡 − 𝜏
2
)

(1 − 𝑚) 𝑥 (𝑡 − 𝜏
2
)
] .

(3)

The model system (3) has to be studied with the following
initial conditions:

𝑥 (𝜙) = 𝑥
0
> 0, 𝑦 (𝜙) = 𝑦

0
> 0

for 𝜙 ∈ [−max {𝜏
1
, 𝜏
2
} , 0] .

(4)

The organization of the paper is as follows. Section 2 deals
with the analysis of the model system (3). Numerical studies
are given in Section 3, and, finally, a brief discussion is
presented in Section 4.

2. Mathematical Results of System (3)
The system (3) has only one interior equilibrium point given
by 𝐸
∗
(𝑥
∗
, 𝑦
∗
), where 𝑥

∗
= 𝑘(1 − 𝛼(1 −𝑚)/𝑟(𝑎 + ℎ)) and 𝑦

∗
=

(1−𝑚)𝑥
∗
/ℎ. The equilibrium point 𝐸∗(𝑥∗, 𝑦∗) is biologically

feasible if 𝑚 > 1 − 𝑟(𝑎 + ℎ)/𝛼, 𝛼 > 𝑟(𝑎 + ℎ). Linearizing the
system (3) at (𝑥∗, 𝑦∗), I get

𝑑𝑥

𝑑𝑡
= 𝑎
11
𝑥 + 𝑎
12
𝑦 + 𝑏
11
𝑥 (𝑡 − 𝜏

1
) ,

𝑑𝑦

𝑑𝑡
= 𝑐
21
𝑥 (𝑡 − 𝜏

2
) + 𝑐
22
𝑦 (𝑡 − 𝜏

2
) ,

(5)

where

𝑎
11

=
𝛼(1 − 𝑚)

2
𝑥
∗
𝑦
∗

{𝑎𝑦∗ + (1 − 𝑚) 𝑥∗}
2
,

𝑎
12

= −
𝛼(1 − 𝑚)

2
𝑥
∗2

{𝑎𝑦∗ + (1 − 𝑚) 𝑥∗}
2
,

𝑏
11

= −
𝑟𝑥
∗

𝑘
,

𝑐
21

=
𝑠ℎ (1 − 𝑚) 𝑦

∗2

{(1 − 𝑚) 𝑥∗}
2
, 𝑐

22
= −

𝑠ℎ𝑦
∗

(1 − 𝑚) 𝑥∗
.

(6)

The corresponding characteristic equation is given by

𝜆
2
+ 𝐴𝜆 + 𝐶

1
𝜆𝑒
−𝜆𝜏
1 + (𝐶

2
𝜆 + 𝐷

2
) 𝑒
−𝜆𝜏
2 + 𝐸𝑒

−𝜆(𝜏
1
+𝜏
2
)
= 0,

(7)
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where

𝐴 = −𝑎
11
, 𝐶

1
= −𝑏
11
, 𝐶

2
= −𝑐
22
,

𝐷
2
= 𝑎
11
𝑐
22

− 𝑎
12
𝑐
21
, 𝐸 = 𝑏

11
𝑐
22
.

(8)

I now discuss the following cases.

Case 1 (𝜏
1
= 0 = 𝜏

2
). In this case, (7) becomes

𝜆
2
+ (𝐴 + 𝐶

1
+ 𝐶
2
) 𝜆 + (𝐷

2
+ 𝐸) = 0. (9)

All roots of (9) will have negative real parts if and only if

(H
1
)

𝐴 + 𝐶
1
+ 𝐶
2
> 0, 𝐷

2
+ 𝐸 > 0. (10)

Theorem 1. The interior equilibrium 𝐸
∗
(𝑥
∗
, 𝑦
∗
) of the system

(3) exists and becomes locally asymptotically stable in absence
of delays if 𝑚 > 1 − 𝑟(𝑎 + ℎ)/𝛼, 𝛼 > 𝑟(𝑎 + ℎ) and (𝐻

1
) hold.

Case 2 (𝜏
1

̸= 0, 𝜏
2

= 0). In this case, the characteristic
equation (7) becomes

𝜆
2
+ (𝐴 + 𝐶

2
) 𝜆 + 𝐷

2
+ (𝐶
1
𝜆 + 𝐸) 𝑒

−𝜆𝜏
1 = 0. (11)

Let 𝑖𝜔 (𝜔 > 0) be a root of (11). Then I have

𝐸 cos𝜔𝜏
1
+ 𝐶
1
𝜔 sin𝜔𝜏

1
= 𝜔
2
− 𝐷
2
,

𝐶
1
𝜔 cos𝜔𝜏

1
− 𝐸 sin𝜔𝜏

1
= − (𝐴 + 𝐶

2
) 𝜔.

(12)

This leads to

𝜔
4
− [𝐶
2

1
− (𝐴 + 𝐶

2
)
2

+ 2𝐷
2
] 𝜔
2
+ 𝐷
2

2
− 𝐸
2
= 0. (13)

It follows that (12) has no positive roots if the following
conditions are satisfied:

(H
2
)

(𝐴 + 𝐶
2
)
2

− 𝐶
2

1
− 2𝐷
2
> 0, 𝐷

2

2
− 𝐸
2
> 0. (14)

Hence, all roots of (13) will have negative real parts when
𝜏
1
∈ [0,∞) if conditions of Theorem 1 and (H

2
) are satisfied.

Let
(H
3
)

𝐷
2

2
− 𝐸
2
< 0. (15)

If Theorem 1 and (H
3
) hold, then (13) has a unique positive

root �̃�2
0
. Substituting 𝜔

2

0
into (12), I have

𝜏
1
𝑝

=
1

�̃�
0

cos−1 [
𝐸 (�̃�
2

0
− 𝐷
2
) − (𝐴 + 𝐶

2
) 𝐶
1
�̃�
2

0

𝐶2
1
�̃�2
0
+ 𝐸2

]

+
2𝑝𝜋

�̃�
0

, 𝑝 = 0, 1, 2, . . . ,

(16)

where �̃�
0
is the unique positive root of (13).

Let
(H
4
)

(𝐴 + 𝐶
2
)
2

− 𝐶
2

1
− 2𝐷
2
< 0, 𝐷

2

2
− 𝐸
2
> 0,

[(𝐴 + 𝐶
2
)
2

− 𝐶
2

1
− 2𝐷
2
]
2

> 4 (𝐷
2

2
− 𝐸
2
) .

(17)

If (H
1
) and (H

4
) hold, then (13) has two positive roots �̃�2

+
and

�̃�
2

−
. Substituting �̃�

±
into (12), we obtain

𝜏
±

1
𝑞

=
1

�̃�
±

cos−1 [
𝐸 (�̃�
2

±
− 𝐷
2
) − (𝐴 + 𝐶

2
) 𝐶
1
�̃�
2

±

𝐶2
1
�̃�2
±
+ 𝐸2

]

+
2𝑞𝜋

�̃�
±

, 𝑞 = 0, 1, 2, . . . .

(18)

If 𝜆(𝜏
1
) is a root of (11) satisfying Re(𝜆(𝜏

1
𝑛

)) =

0 (or Re(𝜆(𝜏±
1
𝑞

)) = 0, resp.) and Im(𝜆(𝜏
1
𝑛

)) = 𝜔
0
(or

Im(𝜆(𝜏
±

1
𝑞

)) = �̃�
±
, resp.), I obtain

[
𝑑

𝑑𝜏
1

(Re(𝜆(𝜏
1
)))]

𝜏
10,𝜔=�̃�0

=
�̃�
4

0
+ 𝐸
2
− 𝐷
2

2

�̃�2
0
(𝐶2
1
�̃�2
0
+ 𝐸2)

>
�̃�
2

0

𝐶2
1
�̃�2
0
+ 𝐸2

> 0,

(19)

by hypothesis (H
4
).

Similarly, I can show that

[
𝑑

𝑑𝜏
1

Re(𝜆(𝜏
1
))]

𝜏
1
=𝜏
+

1𝑞
,𝜔=�̃�
+

> 0,

[
𝑑

𝑑𝜏
1

Re(𝜆(𝜏
1
))]

𝜏
1
=𝜏
−

1𝑞
,𝜔=�̃�
−

< 0.

(20)

Theorem 2. Assume that 𝜏
1

̸= 0, 𝜏
2

= 0 and conditions of
Theorem 1 are satisfied, then the equilibrium 𝐸

∗
(𝑥
∗
, 𝑦
∗
) is

locally asymptotically stable for 𝜏
1
< 𝜏
1
0

and unstable for 𝜏
1
>

𝜏
1
0

. Furthermore, the system (3) undergoes a Hopf bifurcation
at (𝑥∗, 𝑦∗) when 𝜏

1
= 𝜏
1
0

, where

𝜏
1
0

=
1

�̃�
0

cos−1 [
𝐸 (�̃�
2

0
− 𝐷
2
) − (𝐴 + 𝐶

2
) 𝐶
1
�̃�
2

0

𝐶2
1
�̃�2
0
+ 𝐸2

] . (21)

Case 3 (𝜏
1

∈ (0, 𝜏
1
0

), 𝜏
2

̸= 0). In this case, I allow a gestation
time period for the predator and also a constant time delay
affecting the density dependent growth rate of the prey. I fix
𝜏
1
at some value from its stability range (0, 𝜏

1
0

) and regard 𝜏
2

as a free parameter. I also assume that the model parameters
are such, that hypothesis (H

1
) holds. Let 𝑖𝜔 with 𝜔 > 0 be a

root of (7). Then,

𝜔
4
+ 𝑎𝜔
2
+ 2�̃� sin (𝜔𝜏

1
) + 2𝑐 cos (𝜔𝜏

1
) + 𝑑 = 0, (22)

where

𝑎 = 𝐴
2
+ 𝐶
2

1
− 𝐶
2

2
, �̃� = 𝜔𝐶

2
𝐸 − 𝜔

3
𝐶
1
,

𝑐 = −𝐷
2
𝐸 − 𝜔

2
𝐷
1
+ 𝜔
2
𝐴𝐶
1
, 𝑑 = − (𝐷

2

2
+ 𝐸
2
) .

(23)
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Figure 1: Time series (a) and phase-plane (b) of the system (2). This figure shows that the coexistence equilibrium is asymptotically stable.

Note that 𝑑 is always negative. I define

𝑓 (𝜔) = 𝜔
4
+ 𝑎𝜔
2
+ 2�̃� sin (𝜔𝜏

1
) + 2𝑐 cos (𝜔𝜏

1
) + 𝑑. (24)

Then it is easy to verify that 𝑓(0) < 0 and 𝑓(𝜔) → ∞, as
𝜔 → ∞. Thus, (22) has finitely many positive roots, denoted
by �̃�
1
, �̃�
2
, . . . , �̃�

𝑘
. For every fixed �̃�

𝑠
, where 𝑠 = 1, 2, . . . , 𝑘,

there exists a sequence {𝜏
𝑡

2
𝑠

| 𝑡 ∈ N}, where

𝜏
𝑡

2
𝑠

=
1

�̃�
𝑠

cos−1 (
𝑀
2
𝑠

𝑁
2
𝑠

) +
2𝑠𝜋

�̃�
𝑠

, 𝑠 = 1, 2, . . . , 𝑘; 𝑡 ∈ N,

(25)

with

𝑀
2
𝑠

= 𝑃
1
𝑆
2
+ 𝑃
2
𝑇
2
+ 𝑅
2
𝑇
2
cos �̃�
𝑠
𝜏
1
+ 𝑅
2
𝑆
2
sin �̃�
𝑠
𝜏
1
,

𝑁
2
𝑠

= 𝑆
2

2
+ 𝑇
2

2
, 𝑃

1
= −�̃�
2

𝑠
, 𝑃

2
= 𝐴�̃�
𝑠
,

𝑅
2
= 𝐶
1
�̃�
𝑠
,

𝑆
2
= − (𝐸 cos �̃�

𝑠
𝜏
1
+ 𝐷
2
) ,

𝑇
2
= 𝐸 sin �̃�

𝑠
𝜏
1
− 𝐶
2
𝜔
𝑠
, 𝑠 = 1, 2, . . . , 𝑘,

(26)

such that (22) holds. Let 𝜏
2
0

= min{𝜏𝑡
2
𝑠

| 𝑠 = 1, 2, . . . , 𝑘; 𝑡 =

1, 2, . . .}.When 𝜏
2
= 𝜏
2
0

, (7) has a pair of pure imaginary roots
±𝑖�̃�
1
for 𝜏
2
∈ [0, 𝜏

2
0

). In the following, I assume that
(H
5
)

[
𝑑

𝑑𝜏
2

(Re 𝜆(𝜏
2
))]

𝜆=𝑖�̃�
0

̸= 0. (27)

Therefore, by the general Hopf bifurcation theorem of func-
tional differential equations, see, for example, [53], I obtain

the following result considering the change of stability of
system (3).

Theorem 3. Suppose that the parameters in system (3) are
such that hypotheses (𝐻

1
) and (𝐻

3
) hold true, and 𝜏

1
∈

[0, 𝜏
1
0

). Then the coexistence equilibrium 𝐸
∗
(𝑥
∗
, 𝑦
∗
) is locally

asymptotically stable when 𝜏
2
∈ (0, 𝜏

2
0

), and it is unstable when
𝜏
2
> 𝜏
2
0

. Moreover, Hopf bifurcation occurs when 𝜏
2
= 𝜏
2
0

.

Case 4 (𝜏
1

= 0, 𝜏
2

̸= 0). For this choice of the delay param-
eters, I summarize my results in the following theorem. The
proof follows similar arguments as the stabilityTheorem 2. in
Case 2 above.

Theorem 4. Assume that 𝜏
1

= 0, 𝜏
2

̸= 0 and the conditions in
hypothesis (𝐻

1
) hold true. Then the equilibrium 𝐸

∗
(𝑥
∗
, 𝑦
∗
) is

locally asymptotically stable for 𝜏
2
< 𝜏
2
0

and unstable for 𝜏
2
>

𝜏
2
0

. Furthermore, the system (3) undergoes Hopf bifurcation
when 𝜏

2
= 𝜏
2
0

, where

𝜏
2
0

=
1

𝜔
0

cos−1(
(𝐷
2
+ 𝐸)𝜔

2

0
− (𝐴 + 𝐶

1
) 𝐶
2
𝜔
2

0

𝐶2
2
𝜔2
0
+ (𝐷
2
+ 𝐸)
2

) , (28)

and 𝜔
0
is the unique positive root of the polynomial as follows:

𝜔
4
− [𝐶
2

2
− (𝐴 + 𝐶

1
)
2

] 𝜔
2
− (𝐷
2
+ 𝐸)
2

= 0. (29)

Case 5 (𝜏
1

̸= 0, 𝜏
2

̸= 0 and 𝜏
2
is within its stability range). This

choice of parameter regime corresponds to the biologically
interesting case, when the predator individuals have a fixed
gestation period and the growth of the prey population
is affected by delayed density dependent mechanisms. The
proof of the main result follows similar lines to that in Case
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1
in
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, 𝑥, 𝑦). (b) is the time series
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). These figures show

that the coexistence equilibrium is stable for 𝜏
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for 𝜏
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> 0.5329, and a Hopf bifurcation exists at 𝜏

1
= 0.5329.
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Figure 3: Bifurcation diagram of the system (3) with respect to 𝜏
2

in Case 3. (a) is drawn in the three-dimensional space (𝜏
2
, 𝑥, 𝑦).

(b) and (c) are the time evolutions for 𝜏
2

= 0.4 < 𝜏
20

= 0.4444

(system is stable) and 𝜏
2
= 0.48 > 𝜏

20
= 0.4444 (system is unstable),

respectively. A Hopf bifurcation exists at 𝜏
2

= 0.4444. Here, 𝜏
1

=

0.45 ∈ [0, 0.5329).
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Figure 4: Bifurcation diagrams of the system (3) with respect to 𝜏
2
in Case 4 in the three-dimensional space (𝜏

2
, 𝑥, 𝑦). (b) is the time series

for (𝜏
2

< 𝜏
20
) and (c) is the same for (𝜏

2
> 𝜏
20
). These figures show that the coexistence equilibrium is stable for 𝜏

2
< 0.4205, unstable for

𝜏
2
> 0.4205, and a Hopf bifurcation exists at 𝜏

2
= 0.4205.

3 and I only summarize the stability results in the following
theorem.

Theorem 5. Assume that the model parameters are such that
the hypotheses in (𝐻

1
) hold true, and 𝜏

2
∈ [0, 𝜏

2
0

). Then
the coexistence equilibrium 𝐸

∗
(𝑥
∗
, 𝑦
∗
) is asymptotically stable

when 𝜏
1

∈ [0, 𝜏
1
0

), and it is unstable when 𝜏
1

> 𝜏
1
0

. Hopf
bifurcation occurs when 𝜏

1
= 𝜏
1
0

, where 𝜏
1
0

= min{𝜏𝑗
1
𝑖

| 𝑖 =

1, 2, . . . , 𝑘; 𝑗 ∈ N} and

𝜏
𝑗

1
𝑖

= (
1

𝜔
𝑖

) cos−1 (
𝑀
1
𝑖

𝑁
1
𝑖

) +
2𝑖𝜋

𝜔
𝑖

, 𝑖 = 1, 2, . . . , 𝑘; 𝑗 ∈ N,

(30)

with

𝑀
1
𝑖

= 𝑃
1
𝑆
1
+ 𝑃
2
𝑇
1
+ (𝑄
1
𝑆
1
+ 𝑅
1
𝑇
1
) cos𝜔

𝑖
𝜏
2

+ (𝑅
1
𝑆
1
− 𝑄
1
𝑇
1
) sin𝜔

𝑖
𝜏
2
,

𝑁
1
𝑖

= 𝑆
2

1
+ 𝑇
2

1
, 𝑃

1
= −𝜔
2

𝑖
, 𝑃

2
= 𝐴𝜔
𝑖
,

𝑄
1
= 𝐷
2
, 𝑅

1
= 𝐶
2
𝜔
𝑖
,

𝑆
1
= − 𝐸 cos𝜔

𝑖
𝜏
2
, 𝑇

1
= 𝐸 sin (𝜔

𝑖
𝜏
2
) − 𝐶
1
𝜔
𝑖
,

𝑖 = 1, 2, . . . , 𝑘.

(31)

3. Numerical Computations

I perform numerical computations to observe various
dynamics of the coexistence equilibrium for both the systems
(2) and (3). I consider the fixed parameter values as 𝑟 = 3, 𝑘 =

100, 𝛼 = 1.0769, 𝑎 = 10, 𝑠 = 3.5, ℎ = 2, and 𝑚 = 0.35.
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Figure 5: Bifurcation diagram of the system (3) with respect to 𝜏
1
in Case 5. (a) is drawn in the three-dimensional space (𝜏

1
, 𝑥, 𝑦). (b) and

(c) are the time evolutions for 𝜏
1
= 0.48 < 𝜏

10
= 0.5296 (system is stable) and 𝜏

1
= 0.54 > 𝜏

10
= 0.5296 (system is unstable), respectively. A

Hopf bifurcation exists at 𝜏
1
= 0.5296. Here, 𝜏

2
= 0.4 ∈ [0, 0.4205).

With these parameter values 𝑥
∗

= 98.0556, 𝑦
∗

= 49.0278.
Here, 𝐴 + 𝐶

1
+ 𝐶
2
= 6.4319 > 0 and 𝐷

2
+ 𝐸 = 10.2618 > 0,

and initial value is considered as (12, 5) for each simulation.
First I consider the nondelayed system (2). In this case, the
system is asymptotically stable (Figure 1).

I now study the dynamic behavior of the delay-induced
system (3). When 𝜏

1
̸= 0, 𝜏
2

= 0 (Case 2), one can compute
from Theorem 2 that �̃�

0
= 2.9417, 𝜏

1
0

= 0.5329, and (𝐴 +

𝐶2)
2
− 𝐶1
2
− 2𝐷
2
= 3.5967 > 0&𝐷

2

2
− 𝐸
2
= −106.003 < 0.

Therefore, the coexisting equilibrium 𝐸
∗
(𝑥
∗
, 𝑦
∗
) is asymp-

totically stable for 𝜏
1

= 0.45 < 𝜏
1
0

= 0.5329 (Figure 2(b))
and unstable for 𝜏

1
= 0.55 > 𝜏

1
0

= 0.5329 (Figure 2(c)).
When 𝜏

1
= 𝜏
1
0

, the system (3) undergoes aHopf bifurcation at
𝐸
∗
(𝑥
∗
, 𝑦
∗
). System behaviors in Case 2 can be demonstrated

more prominently if I plot the bifurcation diagram in the
three-dimensional space (𝜏

1
, 𝑥, 𝑦). Figure 2(a) shows that,

when 𝜏
2

= 0, the coexistence equilibrium is stable for 𝜏
1

<

𝜏
1
0

= 0.5329 but the instability sets inwhen 𝜏
1
> 𝜏
1
0

= 0.5329.
For Case 3, I take any value of 𝜏

1
from its stability

range [0, 0.5329), say that 𝜏
1

= 0.45, and consider 𝜏
2
as

a parameter. One can compute the value of �̃�
1
as 3.5345

and the corresponding critical value of 𝜏
2
as 𝜏
2
0

= 0.4444.
Thus, for fixed stable value of 𝜏

1
(= 0.45), the system (3)

exhibits stable behavior around 𝐸
∗
(𝑥
∗
, 𝑦
∗
) for 𝜏

2
< 𝜏
2
0

and
unstable oscillatory behavior for 𝜏

2
> 𝜏
2
0

(Figure 3). A Hopf
bifurcation occurs when 𝜏

2
takes the critical value 𝜏

2
0

=

0.4444.
In Case 4, when 𝜏

1
= 0, 𝜏

2
̸= 0, one can compute from

Theorem 4, 𝜔
0

= 3.7359 and 𝜏
2
0

= 0.4205. One can also
verify that (𝐴 + 𝐶

1
)
2
− 𝐶
2

2
= −3.6537 < 0 and −(𝐷

2
+ 𝐸)
2
=

−105.3047 < 0. Therefore, the coexisting equilibrium
𝐸
∗
(𝑥
∗
, 𝑦
∗
) is asymptotically stable for 𝜏

2
< 𝜏
2
0

, unstable for
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Figure 6: Time evolution (a)-(b) and phase-plane diagram (c) of the system (3) for 𝜏
1
= 0.56 and 𝜏

2
= 0.535. Here, the system (3) exhibits

chaotic behavior. Other parameters are as in previous figures.

𝜏
2
> 𝜏
2
0

, and when 𝜏
2
= 𝜏
2
0

, the system (3) undergoes a Hopf
bifurcation at 𝐸∗(𝑥∗, 𝑦∗). These results can be observed from
the bifurcation diagram Figure 4.

In the last case (Case 5), I take any value of 𝜏
2
from its

stability range [0, 0.4205), say that 𝜏
2

= 0.4, and consider
𝜏
1
as a parameter. As before, I calculate 𝜔

1
= 2.96 and the

corresponding critical value 𝜏
1
0

= 0.5296. The bifurcation
diagram Figure 5 demonstrates that the system (2) is locally
asymptotically stable around 𝐸

∗
(𝑥
∗
, 𝑦
∗
) when 𝜏

1
< 0.5296

and unstable when 𝜏
1
> 0.5296.These results can be observed

from the bifurcation diagram Figure 5.

3.1. Chaotic Dynamics. I have analytically studied the local
behavior of the system (3) when the delay parameters are
within or slightly above their critical values. One interesting
topic in the delay-induced system is to study the dynamical
behavior of the system when the delay parameters are far
away from their critical values, or they assume large values.
To observe the system dynamics, I consider 𝜏

1
= 0.56 and

𝜏
2

= 0.535, both are beyond their stability range, and then
the system shows chaotic behavior (Figure 6).

In order to characterize the irregular behavior, I perform
the standard numerical diagnostics, for example, Lyapunov
exponent, sensitivity of the solutions to initial condition,
power spectral density, and recurrence plot. Figure 7(a)
shows the Lyapunov exponent of𝑦with respect to the delay 𝜏

2

in a smaller range [0.45, 0.539] for fixed 𝜏
1
. Positive Lyapunov

exponent (𝜆) indicates that the system exhibits chaotic
behavior [42, 54, 55]. Sensitivity of the system trajectories
to the initial values is shown in Figure 7(b). To show this,
I compute the error Δ𝑦(𝑡) = 𝑦

1
(𝑡) − 𝑦

2
(𝑡), where 𝑦

1
(0) =

(12, 5) and 𝑦
2
(0) = (12.001, 5). This phenomena ensures the

chaotic nature of the system [42, 54, 56]. The power spectra
of the predator population are presented in Figure 7(c). The
irregular broad peaks of this figure are indicative of chaos
and randomness [42, 54, 57]. The recurrence plot of the
system for the parameter values as in Figure 6 is represented
in Figure 7(d). The random points on the time-time plane
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Figure 7: Standard diagnostic tests to detect chaos. (a) Lyapunov exponent, (b) sensitivity on the initial condition, (c) power spectral density,
and (d) recurrence plot. Parameters are as in Figure 6.

ensure that more or less the same values of phase trajectories
take place without any rhythm, indicating the chaotic nature
of the system [42, 54, 58].

3.2. Biological Control of Chaotic Dynamics. Many ecological
situations show that their unstable or abnormal behaviormay
be controlled by any external perturbation [14, 21] or habitat
structure [34, 36–40]. Recently Jana [42] shows that chaotic
behavior of a discrete predator-prey system at low level of
prey refuge must be controlled to its stable coexistence by
increasing the degree of prey refuge. Parameter set of Figure 6
depicts the chaotic behavior of the system (3). Standing at this
situation, if I increase the intensity of degree of prey refuge
(from 0.35 to 0.6), then again the system (3) settles down to
its stable coexistence (Figure 8).

4. Discussion

Effect of prey refuge has an extended impact on the predator-
preymodels. However, both field and laboratory experiments
confirm that intensity of prey refuge reduces predation rates
by decreasing encounter rates between predator and prey.

On the other hand, a predator-prey model becomes more
realistic in presence of different delays which are unavoidable
elements in physiological and ecological processes. In this
paper, I have studied a multidelayed predator-prey model
where the prey species is subject to partial refuge from
predator population. Also I have considered here that the
predator is a generalist type. A time delay is considered in
the growth rate of the prey to represent density dependent
feedback mechanism, and a second delay is introduced to
account for the gestation time of the predator. The objective
was to study the role of the effects of the interaction of
multiple constant time delays and the prey refuge on the
dynamical behavior of a predator-prey system. To have a
better understanding of the complexities in natural systems,
I can construct larger systems of differential equations con-
taining more parameters. A second approach that is gaining
prominence is the inclusion of time delay terms in the dif-
ferential equations. Complex dynamical behaviour arises as a
consequence of time delay in a biological system (with signif-
icant time delay) which may exhibit limited cycle oscillation
and chaos. In case of the multidelayed system, I obtained
sufficient conditions in terms of the system parameters for
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Figure 8: Biological control of chaos with increasing refuge 𝑚 = 0.6. Other parameters are as in Figure 6.

the stability of the coexistence equilibrium. I observed that
the coexistence equilibrium is locally asymptotically stable if
the delay parameters are lower than some critical values and
it is unstable when the parameter values exceed these critical
values. One important question in themultidelayed predator-
prey system is to study the behavior of the system when the
delay parameter is significantly large and hence it is far away
from its critical value. As the estimated length of delays to
preserve stability and the critical length of time delays for
Hopf bifurcation are dependent on the system’s parameters,
it is possible to impose some control, which will prevent the
possible abnormal oscillation in the population density. To
explore the behavior of the system in this case, I performed
extensive numerical simulations. My simulation results show
that a refuged predator-prey system with multiple delays
may exhibit different interesting (e.g., chaotic) behavior when
the delay is large enough. Finally I showed that the chaotic
characteristic of the multidelayed system was controlled by
increasing the intensity of the prey refuge.

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This research is supported by UGC (Dr. D. S. Kothari
Postdoctoral Fellowship), India; no. F.4-2/2006(BSR)/13-
1004/2013(BSR).

References

[1] J. Matthiopoulos, K. Graham, S. Smout et al., “Sensitivity to
assumptions in models of generalist predation on a cyclic prey,”
Ecology, vol. 88, no. 10, pp. 2576–2586, 2007.

[2] T.M. Temesgen, “Bifurcation analysis on the dynamics of a gen-
ralist predator-prey system,” International Journal of Ecosystem,
vol. 2, no. 3, pp. 38–43, 2012.

[3] Y. Kang and L. Wedekin, “Dynamics of a intraguild predation
model with generalist or specialist predator,” Journal of Mathe-
matical Biology, vol. 67, no. 5, pp. 1227–1259, 2013.

[4] R. K. Upadhyay and S. R. K. Iyengar, Introduction to Mathemat-
ical Modelling and Chaotic Dynamics, Taylor and Francis, 2013.

[5] Q. Wang, M. Fan, and K. Wang, “Dynamics of a class of nona-
utonomous semi-ratio-dependent predator-prey systems with
functional responses,” Journal of Mathematical Analysis and
Applications, vol. 278, no. 2, pp. 443–471, 2003.

[6] X.-X. Liu, “A note on periodic solutions for semi-ratio-depen-
dent predator-prey systems,” Applied Mathematics, vol. 25, no.
1, pp. 1–8, 2010.

[7] L. Hongying and W. Weiguo, “Dynamics of a delayed discrete
semiratiodependent predator-prey systemwith Holling type IV
functional response,”Advances in Difference Equation, vol. 7, pp.
2–19, 2011.

[8] C. Lu and L. Zhang, “Permanence and global attractivity of
a discrete semi-ratio dependent predator-prey system with
Holling II type functional response,” Journal of Applied Math-
ematics and Computing, vol. 33, no. 1-2, pp. 125–135, 2010.

[9] R. M. May, Stability and Complexity in Model Ecosystems, Prin-
ceton University Press, Princeton, NJ, USA, 1974.

[10] J. D. Murray,Mathematical Biology, Springer, Berlin, Germany,
1989.



International Journal of Ecology 11

[11] P. A. Braza, “The bifurcation structure of the Holling-Tanner
model for predator-prey interactions using two-timing,” SIAM
Journal on Applied Mathematics, vol. 63, no. 3, pp. 889–904,
2003.

[12] S.-B. Hsu and T.-W. Hwang, “Hopf bifurcation analysis for a
predator-prey system of Holling and Leslie type,” Taiwanese
Journal of Mathematics, vol. 3, no. 1, pp. 35–53, 1999.

[13] H. C. Tsai and C. P. Ho, “Global stability for the leslie-
gower predator- prey system with time-delay and holling’s type
functional response,” Tunghai Science, vol. 6, pp. 43–72, 2004.

[14] N. Zhang, F. Chen, Q. Su, and T. Wu, “Dynamic behaviors
of a harvesting Leslie-Gower predator-prey model,” Discrete
Dynamics in Nature and Society, vol. 2011, Article ID 473949,
14 pages, 2011.

[15] J. T. Tanner, “The stability and the intrinsic growth rates of prey
and predator populations,” Ecology, vol. 56, pp. 855–867, 1975.

[16] S. B. Hsu and T. W. Hwang, “Uniqueness of limit cycles for
a predator-prey system of Holling and Lesile type, Canad,”
Applied Mathematics Quarterly, vol. 6, pp. 91–117, 1998.

[17] Y. Kuang and E. Beretta, “Global qualitative analysis of a ratio-
dependent predator-prey system,” Journal ofMathematical Biol-
ogy, vol. 36, no. 4, pp. 389–406, 1998.

[18] A. Martin and S. Ruan, “Predator-prey models with delay and
prey harvesting,” Journal of Mathematical Biology, vol. 43, no. 3,
pp. 247–267, 2001.

[19] C. Jost, O. Arino, and R. Arditi, “About deterministic extinction
in ratio-dependent predator-prey models,” Bulletin of Mathe-
matical Biology, vol. 61, no. 1, pp. 19–32, 1999.

[20] D. Xiao and S. Ruan, “Global dynamics of a ratio-dependent
predator-prey system,” Journal of Mathematical Biology, vol. 43,
no. 3, pp. 268–290, 2001.

[21] D. Jana, S. Chakraborty, and N. Bairagi, “Stability, nonlinear
oscillations and bifurcation in a delay-induced predator-prey
system with harvesting,” Engineering Letters, vol. 20, no. 3, pp.
238–246, 2012.

[22] D. Xiaq and L. S. Jennings, “Bifurcations of a ratio-dependent
predator-prey system with constant rate harvesting,” SIAM
Journal onAppliedMathematics, vol. 65, no. 3, pp. 737–753, 2005.

[23] D. Xiao, W. Li, and M. Han, “Dynamics in a ratio-dependent
predator-prey model with predator harvesting,” Journal of
Mathematical Analysis and Applications, vol. 324, no. 1, pp. 14–
29, 2006.

[24] S. Chakraborty, S. Pal, and N. Bairagi, “Predator-prey inter-
action with harvesting: mathematical study with biological
ramifications,” Applied Mathematical Modelling, vol. 36, no. 9,
pp. 4044–4059, 2012.

[25] H. R. Akcakaya, R. Arditi, and L. R. Ginzburg, “Ratio-depen-
dent predation: an abstraction that works,” Ecology, vol. 76, no.
3, pp. 995–1004, 1995.

[26] N. G. Hairston, F. E. Smith, and L. B. Slobodkin, “Community
structure, population control and competition,” American Nat-
uralist, vol. 94, pp. 421–425, 1960.

[27] M. L. Rosenzweig, “Paradox of enrichment: destabilization of
exploitation ecosystems in ecological time,” Science, vol. 171, no.
3969, pp. 385–387, 1971.

[28] R. F. Luck, “Evaluation of natural enemies for biological control:
a behavioral approach,” Trends in Ecology and Evolution, vol. 5,
no. 6, pp. 196–199, 1990.

[29] D. Kesh, D. Mukherjee, A. K. Sarkar, and A. B. Roy, “Ratio dep-
endent predation: a bifurcation analysis,”The Korean Journal of
Computational & Applied Mathematics, vol. 5, no. 2, pp. 295–
305, 1998.

[30] F. Bartumeus, D. Alonso, and J. Catalan, “Self-organized spatial
structures in a ratio-dependent predator-prey model,” Physica
A: Statistical Mechanics and its Applications, vol. 295, no. 1-2, pp.
53–57, 2001.

[31] L. R. Ginzburg and R. X. J. Jensen, “From controversy to
consensus: the indirect interference functional response,” Ver-
handlungen des Internationalen Verein Limnologie, vol. 30, no.
2, pp. 297–301, 2008.

[32] C. Cosner, D. L. Deangelis, J. S. Ault, and D. B. Olson, “Effects
of spatial grouping on the functional response of predators,”
Theoretical Population Biology, vol. 56, no. 1, pp. 65–75, 1999.

[33] L. R. Ginzburg and H. R. Akcakaya, “Consequences of ratio-
dependent predation for steady-state properties of ecosystems,”
Ecology, vol. 73, no. 5, pp. 1536–1543, 1992.

[34] D. Alstad, Basic PopulasModels of Ecology, Prentice Hall, Upper
Saddle River, NJ, USA, 2001.

[35] O. Anderson, “Optimal foraging by largemouth bass in struc-
tured environments,” Ecology, vol. 65, no. 3, pp. 851–861, 1984.

[36] T.W. Anderson, “Predator responses, prey refuges, and density-
dependent mortality of a marine fish,” Ecology, vol. 82, no. 1, pp.
245–257, 2001.

[37] D. W. Johnson, “Predation, habitat complexity, and variation in
density-dependent mortality of temperate reef fishes,” Ecology,
vol. 87, no. 5, pp. 1179–1188, 2006.

[38] J. Maynard Smith, Models in Ecology, Cambridge University
Press, Cambridge, UK, 1974.

[39] M. P. Hassel,TheDynamics of Arthropod Predator-Prey Systems,
Princeton University Press, Princeton, NJ, USA, 1978.

[40] R. J. Taylor, Predation, Chapman & Hall, New York, NY, USA,
1984.

[41] T. K. Kar, “Stability analysis of a prey-predator model incorpo-
rating a prey refuge,” Communications in Nonlinear Science and
Numerical Simulation, vol. 10, no. 6, pp. 681–691, 2005.

[42] D. Jana, “Chaotic dynamics of a discrete predator-prey system
with prey refuge,” Applied Mathematics and Computation, vol.
224, pp. 848–865, 2013.

[43] M. Liao, X. Tang, and C. Xu, “Bifurcation analysis for a three-
species predator-prey systemwith two delays,”Communications
in Nonlinear Science and Numerical Simulation, vol. 17, no. 1, pp.
183–194, 2012.

[44] X.-Y. Meng, H.-F. Huo, and X.-B. Zhang, “Stability and global
Hopf bifurcation in a delayed food web consisting of a prey
and two predators,” Communications in Nonlinear Science and
Numerical Simulation, vol. 16, no. 11, pp. 4335–4348, 2011.

[45] G.-P. Hu, W.-T. Li, and X.-P. Yan, “Hopf bifurcations in a
predator-prey system with multiple delays,” Chaos, Solitons and
Fractals, vol. 42, no. 2, pp. 1273–1285, 2009.

[46] Y. Song, Y. Peng, and J. Wei, “Bifurcations for a predator-prey
system with two delays,” Journal of Mathematical Analysis and
Applications, vol. 337, no. 1, pp. 466–479, 2008.

[47] X.-P. Yan and Y.-D. Chu, “Stability and bifurcation analysis
for a delayed Lotka-Volterra predator-prey system,” Journal of
Computational andAppliedMathematics, vol. 196, no. 1, pp. 198–
210, 2006.

[48] H. I. Freedman, Deterministic Mathematical Models in Popula-
tion Ecology, HIFR Consulting, Edmonton, Canada, 1987.

[49] Y. Kuang, Delay Differential Equations with Applications in
Population Dynamics, Academic Press, New York, NY, USA,
1993.



12 International Journal of Ecology

[50] N. Bairagi andD. Jana, “On the stability andHopf bifurcation of
a delay-induced predator-prey system with habitat complexity,”
Applied Mathematical Modelling, vol. 35, no. 7, pp. 3255–3267,
2011.

[51] S. Ruan, “On nonlinear dynamics of predator-prey models with
discrete delay,”Mathematical Modelling of Natural Phenomena,
vol. 4, no. 2, pp. 140–188, 2009.

[52] S. Ruan and J. Wei, “On the zeros of transcendental functions
with applications to stability of delay differential equations with
two delays,” Dynamics of Continuous, Discrete and Impulsive
Systems Series A: Mathematical Analysis, vol. 10, no. 6, pp. 863–
874, 2003.

[53] J. Hale, Theory of Functional Differential Equations, Springer,
Berlin, Germany, 1977.

[54] S. Mandal, D. Jana, A. B. Roy, and N. C. Majee, “Chaotic beha-
vior of a class of neural network with discrete delays,” Interna-
tional Journal of Modern NonlinearTheory and Application, vol.
2, no. 1A, pp. 97–101, 2013.

[55] S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applica-
tions to Physics, Biology, Chemistry, and Engineering, Westview
Press, 2009.

[56] K. Wang, W. Wang, H. Pang, and X. Liu, “Complex dynamic
behavior in a viral model with delayed immune response,”
Physica D: Nonlinear Phenomena, vol. 226, no. 2, pp. 197–208,
2007.

[57] A. H. Nayfeh and B. Balachandran, Applied Nonlinear Dynam-
ics, Wiley, New York, NY, USA, 1995.

[58] N. Marwan, M. Carmen Romano, M. Thiel, and J. Kurths,
“Recurrence plots for the analysis of complex systems,” Physics
Reports, vol. 438, no. 5-6, pp. 237–329, 2007.



Submit your manuscripts at
http://www.hindawi.com

Forestry Research
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Environmental and 
Public Health

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Ecosystems
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Meteorology
Advances in

Ecology
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Marine Biology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

Applied &
Environmental
Soil Science

Volume 2014

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Environmental 
 Chemistry

Atmospheric Sciences
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Waste Management
Journal of

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

 International Journal of

Geophysics

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Geological Research
Journal of

Earthquakes
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Biodiversity
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Scientifica
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Oceanography
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

  Journal of 
 Computational 
Environmental Sciences
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Climatology
Journal of


