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The split equality problem (SEP) has extraordinary utility and broad applicability in many areas of applied mathematics. Recently,
Byrne and Moudafi (2013) proposed a CQ algorithm for solving it. In this paper, we propose a modification for the CQ algorithm,
which computes the stepsize adaptively and performs an additional projection step onto two half-spaces in each iteration. We
further propose a relaxation scheme for the self-adaptive projection algorithm by using projections onto half-spaces instead of
those onto the original convex sets, which is much more practical. Weak convergence results for both algorithms are analyzed.

1. Introduction

The split equality problem (SEP) was introduced by Moudafi
[1] and its interest covers many situations, for instance, in
domain decomposition for PDE’s, game theory, and intensity-
modulated radiation therapy (IMRT) (see [2–7] for more
details). Let 𝐻

1
, 𝐻
2
, and 𝐻

3
be real Hilbert spaces; let 𝐶 ⊂

𝐻
1
and 𝑄 ⊂ 𝐻

2
be two nonempty closed convex sets; let

𝐴 : 𝐻
1
→ 𝐻

3
and 𝐵 : 𝐻

2
→ 𝐻

3
be two bounded linear

operators. The SEP can mathematically be formulated as the
problem of finding 𝑥 and 𝑦 with the property

𝑥 ∈ 𝐶, 𝑦 ∈ 𝑄, such that 𝐴𝑥 = 𝐵𝑦, (1)

which allows asymmetric and partial relations between the
variables𝑥 and𝑦. If𝐻

2
= 𝐻
3
and𝐵 = 𝐼, then the split equality

problem (1) reduces to the split feasibility problem (originally
introduced in Censor and Elfving [8]) which is to find 𝑥 ∈ 𝐶
with 𝐴𝑥 ∈ 𝑄.

For solving the SEP (1), Moudafi [1] introduced the
following alternating 𝐶𝑄 algorithm:

𝑥
𝑘+1

= 𝑃
𝐶
(𝑥
𝑘
− 𝛾
𝑘
𝐴
∗
(𝐴𝑥
𝑘
− 𝐵𝑦
𝑘
)) ,

𝑦
𝑘+1

= 𝑃
𝑄
(𝑦
𝑘
+ 𝛾
𝑘
𝐵
∗
(𝐴𝑥
𝑘+1
− 𝐵𝑦
𝑘
)) ,

(2)

where 𝛾
𝑘
∈ (𝜀,min(1/𝜆

𝐴
, 1/𝜆
𝐵
) − 𝜀) and 𝜆

𝐴
and 𝜆

𝐵
are the

spectral radii of 𝐴∗𝐴 and 𝐵∗𝐵, respectively. By studying the

projected Landweber algorithm of the SEP (1) in a product
space, Byrne and Moudafi [7] obtained the following 𝐶𝑄
algorithm:

𝑥
𝑘+1

= 𝑃
𝐶
(𝑥
𝑘
− 𝛾
𝑘
𝐴
∗
(𝐴𝑥
𝑘
− 𝐵𝑦
𝑘
)) ,

𝑦
𝑘+1

= 𝑃
𝑄
(𝑦
𝑘
+ 𝛾
𝑘
𝐵
∗
(𝐴𝑥
𝑘
− 𝐵𝑦
𝑘
)) ,

(3)

where 𝛾
𝑘
, the stepsize at the iteration 𝑘, is chosen in the

interval (𝜀, (2/(𝜆
𝐴
+ 𝜆
𝐵
)) − 𝜀). It is easy to see that the

alternating 𝐶𝑄 algorithm (2) is sequential but the algorithm
(3) is simultaneous.

Observe that in the algorithms (2) and (3), the determi-
nation of the stepsize 𝛾

𝑛
depends on the operator (matrix)

norms ‖𝐴‖ and ‖𝐵‖ (or the largest eigenvalues of 𝐴∗𝐴 and
𝐵
∗
𝐵). This means that, in order to implement the alternating

𝐶𝑄 algorithm (2), one has first to compute (or, at least,
estimate) operator norms of 𝐴 and 𝐵, which is in general
not an easy work in practice. Considering this, Dong and He
[9] proposed algorithmswithout prior knowledge of operator
norms.

In this paper, we first propose a modification for 𝐶𝑄
algorithm (3), inspired by Tseng [10] (also see [11]). Our
modified projectionmethod computes the stepsize adaptively
and performs an additional projection step onto two half-
spaces, 𝑋

𝑘
⊂ 𝐻
1
and 𝑌

𝑘
⊂ 𝐻
2
, in each iteration. Then we
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give a relaxation scheme for thismodification by replacing the
orthogonal projections onto the sets 𝐶 and 𝑄 by projections
onto the two half-spaces 𝐶

𝑘
and 𝑄

𝑘
, respectively. Since

projections onto half-spaces can be directly calculated, the
relaxed scheme will be more practical and easily imple-
mented.

The rest of this paper is organized as follows. In the
next section, some useful facts and tools are given. The weak
theorem of the proposed self-adaptive projection algorithm
is obtained in Section 3. In Section 4, we consider a relaxed
self-adaptive projection algorithm, where the sets 𝐶 and 𝑄
are level sets of convex functions.

2. Preliminaries

In this section, we review some definitions and lemmaswhich
will be used in this paper.

Let𝐻 be a Hilbert space and let 𝐼 be the identity operator
on𝐻. If𝑓 : 𝐻 → R is a differentiable functional, then denote
by ∇𝑓 the gradient of 𝑓. If 𝑓 : 𝐻 → R is a subdifferentiable
functional, then denote by 𝜕𝑓 the subdifferential of 𝑓. Given
a sequence (𝑥

𝑘
, 𝑦
𝑘
) in𝐻

1
×𝐻
2
,𝜔
𝑤
(𝑥
𝑘
, 𝑦
𝑘
) stands for the set of

cluster points in the weak topology. “𝑥
𝑘
→ 𝑥” (resp., “𝑥

𝑘
⇀

𝑥”) means the strong (resp., weak) convergence of (𝑥
𝑘
) to 𝑥.

Definition 1. A sequence (𝑥
𝑘
) is said to be asymptotically

regular if

lim
𝑘→∞

𝑥𝑘+1 − 𝑥𝑘
 = 0. (4)

Definition 2. The graph of an operator is called to be weakly-
strongly closed if 𝑦

𝑛
∈ 𝑇(𝑥

𝑛
) with 𝑦

𝑛
strongly converging to

𝑦 and 𝑥
𝑛
weakly converging to 𝑥; then 𝑦 ∈ 𝑇(𝑥).

The next lemma is well known (see [10, 12]) and shows
that the maximal monotone operators are weakly-strongly
closed.

Lemma 3. Let 𝐻 be a Hilbert space and let 𝑇 : 𝐻  𝐻

be a maximal monotone mapping. If (𝑥
𝑘
) is a sequence in 𝐻

bounded in norm and converging weakly to some 𝑥 and (𝑤
𝑘
) is

a sequence in𝐻 converging strongly to some𝑤 and𝑤
𝑘
∈ 𝑇(𝑥

𝑘
)

for all 𝑘, then 𝑤 ∈ 𝑇(𝑥).

The projection is an important tool for our work in this
paper. Let Ω be a closed convex subset of real Hilbert space
𝐻. Recall that the (nearest point or metric) projection from
𝐻 onto Ω, denoted by 𝑃

Ω
, is defined in such a way that, for

each 𝑥 ∈ 𝐻, 𝑃
Ω
𝑥 is the unique point in Ω such that

𝑥 − 𝑃Ω𝑥
 = min {‖𝑥 − 𝑧‖ : 𝑧 ∈ Ω} . (5)

The following two lemmas are useful characterizations of
projections.

Lemma 4. Given 𝑥 ∈ 𝐻 and 𝑧 ∈ Ω, then 𝑧 = 𝑃
Ω
𝑥 if and only

if

⟨𝑥 − 𝑧, 𝑦 − 𝑧⟩ ≤ 0, ∀𝑦 ∈ Ω. (6)

Lemma 5. For any 𝑥, 𝑦 ∈ 𝐻 and 𝑧 ∈ Ω, it holds

(i) ‖𝑃
Ω
(𝑥) − 𝑃

Ω
(𝑦)‖
2
≤ ⟨𝑃
Ω
(𝑥) − 𝑃

Ω
(𝑦), 𝑥 − 𝑦⟩;

(ii) ‖𝑃
Ω
(𝑥) − 𝑧‖

2
≤ ‖𝑥 − 𝑧‖

2
− ‖𝑃
Ω
(𝑥) − 𝑥‖

2.

Throughout this paper, assume that the split equality
problem (1) is consistent and denote by Γ the solution of (1);
that is,

Γ = {𝑥 ∈ 𝐶, 𝑦 ∈ 𝑄 : 𝐴𝑥 = 𝐵𝑦} . (7)

Then Γ is closed, convex, and nonempty. The split equality
problem (1) can be written as the following minimization
problem:

min
𝑥∈𝐻
1
, 𝑦∈𝐻

2

𝜄
𝐶
(𝑥) + 𝜄

𝑄
(𝑦) +

1

2

𝐴𝑥 − 𝐵𝑦


2

, (8)

where 𝜄
𝐶
(𝑥) is an indicator function of the set 𝐶 defined by

𝜄
𝐶
(𝑥) = {

0, 𝑥 ∈ 𝐶

+∞, otherwise.
(9)

By writing down the optimality conditions, we obtain

0 ∈ ∇
𝑥
{
1

2

𝐴𝑥 − 𝐵𝑦


2

}+𝜕𝜄
𝐶
(𝑥) = 𝐴

∗
(𝐴𝑥 − 𝐵𝑦) + 𝑁

𝐶
(𝑥) ,

0 ∈ ∇
𝑦
{
1

2

𝐴𝑥 − 𝐵𝑦


2

}+𝜕𝜄
𝑄
(𝑦) = −𝐵

∗
(𝐴𝑥 − 𝐵𝑦) + 𝑁

𝑄
(𝑦) ,

(10)

which implies, for 𝛾 > 0 and 𝛽 > 0,

𝑥 − 𝛾𝐴
∗
(𝐴𝑥 − 𝐵𝑦) ∈ 𝑥 + 𝛾𝑁

𝐶
(𝑥) ,

𝑦 + 𝛽𝐵
∗
(𝐴𝑥 − 𝐵𝑦) ∈ 𝑦 + 𝛽𝑁

𝑄
(𝑦) ,

(11)

which in turn leads to the fixed point formulation

𝑥 = (𝐼 + 𝛾𝑁
𝐶
)
−1

(𝑥 − 𝛾𝐴
∗
(𝐴𝑥 − 𝐵𝑦)) ,

𝑦 = (𝐼 + 𝛽𝑁
𝑄
)
−1

(𝑦 + 𝛽𝐵
∗
(𝐴𝑥 − 𝐵𝑦)) .

(12)

Since (𝐼 + 𝛾𝑁
𝐶
)
−1
= 𝑃
𝐶
and (𝐼 + 𝛽𝑁

𝑄
)
−1
= 𝑃
𝑄
, we have

𝑥 = 𝑃
𝐶
(𝑥 − 𝛾𝐴

∗
(𝐴𝑥 − 𝐵𝑦)) ,

𝑦 = 𝑃
𝑄
(𝑦 + 𝛽𝐵

∗
(𝐴𝑥 − 𝐵𝑦)) .

(13)

The following proposition shows that solutions of the fixed
point equations (17) are exactly the solutions of the SEP (1).

Proposition 6 (see [9]). Given 𝑥∗ ∈ 𝐻
1
and 𝑦∗ ∈ 𝐻

2
, then

(𝑥
∗
, 𝑦
∗
) solves the SEP (1) if and only if (𝑥∗, 𝑦∗) solves the fixed

point equations (13).

3. A Self-Adaptive Projection Algorithm

Based on Proposition 6, we construct a self-adaptive projec-
tion algorithm for the fixed point equations (13) and prove the
weak convergence of the proposed algorithm.
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Define the function 𝐹 : 𝐻
1
× 𝐻
2
→ 𝐻
1
by

𝐹 (𝑥, 𝑦) = 𝐴
∗
(𝐴𝑥 − 𝐵𝑦) (14)

and the function 𝐺 : 𝐻
1
× 𝐻
2
→ 𝐻
2
by

𝐺 (𝑥, 𝑦) = 𝐵
∗
(𝐵𝑦 − 𝐴𝑥) . (15)

The self-adaptive projection algorithm is defined as follows.

Algorithm 7. Given constants 𝜎
0
> 0, 𝛽 ∈ (0, 1), 𝜃 ∈

(0, 1) and 𝜌 ∈ (0, 1), let 𝑥
0
∈ 𝐻
1
and 𝑦

0
∈ 𝐻
2
be arbitrary.

For 𝑘 = 0, 1, 2, . . ., compute

𝑢
𝑘
= 𝑃
𝐶
(𝑥
𝑘
− 𝜏
𝑘
𝐹 (𝑥
𝑘
, 𝑦
𝑘
)) ,

V
𝑘
= 𝑃
𝑄
(𝑦
𝑘
− 𝜏
𝑘
𝐺 (𝑥
𝑘
, 𝑦
𝑘
)) ,

(16)

where 𝛾
𝑘
is chosen to be the largest 𝛾 ∈ {𝜎

𝑘
, 𝜎
𝑘
𝛽, 𝜎
𝑘
𝛽
2
, . . .}

satisfying
𝐹(𝑥𝑘, 𝑦𝑘) − 𝐹(𝑢𝑘, V𝑘)



2

+
𝐺(𝑥𝑘, 𝑦𝑘) − 𝐺(𝑢𝑘, V𝑘)



2

≤ 𝜃
2

𝑥𝑘 − 𝑢𝑘


2

+
𝑦𝑘 − V

𝑘



2

𝛾2
.

(17)

Construct the half-spaces 𝑋
𝑘
and 𝑌

𝑘
, the bounding hyper-

planes of which support 𝐶 and 𝑄 at 𝑢
𝑘
and V
𝑘
, respectively,

𝑋
𝑘
:= {𝑢 ∈ 𝐻

1
| ⟨𝑥
𝑘
− 𝜏
𝑘
𝐹 (𝑥
𝑘
, 𝑦
𝑘
) − 𝑢
𝑘
, 𝑢 − 𝑢

𝑘
⟩ ≤ 0} ,

𝑌
𝑘
:= {V ∈ 𝐻

2
| ⟨𝑦
𝑘
− 𝜏
𝑘
𝐺 (𝑥
𝑘
, 𝑦
𝑘
) − V
𝑘
, V − V

𝑘
⟩ ≤ 0} .

(18)

Set
𝑥
𝑘+1

= 𝑃
𝑋
𝑘

(𝑢
𝑘
− 𝛾
𝑘
(𝐹 (𝑢
𝑘
, V
𝑘
) − 𝐹 (𝑥

𝑘
, 𝑦
𝑘
))) ,

𝑦
𝑘+1

= 𝑃
𝑌
𝑘

(V
𝑘
− 𝛾
𝑘
(𝐺 (𝑢
𝑘
, V
𝑘
) − 𝐺 (𝑥

𝑘
, 𝑦
𝑘
))) .

(19)

If
𝐹(𝑥𝑘+1, 𝑦𝑘+1) − 𝐹(𝑥𝑘, 𝑦𝑘)



2

+
𝐺(𝑥𝑘+1, 𝑦𝑘+1) − 𝐺(𝑥𝑘, 𝑦𝑘)



2

≤ 𝜌
2

𝑥𝑘+1 − 𝑥𝑘


2

+
𝑦𝑘+1 − 𝑦𝑘



2

𝛾
2

𝑘

,

(20)

then set 𝜎
𝑘
= 𝜎
0
; otherwise, set 𝜎

𝑘
= 𝛾
𝑘
.

In this algorithm, (19) involves projection onto half-
spaces𝑋

𝑘
(resp., 𝑌

𝑘
) rather than onto the set 𝐶 (resp.,𝑄) and

it is obvious that projections on 𝑋 (resp., 𝑌) are very simple.
It is easy to show 𝐶 ⊂ 𝑋

𝑘
and 𝑄 ⊂ 𝑌

𝑘
. The last step is used to

reduce the inner iterations for searching the stepsize 𝛾
𝑘
.

Lemma8. The search rule (17) is well defined. Besides 𝛾 ≤ 𝛾
𝑘
≤

𝜎
0
, where

𝛾 = min
{{

{{

{

𝜎
0
,

𝛽𝜃

‖𝐴‖√2 (‖𝐴‖
2
+ ‖𝐵‖
2
)

,

𝛽𝜃

‖𝐵‖√2 (‖𝐴‖
2
+ ‖𝐵‖
2
)

}}

}}

}

.

(21)

Proof. Obviously, 𝛾
𝑘
≤ 𝜎
0
. If 𝛾
𝑘
= 𝜎
0
, then this lemma is

proved; otherwise, if 𝛾
𝑘
< 𝜎
0
, by the search rule (17), we know

that 𝛾
𝑘
/𝛽must violate inequality (17); that is,

𝐹(𝑥𝑘, 𝑦𝑘) − 𝐹(𝑢𝑘, V𝑘)


2

+
𝐺(𝑥𝑘, 𝑦𝑘) − 𝐺(𝑢𝑘, V𝑘)



2

≥ 𝜃
2

𝑥𝑘 − 𝑢𝑘


2

+
𝑦𝑘 − V

𝑘



2

𝛾
2

𝑘
/𝛽2

.

(22)

On the other hand, we have
𝐹 (𝑥𝑘, 𝑦𝑘) − 𝐹 (𝑢𝑘, V𝑘)



2

+
𝐺 (𝑥𝑘, 𝑦𝑘) − 𝐺 (𝑢𝑘, V𝑘)



2

=
𝐴
∗
(𝐴𝑥
𝑘
− 𝐵𝑦
𝑘
) − 𝐴
∗
(𝐴𝑢
𝑘
− 𝐵V
𝑘
)


2

+
𝐵
∗
(𝐵𝑦
𝑘
− 𝐴𝑥
𝑘
) − 𝐵
∗
(𝐵V
𝑘
− 𝐴𝑢
𝑘
)


2

≤ (‖𝐴‖
2
+ ‖𝐵‖
2
)

× (‖𝐴‖
𝑥𝑘 − 𝑢𝑘

 + ‖𝐵‖
𝑦𝑘 − V

𝑘

)
2

≤ 2 (‖𝐴‖
2
+ ‖𝐵‖
2
)

× (‖𝐴‖
2𝑥𝑘 − 𝑢𝑘



2

+ ‖𝐵‖
2𝑦𝑘 − V

𝑘



2

)

≤ 2 (‖𝐴‖
2
+ ‖𝐵‖
2
)max {‖𝐴‖2, ‖𝐵‖2}

× (
𝑥𝑘 − 𝑢𝑘



2

+
𝑦𝑘 − V

𝑘



2

) .

(23)

Consequently, we get

𝛾
𝑘
≥ min

{{

{{

{

𝜎
0
,

𝛽𝜃

‖𝐴‖√2 (‖𝐴‖
2
+ ‖𝐵‖
2
)

,

𝛽𝜃

‖𝐵‖√2 (‖𝐴‖
2
+ ‖𝐵‖
2
)

}}

}}

}

,

(24)

which completes the proof.

Theorem 9. Let (𝑥
𝑘
, 𝑦
𝑘
) be the sequence generated by

Algorithm 7 and let 𝑋 and 𝑌 be nonempty closed convex sets
in𝐻
1
and𝐻

2
with simple structures, respectively. If (𝑋×𝑌)∩Γ

is nonempty, then (𝑥
𝑘
, 𝑦
𝑘
) converges weakly to a solution of the

SEP (1).

Proof. Let (𝑥∗, 𝑦∗) ∈ Γ; that is, 𝑥∗ ∈ 𝐶, 𝑦∗ ∈ 𝑄, and 𝐴𝑥∗ =
𝐵𝑦
∗. Define 𝑠

𝑘
= 𝑢
𝑘
− 𝛾
𝑘
(𝐹(𝑢
𝑘
, V
𝑘
) − 𝐹(𝑥

𝑘
, 𝑦
𝑘
)); then we have

𝑥𝑘+1 − 𝑥
∗

2

≤
𝑠𝑘 − 𝑥

∗

2

=
𝑠𝑘 − 𝑢𝑘 + 𝑢𝑘 − 𝑥𝑘 + 𝑥𝑘 − 𝑥

∗

2

=
𝑠𝑘 − 𝑢𝑘



2

+
𝑢𝑘 − 𝑥𝑘



2

+
𝑥𝑘 − 𝑥

∗

2

+ 2⟨𝑠
𝑘
− 𝑢
𝑘
, 𝑢
𝑘
− 𝑥
∗
⟩

+ 2⟨𝑢
𝑘
− 𝑥
𝑘
, 𝑥
𝑘
− 𝑥
∗
⟩
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=
𝑥𝑘 − 𝑥

∗

2

+
𝑠𝑘 − 𝑢𝑘



2

−
𝑢𝑘 − 𝑥𝑘



2

+ 2⟨𝑠
𝑘
− 𝑥
𝑘
, 𝑢
𝑘
− 𝑥
∗
⟩

=
𝑥𝑘 − 𝑥

∗

2

+ 𝛾
2

𝑘

𝐹(𝑢𝑘, V𝑘) − 𝐹(𝑥𝑘, 𝑦𝑘)


2

−
𝑢𝑘 − 𝑥𝑘



2

+ 2⟨𝑠
𝑘
− 𝑥
𝑘
, 𝑢
𝑘
− 𝑥
∗
⟩,

(25)

where the first inequality follows from nonexpansivity of
the projection mapping 𝑃

𝑋
𝑘

. Similarly, defining 𝑡
𝑘
= V
𝑘
−

𝛾
𝑘
(𝐺(𝑢
𝑘
, V
𝑘
) − 𝐺(𝑥

𝑘
, 𝑦
𝑘
)), we get

𝑦𝑘+1 − 𝑦
∗

2

≤
𝑦𝑘 − 𝑦

∗

2

+ 𝛾
2

𝑘

𝐺 (𝑢𝑘, V𝑘) − 𝐺 (𝑥𝑘, 𝑦𝑘)


2

−
V𝑘 − 𝑦𝑘



2

+ 2⟨𝑡
𝑘
− 𝑦
𝑘
, V
𝑘
− 𝑦
∗
⟩.

(26)

Adding the above inequalities, we obtain

𝑥𝑘+1 − 𝑥
∗

2

+
𝑦𝑘+1 − 𝑦

∗

2

≤
𝑥𝑘 − 𝑥

∗

2

+
𝑦𝑘 − 𝑦

∗

2

+ 𝛾
2

𝑘
(
𝐹(𝑢𝑘, V𝑘) − 𝐹(𝑥𝑘, 𝑦𝑘)



2

+
𝐺(𝑢𝑘, V𝑘) − 𝐺(𝑥𝑘, 𝑦𝑘)



2

)

−
𝑢𝑘 − 𝑥𝑘



2

−
V𝑘 − 𝑦𝑘



2

+ 2⟨𝑠
𝑘
− 𝑥
𝑘
, 𝑢
𝑘
− 𝑥
∗
⟩ + 2⟨𝑡

𝑘
− 𝑦
𝑘
, V
𝑘
− 𝑦
∗
⟩

≤
𝑥𝑘 − 𝑥

∗

2

+
𝑦𝑘 − 𝑦

∗

2

− (1 − 𝜃
2
)

× (
𝑢𝑘 − 𝑥𝑘



2

+
V𝑘 − 𝑦𝑘



2

)

+ 2⟨𝑠
𝑘
− 𝑥
𝑘
, 𝑢
𝑘
− 𝑥
∗
⟩ + 2⟨𝑡

𝑘
− 𝑦
𝑘
, V
𝑘
− 𝑦
∗
⟩

=
𝑥𝑘 − 𝑥

∗

2

+
𝑦𝑘 − 𝑦

∗

2

− (1 − 𝜃
2
)

× (
𝑢𝑘 − 𝑥𝑘



2

+
V𝑘 − 𝑦𝑘



2

)

+ 2⟨𝑢
𝑘
− 𝛾
𝑘
𝐹 (𝑢
𝑘
, V
𝑘
)

+ 𝛾
𝑘
𝐹 (𝑥
𝑘
, 𝑦
𝑘
) − 𝑥
𝑘
, 𝑢
𝑘
− 𝑥
∗
⟩

+ 2⟨V
𝑘
− 𝛾
𝑘
𝐺 (𝑢
𝑘
, V
𝑘
)

+ 𝛾
𝑘
𝐺 (𝑥
𝑘
, 𝑦
𝑘
) − 𝑦
𝑘
, V
𝑘
− 𝑦
∗
⟩

≤
𝑥𝑘 − 𝑥

∗

2

+
𝑦𝑘 − 𝑦

∗

2

− (1 − 𝜃
2
) (
𝑢𝑘 − 𝑥𝑘



2

+
V𝑘 − 𝑦𝑘



2

)

− 2𝛾
𝑘
⟨𝐹 (𝑢
𝑘
, V
𝑘
) , 𝑢
𝑘
− 𝑥
∗
⟩

− 2𝛾
𝑘
⟨𝐺 (𝑢
𝑘
, V
𝑘
) , V
𝑘
− 𝑦
∗
⟩,

(27)

where the equality follows from 𝑠
𝑘
= 𝑢
𝑘
− 𝛾
𝑘
(𝐹(𝑢
𝑘
, V
𝑘
) −

𝐹(𝑥
𝑘
, 𝑦
𝑘
)) and 𝑡

𝑘
= V
𝑘
− 𝛾
𝑘
(𝐺(𝑢
𝑘
, V
𝑘
) − 𝐺(𝑥

𝑘
, 𝑦
𝑘
)), the second

inequality follows from (17), and the last follows from (16) and
Lemma 3 and 𝑥∗ ∈ 𝐶, 𝑦∗ ∈ 𝑄. Using the fact and𝐴𝑥∗ = 𝐵𝑦∗,
we have

⟨𝐹 (𝑢
𝑘
, V
𝑘
) , 𝑢
𝑘
− 𝑥
∗
⟩ + ⟨𝐺 (𝑢

𝑘
, V
𝑘
) , V
𝑘
− 𝑦
∗
⟩

= ⟨𝐴
∗
(𝐴𝑢
𝑘
− 𝐵V
𝑘
) , 𝑢
𝑘
− 𝑥
∗
⟩

+ ⟨𝐵
∗
(𝐵V
𝑘
− 𝐴𝑢
𝑘
) , V
𝑘
− 𝑦
∗
⟩

= ⟨𝐴𝑢
𝑘
− 𝐵V
𝑘
, 𝐴𝑢
𝑘
− 𝐴𝑥
∗
⟩

+ ⟨𝐵V
𝑘
− 𝐴𝑢
𝑘
, 𝐵V
𝑘
− 𝐵𝑦
∗
⟩

=
𝐴𝑢𝑘 − 𝐵V𝑘



2

,

(28)

which with (27) implies that
𝑥𝑘+1 − 𝑥

∗

2

+
𝑦𝑘+1 − 𝑦

∗

2

≤
𝑥𝑘 − 𝑥

∗

2

+
𝑦𝑘 − 𝑦

∗

2

− (1 − 𝜃
2
)

× (
𝑢𝑘 − 𝑥𝑘



2

+
V𝑘 − 𝑦𝑘



2

)

− 2𝛾
𝑘

𝐴𝑢𝑘 − 𝐵V𝑘


2

.

(29)

Consequently, the sequence Γ
𝑘
(𝑥
∗
, 𝑦
∗
) := ‖𝑥

𝑘
− 𝑥
∗
‖
2
+

‖𝑦
𝑘
− 𝑦
∗
‖
2 is decreasing and lower bounded by 0 and thus

converges to some finite limit, say, 𝑙(𝑥∗, 𝑦∗). Moreover, (𝑥
𝑘
)

and (𝑦
𝑘
) are bounded. This implies that

lim
𝑘→∞

𝑢𝑘 − 𝑥𝑘
 = 0, lim

𝑘→∞

V𝑘 − 𝑦𝑘
 = 0,

lim
𝑘→∞

𝐴𝑢𝑘 − 𝐵V𝑘
 = 0.

(30)

From (30), we get

lim
𝑘→∞

𝐴𝑥𝑘 − 𝐵𝑦𝑘
 = 0. (31)

Let (𝑥, 𝑦) ∈ 𝜔
𝑤
(𝑥
𝑘
, 𝑦
𝑘
); then there exist the two sub-

sequences (𝑥
𝑘
𝑙

) and (𝑦
𝑘
𝑙

) of (𝑥
𝑘
) and (𝑦

𝑘
) which converge

weakly to 𝑥 and 𝑦, respectively. We will show that (𝑥, 𝑦) is a
solution of the SEP (1).Theweak convergence of (𝐴𝑥

𝑘
𝑙

−𝐵𝑦
𝑘
𝑙

)

to 𝐴𝑥 − 𝐵𝑦 and lower semicontinuity of the squared norm
imply that

𝐴𝑥 − 𝐵𝑦
 ≤ lim inf
𝑙→∞


𝐴𝑥
𝑘
𝑙

− 𝐵𝑦
𝑘
𝑙


= 0; (32)

that is, 𝐴𝑥 = 𝐵𝑦.
By noting that the two equalities in (16) can be rewritten

as
𝑥
𝑘
𝑙

− 𝑢
𝑘
𝑙

𝛾
𝑘
𝑙

− 𝐴
∗
(𝐴𝑢
𝑘
𝑙

− 𝐵V
𝑘
𝑙

) ∈ 𝑁
𝐶
(𝑢
𝑘
𝑙

) ,

𝑦
𝑘
𝑙

− V
𝑘
𝑙

𝛾
𝑘
𝑙

− 𝐵
∗
(𝐵V
𝑘
𝑙

− 𝐴𝑢
𝑘
𝑙

) ∈ 𝑁
𝑄
(V
𝑘
𝑙

) ,

(33)

and that the graphs of the maximal monotone operators,𝑁
𝐶

and𝑁
𝑄
, areweakly-strongly closed and by passing to the limit

in the last inclusions, we obtain, from (30), that
𝑥 ∈ 𝐶, 𝑦 ∈ 𝑄. (34)

Hence (𝑥, 𝑦) ∈ Γ.
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To show the uniqueness of the weak cluster points, wewill
use the same strick as in the celebratedOpial Lemma. Indeed,
let (𝑥, 𝑦) be other weak cluster point of (𝑥

𝑘
, 𝑦
𝑘
). By passing to

the limit in the relation

Γ
𝑘
(𝑥, 𝑦) = Γ

𝑘
(𝑥, 𝑦) + ‖𝑥 − 𝑥‖

2
+
𝑦 − 𝑦



2

+ 2⟨𝑥
𝑘
− 𝑥, 𝑥 − 𝑥⟩ + 2⟨𝑦

𝑘
− 𝑦, 𝑦 − 𝑦⟩,

(35)

we obtain

𝑙 (𝑥, 𝑦) = 𝑙 (𝑥, 𝑦) + ‖𝑥 − 𝑥‖
2
+
𝑦 − 𝑦



2

. (36)

Reversing the role of (𝑥, 𝑦) and (𝑥, 𝑦), we also have

𝑙 (𝑥, 𝑦) = 𝑙 (𝑥, 𝑦) + ‖𝑥 − 𝑥‖
2
+
𝑦 − 𝑦



2

. (37)

By adding the two last equalities, we obtain

‖𝑥 − 𝑥‖
2
+
𝑦 − 𝑦



2

= 0. (38)

Hence (𝑥, 𝑦) = (𝑥, 𝑦); this implies that the whole sequence
(𝑥
𝑘
, 𝑦
𝑘
) weakly converges to a solution of the SEP (1), which

completes the proof.

4. A Relaxed Self-Adaptive
Projection Algorithm

InAlgorithm 7,wemust calculate the orthogonal projections,
𝑃
𝐶

and 𝑃
𝑄
, many times even in one iteration step, so

they should be assumed to be easily calculated; however,
sometimes it is difficult or even impossible to compute them.
In this case, we always turn to relaxed methods [13, 14],
which were introduced by Fukushima [15] and are more
easily implemented. For solving the SEP (1), Moudafi [16]
followed the ideas of Fukushima [15] and introduced a relaxed
alternating 𝐶𝑄 algorithm which depends on the norms ‖𝐴‖
and ‖𝐵‖. In this section, we propose a relaxed scheme for the
self-adaptive Algorithm 7.

Assume that the convex sets 𝐶 and 𝑄 are given by

𝐶 = {𝑥 ∈ 𝐻
1
: 𝑐 (𝑥) ≤ 0} , 𝑄 = {𝑦 ∈ 𝐻

2
: 𝑞 (𝑦) ≤ 0} ,

(39)

where 𝑐 : 𝐻
1
→ R and 𝑞 : 𝐻

2
→ R are convex functions

which are subdifferentiable on 𝐶 and 𝑄, respectively, and we
assume that their subdifferentials are bounded on bounded
sets.

In the 𝑘th iteration, let (𝐶
𝑘
) and (𝑄

𝑘
) be two sequences of

closed convex sets defined by

𝐶
𝑘
= {𝑥 ∈ 𝐻

1
: 𝑐 (𝑥
𝑘
) + ⟨𝜉

𝑘
, 𝑥 − 𝑥

𝑘
⟩ ≤ 0} , (40)

where 𝜉
𝑘
∈ 𝜕𝑐(𝑥

𝑘
) and

𝑄
𝑘
= {𝑦 ∈ 𝐻

2
: 𝑞 (𝑦
𝑘
) + ⟨𝜂

𝑘
, 𝑦 − 𝑦

𝑘
⟩ ≤ 0} , (41)

where 𝜂
𝑘
∈ 𝜕𝑞(𝑦

𝑘
).

It is easy to see that 𝐶
𝑘
⊃ 𝐶 and 𝑄

𝑘
⊃ 𝑄 for every 𝑘 ≥ 0.

Algorithm 10. Given constants 𝜎
0
> 0, 𝛽 ∈ (0, 1), 𝜃 ∈

(0, 1), and 𝜌 ∈ (0, 1), let 𝑥
0
∈ 𝐻
1
and 𝑦

0
∈ 𝐻
2
be arbitrary.

For 𝑘 = 0, 1, 2, . . ., compute

𝑢
𝑘
= 𝑃
𝐶
𝑘

(𝑥
𝑘
− 𝜏
𝑘
𝐹 (𝑥
𝑘
, 𝑦
𝑘
)) ,

V
𝑘
= 𝑃
𝑄
𝑘

(𝑦
𝑘
− 𝜏
𝑘
𝐺 (𝑥
𝑘
, 𝑦
𝑘
)) ,

(42)

where 𝛾
𝑘
is chosen to be the largest 𝛾 ∈ {𝜎

𝑘
, 𝜎
𝑘
𝛽, 𝜎
𝑘
𝛽
2
, . . .}

satisfying
𝐹(𝑥𝑘, 𝑦𝑘) − 𝐹(𝑢𝑘, V𝑘)



2

+
𝐺(𝑥𝑘, 𝑦𝑘) − 𝐺(𝑢𝑘, V𝑘)



2

≤ 𝜃
2

𝑥𝑘 − 𝑢𝑘


2

+
𝑦𝑘 − V

𝑘



2

𝛾2
.

(43)

Construct the half-spaces 𝑋
𝑘
and 𝑌

𝑘
the bounding hyper-

planes of which support 𝐶
𝑘
and 𝑄

𝑘
at 𝑢
𝑘
and V
𝑘
, respectively,

𝑋
𝑘
:= {𝑢 ∈ 𝐻

1
| ⟨𝑥
𝑘
− 𝜏
𝑘
𝐹 (𝑥
𝑘
, 𝑦
𝑘
) − 𝑢
𝑘
, 𝑢 − 𝑢

𝑘
⟩ ≤ 0} ,

𝑌
𝑘
:= {V ∈ 𝐻

2
| ⟨𝑦
𝑘
− 𝜏
𝑘
𝐺 (𝑥
𝑘
, 𝑦
𝑘
) − V
𝑘
, V − V

𝑘
⟩ ≤ 0} .

(44)

Set

𝑥
𝑘+1

= 𝑃
𝑋
(𝑢
𝑘
− 𝛾
𝑘
(𝐹 (𝑢
𝑘
, V
𝑘
) − 𝐹 (𝑥

𝑘
, 𝑦
𝑘
))) ,

𝑦
𝑘+1

= 𝑃
𝑌
(V
𝑘
− 𝛾
𝑘
(𝐺 (𝑢
𝑘
, V
𝑘
) − 𝐺 (𝑥

𝑘
, 𝑦
𝑘
))) .

(45)

If
𝐹(𝑥𝑘+1, 𝑦𝑘+1) − 𝐹(𝑥𝑘, 𝑦𝑘)



2

+
𝐺(𝑥𝑘+1, 𝑦𝑘+1) − 𝐺(𝑥𝑘, 𝑦𝑘)



2

≤ 𝜌
2

𝑥𝑘+1 − 𝑥𝑘


2

+
𝑦𝑘+1 − 𝑦𝑘



2

𝛾
2

𝑘

,

(46)

then set 𝜎
𝑘
= 𝜎
0
; otherwise, set 𝜎

𝑘
= 𝛾
𝑘
.

Following the proof of Lemma 8, we easily obtain the
following.

Lemma 11. The search rule (43) is well defined. Besides 𝛾 ≤
𝛾
𝑘
≤ 𝜎
0
, where

𝛾 = min
{{

{{

{

𝜎
0
,

𝛽𝜃

‖𝐴‖√2 (‖𝐴‖
2
+ ‖𝐵‖
2
)

,

𝛽𝜃

‖𝐵‖√2 (‖𝐴‖
2
+ ‖𝐵‖
2
)

}}

}}

}

.

(47)

Theorem 12. Let (𝑥
𝑘
, 𝑦
𝑘
) be the sequence generated by

Algorithm 10 and let 𝑋 and 𝑌 be nonempty closed convex sets
in𝐻
1
and𝐻

2
with simple structures, respectively. If (𝑋×𝑌)∩Γ

is nonempty, then (𝑥
𝑘
, 𝑦
𝑘
) converges weakly to a solution of the

SEP (1).
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Proof. Let (𝑥∗, 𝑦∗) ∈ Γ; that is, 𝑥∗ ∈ 𝐶, 𝑦∗ ∈ 𝑄, and 𝐴𝑥∗ =
𝐵𝑦
∗. Following the similar proof of Theorem 9, we obtain

𝑥𝑘+1 − 𝑥
∗

2

+
𝑦𝑘+1 − 𝑦

∗

2

≤
𝑥𝑘 − 𝑥

∗

2

+
𝑦𝑘 − 𝑦

∗

2

− (1 − 𝜃
2
) (
𝑢𝑘 − 𝑥𝑘



2

+
V𝑘 − 𝑦𝑘



2

)

− 2𝛾
𝑘

𝐴𝑢𝑘 − 𝐵V𝑘


2

.

(48)

Let Γ
𝑘
(𝑥
∗
, 𝑦
∗
) := ‖𝑥

𝑘
− 𝑥
∗
‖
2
+ ‖𝑦
𝑘
− 𝑦
∗
‖
2. Then the sequence

Γ
𝑘
(𝑥
∗
, 𝑦
∗
) is decreasing and lower bounded by 0 for that 𝜇 ∈

(0, 1) and thus converges to some finite limit, say, 𝑙(𝑥∗, 𝑦∗).
Moreover, (𝑥

𝑘
) and (𝑦

𝑘
) are bounded. This implies that

lim
𝑘→∞

𝑢𝑘 − 𝑥𝑘
 = 0, lim

𝑘→∞

V𝑘 − 𝑦𝑘
 = 0, (49)

lim
𝑘→∞

𝐴𝑢𝑘 − 𝐵V𝑘
 = 0. (50)

Therefore, we have

lim
𝑘→∞

𝐴𝑥𝑘 − 𝐵𝑦𝑘
 = 0. (51)

Next we show that the sequence (𝑥
𝑘
, 𝑦
𝑘
) generated by

Algorithm 10 weakly converges to a solution of the SEP (1).
Let (𝑥, 𝑦) ∈ 𝜔

𝑤
(𝑥
𝑘
, 𝑦
𝑘
); then there exist the two subsequences

(𝑥
𝑘
𝑙

) and (𝑦
𝑘
𝑙

) of (𝑥
𝑘
) and (𝑦

𝑘
) which converge weakly to 𝑥

and 𝑦, respectively. The weak convergence of (𝐴𝑥
𝑘
𝑙

− 𝐵𝑦
𝑘
𝑙

) to
𝐴𝑥 − 𝐵𝑦 and the lower semicontinuity of the squared norm
imply that

𝐴𝑥 − 𝐵𝑦
 ≤ lim inf
𝑙→∞


𝐴𝑥
𝑘
𝑙

− 𝐵𝑦
𝑘
𝑙


= 0; (52)

that is, 𝐴𝑥 = 𝐵𝑦.
Since 𝑢

𝑘
𝑙

∈ 𝐶
𝑘
𝑙

, we have

𝑐 (𝑥
𝑘
𝑙

) + ⟨𝜉
𝑘
, 𝑢
𝑘
𝑙

− 𝑥
𝑘
𝑙

⟩ ≤ 0. (53)

Thus

𝑐 (𝑥
𝑘
𝑙

) ≤ −⟨𝜉
𝑘
𝑙

, 𝑢
𝑘
𝑙

− 𝑥
𝑘
𝑙

⟩ ≤ 𝜉

𝑢
𝑘
𝑙

− 𝑥
𝑘
𝑙


, (54)

where 𝜉 satisfies ‖𝜉
𝑘
‖ ≤ 𝜉 for all 𝑘 ∈ N. The lower

semicontinuity of 𝑐 and the first formula of (49) lead to

𝑐 (𝑥) ≤ lim inf
𝑙→∞

𝑐 (𝑥
𝑘
𝑙

) ≤ 0, (55)

and therefore 𝑥 ∈ 𝐶.
Likewise, since V

𝑘
𝑙

∈ 𝑄
𝑘
𝑙

, we have

𝑞 (𝑦
𝑘
𝑙

) + ⟨𝜂
𝑘
𝑙

, V
𝑘
𝑙

− 𝑦
𝑘
𝑙

⟩ ≤ 0. (56)

Thus

𝑞 (𝑦
𝑘
𝑙

) ≤ −⟨𝜂
𝑘
𝑙

, V
𝑘
𝑙

− 𝑦
𝑘
𝑙

⟩ ≤ 𝜂

V
𝑘
𝑙

− 𝑦
𝑘
𝑙


, (57)

where 𝜂 satisfies ‖𝜂
𝑘
‖ ≤ 𝜂 for all 𝑘 ∈ N. Again, the lower

semicontinuity of 𝑞 and the second formula of (49) lead to

𝑞 (𝑦) ≤ lim inf
𝑙→∞

𝑞 (𝑦
𝑘
𝑙

) ≤ 0, (58)

and therefore 𝑦 ∈ 𝑄. Hence (𝑥, 𝑦) ∈ Γ.

Following the same argument ofTheorem 9, we can show
the uniqueness of theweak cluster points and hence thewhole
sequence (𝑥

𝑘
, 𝑦
𝑘
) weakly converges to a solution of the SEP

(1), which completes the proof.
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