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In this paper, a plant disease model with continuous cultural control strategy and time delay is formulated. Then, how the time
delay affects the overall disease progression and, mathematically, how the delay affects the dynamics of the model are investigated.
By analyzing the transendental characteristic equation, stability conditions related to the time delay are derived for the disease-
free equilibrium. Specially, when 𝑅

0
= 1, the Jacobi matrix of the model at the disease-free equilibrium always has a simple zero

eigenvalue for all 𝜏 ≥ 0. The center manifold reduction and the normal form theory are used to discuss the stability and the steady-
state bifurcations of the model near the nonhyperbolic disease-free equilibrium. Then, the sensitivity analysis of the threshold
parameter 𝑅

0
and the positive equilibrium 𝐸

∗ is carried out in order to determine the relative importance of different factors
responsible for disease transmission. Finally, numerical simulations are employed to support the qualitative results.

1. Introduction

Viral disease is a key constraint on the production of staple
food crop in the lesser developed countries. Diseases caused
by plant viruses in cassava (Manihot esculenta), sweet potato
(Ipomoea batatas) and plantain (musa spp.) are among the
main constraints on sustainable production of these vegeta-
tively propagated staple food crops, see Rybicki and Pietersen
[1], Dahal et al. [2], Gibson and Aritua [3], and Thresh and
Cooter [4]. Furthermore, new viral strains frequently emerge,
some of which bring devastating consequences, such as the
current pandemic of the virus causing cassava mosaic disease
(CMD) in Africa, see Gibson et al. [5]. Governments and
farmers have been evolving practices for combatting with the
plagues suffered by crops. The growing understanding of the
interactions between pathogen and host has enabled us to
develop a wide array of measures for the control of specific
plant diseases. Large investments are underway to alleviate
poverty and malnutrition by developing new or more effec-
tive control strategies, which include plant breeding for resis-
tance to the virus, control of vectors as well as crop sanitation

through removal of diseased plants, and improved selection
of planting material for these vegetatively propagated crops.
Such experiences have led to the development of integrated
management concepts for virus diseases that combine avail-
able host resistance, cultural, chemical, and biological control
measures. Examples of how epidemiological information can
be used to develop effective integrated disease management
(IDM) strategies for diverse situations have been described
in [6–9]. IDM involves the selection and application of a wide
range of control strategies thatminimize losses andmaximize
returns. A cultural control strategy including replanting or
roguing diseased plants is a widely accepted treatment for
plant epidemics which involves periodic inspections followed
by removal of the infected plants.

Mathematical models of plant-virus epidemics were
developed to provide detailed explanation on how to
describe, analyze, and predict epidemics of plant disease
for the ultimate purposes of developing and testing control
strategies and tactics for crop protection, see van den Bosch
et al. [10], Chan and Jeger [11], Fishman et al. [12], and the
references cited therein.A simplemodel for plant diseasewith
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a continuous cultural control strategy, such as replanting and
roguing or removing, is as follows:

d𝑆 (𝑡)
d𝑡

= 𝜎𝜙 − 𝛽𝑆 (𝑡) 𝐼 (𝑡) − 𝜂𝑆 (𝑡) ,

d𝑆 (𝑡)
d𝑡

= 𝜎 (1 − 𝜙) + 𝛽𝑆 (𝑡) 𝐼 (𝑡) − (𝜂 + 𝜔) 𝐼 (𝑡) ,

(1)

where 𝑆 and 𝐼 denote the respective number of the susceptible
and infected plants and 𝛽 is the transmission rate. Crop is
planted from in vitro propagated virus free material, from
cuttings taken from a previous crop, or from a combination
of these methods. New plants enter the system by continual
replanting at rate 𝜎 with a proportion 𝜙 for the susceptible
plants and 1 − 𝜙 for the infected ones. Removal occurs
for sanitation at rate 𝜔 or for death at rate 𝜂, and 1/𝜂

denotes either harvest time or the end of reproductive
lifetime of plants. Neglecting the biological meaning of the
parameters, (1) can be seen as an SI human disease model
with immigration of the infective individuals and its extended
forms have been extensively studied, for example, van den
Bosch et al. [10], Brauer and van den Driessche [13], Tang
et al. [14], and the references cited therein.

In [12], Fishman et al. divided the time axis (0,∞) into
equal periods of length 𝑇 and developed a model with
periodic control strategy as follows:

d𝑥
𝑖
(𝑡)

d𝑡
= 𝐴𝑥
𝑖
(𝑡) (1 − 𝑥

𝑖
(𝑡)) , 0 ≤ 𝑡 ≤ 𝑇, (2)

where 𝐴 is the infection rate and 𝑥
𝑖
(𝑡) is the ratio between

the number 𝑛
𝑖
(𝑡) of the infected trees at instant 𝑡 of period

𝑖 and the total number 𝑁
𝑖
of trees at the beginning of the

period. Equation (2) characterizes the temporal spread of an
epidemic in a closed plant population with periodic removal
of infected plants and has an application to the spread of citrus
tristeza virus disease. Economic evaluations and comparisons
between two policies, eradication or no eradication, were
given, and further simulations of the model and sensitivity
analysis for a wide range of parameters were presented.
They concluded that the discovery-eradication program is
economically justified and superior to allowing the disease
to progress unchecked.The results were helpful in evaluating
policies of controlling the disease, and (2) could be modified
to simulate other plant epidemics with periodic treatments.

Based on [12], Tang et al. in [14] proposed periodic pulse
replanting and roguing strategies and changed (1) into the
following:

d𝑆 (𝑡)
d𝑡

= −𝛽𝑆 (𝑡) 𝐼 (𝑡) − 𝜂𝑆 (𝑡) , 𝑡 ̸= 𝑛𝑇,

d𝐼 (𝑡)
d𝑡

= 𝛽𝑆 (𝑡) 𝐼 (𝑡) − 𝜂𝐼 (𝑡) , 𝑡 ̸= 𝑛𝑇,

𝑆 (𝑛𝑇
+
) = 𝑆 (𝑛𝑇) + 𝜎𝜙, 𝑡 = 𝑛𝑇,

𝐼 (𝑛𝑇
+
) = (1 − 𝜔) 𝐼 (𝑛𝑇) + 𝜎 (1 − 𝜙) 𝜙, 𝑡 = 𝑛𝑇,

(3)

where 𝑛 = 1, 2, . . ., and 𝑇 is a fixed positive constant and
denotes the period of the impulsive effect. The sufficient

conditions under which the infected plant free periodic
solution with fixed moments is globally stable were obtained.

It can be seen that the reversion of the infected plants
is not considered in the above models. In [10], to study the
effect of the reversion of infected plants on the transmission of
disease, van den Bosch et al. constructed the followingmodel:

d𝑆 (𝑡)
d𝑡

= 𝜎𝜙 + 𝜎 (1 − 𝜙)
𝑟 (1 − 𝑝) 𝐼 (𝑡) + 𝑆 (𝑡)

(1 − 𝑝) 𝐼 (𝑡) + 𝑆 (𝑡)

− 𝛽𝑆 (𝑡) 𝐼 (𝑡) − 𝜂𝑆 (𝑡) ,

d𝐼 (𝑡)
d𝑡

= 𝜎 (1 − 𝜙)
(1 − 𝑟) (1 − 𝑝) 𝐼 (𝑡)

(1 − 𝑝) 𝐼 (𝑡) + 𝑆 (𝑡)
+ 𝛽𝑆 (𝑡) 𝐼 (𝑡)

− (𝜂 + 𝜔) 𝐼 (𝑡) .

(4)

Some cuttings from infected plants may be healthy due to
reversion with probability 𝑟. Cuttings are selected visually or
using diagnostic methods and discarded with probability 𝑝.
They found a threshold parameter 𝑅

0
and proved that (4)

owns a unique positive equilibrium when 𝑅
0
> 1, and its

stability was numerically checked. They have shown that the
development of new and improved disease control methods
for viral diseases of vegetatively propagated staple food
crops ought to take evolutionary responses of the virus into
consideration. Not doing so leads to a risk of failure, which
can result in considerable economic losses and increased
poverty. Specifically in vitro propagation, diagnostics, and
breeding methods carry a risk of failure due to the selection
for virus strains that build up a high within-plant virus titre.
For vegetatively propagated crops, sanitation by roguing has a
low risk of failure owing to its combination of selecting for low
virus titre strains as well as increasing healthy crop density.

Latent infection of plants by pathogens has been recog-
nized for many years and it is often considered one of the
highest levels of parasitism, since the host and the parasite
coexist with minimal damage to the host, see Sinclair [15].
Latent infection is important in the epidemiology, the control
of the plant diseases, and also in breeding for resistance
or tolerance to a pathogen; see Chan and Jeger [11]. An
understanding of latent infection contributes to development
of effective control measures, as does an understanding
of penetration, colonization, disease expression, and yield
losses. Many plant diseases, such as chlorotic leaf distortion
of sweet potato, citrus black spot, Colletotrichum gloeospo-
rioides, Alternaria alternata, possess latent period, that is, the
time elapsed between exposure to a pathogenic organism and
when symptoms and signs are first apparent; see Ames et al.
[16], Miles et al. [17], Chakraborty [18], and Karaoglanidis
et al. [19]. The earliest plant disease model is due to van der
Plank [20], and in which he used a delay differential equation
to represent 𝐼(𝑡), the density of host tissue first infected at or
before time 𝑡,

d𝐼 (𝑡)
d𝑡

= 𝑅 (𝐼 (𝑡 − 𝑝) − 𝐼 (𝑡 − 𝑝 − 𝑖)) (1 − 𝐼 (𝑡)) . (5)

The latent period 𝑝 and the infectious period 𝑖 are constant,
and the parameter 𝑅 is the corrected basic rate of infection.
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The key threshold is the progeny-parent ratio, 𝑖𝑅 : a value >
1 indicates that the density of infected tissue will increase.
Unfortunately delay differential equations are difficult to
analyze; see Madden [21] and Murray [22] and, despite
widespread adoption of discrete time approximations to van
der Plank’s model in early simulations of plant disease, see
Teng [23], Zadoks [24] and a number of often subtle mathe-
matical analyses that followed by Jeger [25, 26], Kushalappa
and Ludwig [27], Waggoner [28], the model is now rarely
used in theoretical studies. However, it is so influential and
still of significant historical interest; see Cunniffe et al. [29].

To our knowledge, how the latent period affects the
dynamics of (4) remains unknown. Motivated by this, using
a time delay 𝜏 to denote the latent period of plant disease and
replacing the incidence rate of the disease by 𝛽𝑆 (𝑡−𝜏)𝐼(𝑡−𝜏)
we formulate the following model:

d𝑆 (𝑡)
d𝑡

= 𝜎𝜙 + 𝜎 (1 − 𝜙)
𝑟 (1 − 𝑝) 𝐼 (𝑡) + 𝑆 (𝑡)

(1 − 𝑝) 𝐼 (𝑡) + 𝑆 (𝑡)

− 𝛽𝑆 (𝑡 − 𝜏) 𝐼 (𝑡 − 𝜏) − 𝜂𝑆 (𝑡) ,

d𝐼 (𝑡)
d𝑡

= 𝜎 (1 − 𝜙)
(1 − 𝑟) (1 − 𝑝) 𝐼 (𝑡)

(1 − 𝑝) 𝐼 (𝑡) + 𝑆 (𝑡)
+ 𝛽𝑆 (𝑡 − 𝜏) 𝐼 (𝑡 − 𝜏)

− (𝜂 + 𝜔) 𝐼 (𝑡) .

(6)

The remainder of the paper is arranged as follows.
Section 2 discusses the stability of the disease-free equilib-
rium under the conditions of 𝑅

0
̸= 1, or 𝑅

0
= 1, 𝜏 = 0;

Section 3 computes the normal forms on the center manifold
and investigates the dynamical behaviors of system (6) near
the disease-free equilibrium when 𝑅

0
= 1, 𝜏 > 0; Section 4

is the sensitivity analysis of 𝑅
0
and the positive equilibrium

to all of the parameters in system (6); Section 5 performs

numerical simulations to illustrate the qualitative results;
Section 6 makes some conclusions.

2. Stability of the Disease-Free Equilibrium

Let (𝑆, 𝐼) be an equilibrium of system (6). Then, (𝑆, 𝐼) must
solve the following algebraic equations:

𝜎𝜙 + 𝜎 (1 − 𝜙)
𝑟 (1 − 𝑝) 𝐼 + 𝑆

(1 − 𝑝) 𝐼 + 𝑆
− 𝛽𝑆𝐼 − 𝜂𝑆 = 0,

𝜎 (1 − 𝜙)
(1 − 𝑟) (1 − 𝑝) 𝐼

(1 − 𝑝) 𝐼 + 𝑆
+ 𝛽𝑆𝐼 − (𝜂 + 𝜔) 𝐼 = 0.

(7)

For convenience, we introduce the following threshold
parameter:

𝑅
0
=
(1 − 𝜙) (1 − 𝑟) (1 − 𝑝) 𝜂

2
+ 𝛽𝜎

𝜂 (𝜂 + 𝜔)
. (8)

Theorem 1. If 𝑅
0
≤ 1, system (6) only has a disease-free

equilibrium 𝐸
0
and if 𝑅

0
> 1, system (6) has a unique

positive equilibrium 𝐸
∗ except for the disease-free equilibrium

𝐸
0
, where 𝐸

0
= (𝜎/𝜂, 0), 𝐸∗ = (𝑆

∗
, 𝐼
∗
), 𝑆∗ = (−𝑎

1
−

√𝑎
2

1
− 4𝑎
0
𝑎
2
)/2𝑎
2
, 𝐼∗ = (𝜎(1 − 𝑝)(1 − 𝑟)(1 − 𝜙) − 𝑆∗(𝜂 + 𝜔 −

𝛽𝑆
∗
))/(𝜂 +𝜔−𝛽𝑆

∗
)(1 −𝑝), 𝑎

0
= 𝜎(𝑝−1)(𝜙(𝑟 − 1) − 𝑟)(𝜂 +𝜔),

𝑎
1
= 𝜂
2
𝑝 − 𝛽𝜎 + 𝜂𝜔𝑝 + 𝛽𝜎𝑝 + 𝜔

2
+ 𝜂𝜔, and 𝑎

2
= −𝛽(𝜂𝑝 + 𝜔).

By the transformation 𝑥
1
(𝑡) = 𝑆(𝑡) − (𝜎/𝜂), 𝑥

2
(𝑡) = 𝐼(𝑡),

system (6) can be rewritten as the following equivalent form:

d𝑥 (𝑡)
d𝑡

= 𝑀𝑥 (𝑡) + 𝑁𝑥 (𝑡 − 𝜏) + 𝑓 (𝑥 (𝑡)) , (9)

where

𝑀 = (
−𝜂 − (1 − 𝜙) (𝑝 − 1) (𝑟 − 1) 𝜂

0 (1 − 𝜙) (1 − 𝑟) (1 − 𝑝) 𝜂 − (𝜂 + 𝜔)
) , 𝑁 = (

0 −
𝛽𝜎

𝜂

0
𝛽𝜎

𝜂

) , 𝑥 (𝑡) = (
𝑥
1
(𝑡)

𝑥
2
(𝑡)
) ,

𝑓 (𝑥
1
(𝑡) , 𝑥
2
(𝑡)) = (

−𝛽𝑥
1 (𝑡 − 𝜏) 𝑥2 (𝑡 − 𝜏) +

𝜂
2
(𝑟 − 1) (𝑝 − 1) (1 − 𝜙) 𝑥2 (𝑡) ((𝑝 − 1) 𝑥2 (𝑡) − 𝑥1 (𝑡))

𝜂 (𝑝 − 1) 𝑥
2
(𝑡) − 𝜂𝑥

1
(𝑡) − 𝜎

𝛽𝑥
1
(𝑡 − 𝜏) 𝑥

2
(𝑡 − 𝜏) −

𝜂
2
(𝑟 − 1) (𝑝 − 1) (1 − 𝜙) 𝑥

2
(𝑡) ((𝑝 − 1) 𝑥

2
(𝑡) − 𝑥

1
(𝑡))

𝜂 (𝑝 − 1) 𝑥
2 (𝑡) − 𝜂𝑥1 (𝑡) − 𝜎

).

(10)

It can be calculated that the characteristic equation of
system (9) at the origin owns the following form:

(𝜆 + 𝜂)(𝜆 − 𝜂 (1 − 𝜙) (1 − 𝑟) (1 − 𝑝) + 𝜂 + 𝜔 −
𝛽𝜎

𝜂
𝑒
−𝜆𝜏
)=0.

(11)
Then, neglecting the time delay 𝜏, we have the following.

Theorem 2. If 𝑅
0
> 1, the disease-free equilibrium 𝐸

0
is

unstable, while it is asymptotically stable if 𝑅
0
< 1.

Clearly, the origin is a nonhyperbolic equilibrium of
system (9) if 𝑅

0
= 1 and 𝜏 = 0. To discuss its stability, we

use the transformation as 𝑥
1
(𝑡) = 𝑢(𝑡) − ((𝜂 + 𝜔)/𝜂)V(𝑡),

𝑥
2
(𝑡) = V(𝑡). Then, system (9) is changed into
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d𝑢 (𝑡)
d𝑡

= −𝜂𝑢 (𝑡) + 𝑓
1
(𝑢 (𝑡) , V (𝑡)) ,

dV (𝑡)
d𝑡

= 𝑓
2 (𝑢 (𝑡) , V (𝑡)) ,

(12)

where

𝑓
1
(𝑢 (𝑡) , V (𝑡))

=
−𝜔V (𝑡)

𝜂𝜎 (𝜎 − (𝜂𝑝 + 𝜔) V (𝑡) + 𝜂𝑢 (𝑡))

× (𝜂𝜎 (2𝜂 (𝑟 + (1 − 𝑟) (𝜙 + 𝑝 (1 − 𝜙))) + 𝜔 − 𝜂) 𝑢 (𝑡)

+ 𝜎 (𝜂
2
(1 + (1 − 𝑟) (1 − 𝜙) (𝑝

2
+ 1)) + 𝜔

2
+ 2𝜔𝜂

× ((1 − 𝑟) (𝑝 (1 − 𝜙) + 𝜙) + 𝑟)) V (𝑡)

− 𝜂
2
(𝜂 ((1 − 𝑟) (𝑝 (1 − 𝜙) + 𝜙) + 𝑟) + 𝜔) 𝑢(𝑡)

2

+ 𝜂 (𝜂 (1 + 𝑝) + 2𝜔)

× (𝜂 ((𝑟 + 𝑝 (1 − 𝑟)) (1 − 𝜙) + 𝜙) + 𝜔) 𝑢 (𝑡) V (𝑡)

− (𝜂 + 𝜔) (𝜔 + 𝜂𝑝)

× (𝜂 ((𝑟 + 𝑝 (1 − 𝑟)) (1 − 𝜙) + 𝜙) + 𝜔) V(𝑡)2) ,

𝑓
2
(𝑢 (𝑡) , V (𝑡))

=
−V (𝑡)

𝜎 ((𝜂𝑝 + 𝜔) V (𝑡) − 𝜂𝑢 (𝑡) − 𝜎)

× (𝜎𝜂 (2𝜂 (𝜙 (1 − 𝑝) (1 − 𝑟) + 𝑝 (1 − 𝜙) + 𝑟)

−𝜂 + 𝜔) 𝑢 (𝑡)

+ 𝜎 (𝜔
2
+ 𝜂
2
((𝑝
2
(1 − 𝑟) + 𝑟) (1 − 𝜙) + 𝜙)

+ 2𝜂𝜔 ((1 − 𝜙) ⋅ (𝑝 (1 − 𝑟) + 𝑟) + 𝜙)) V (𝑡)

− 𝜂
2
(𝜂 ((𝑝 (1 − 𝜙) + 𝜙) (1 − 𝑟) + 𝑟) + 𝜔) 𝑢(𝑡)

2

+ 𝜂 (𝜂 (1 + 𝑝) + 2𝜔)

× (𝜂 ((1 − 𝜙) (𝑝 (1 − 𝑟) + 𝑟) + 𝜙) + 𝜔) 𝑢 (𝑡) V (𝑡)

− (𝜂 + 𝜔) (𝜔 + 𝜂𝑝)

× (𝜂 ((1 − 𝜙) (𝑝 (1 − 𝑟) + 𝑟) + 𝜙) + 𝜔) V(𝑡)2) .
(13)

By the existence theorem in the center manifold theory,
seeWiggins [30] for details, there exists a center manifold for
system (12), which can be locally expressed as follows:

𝑊
𝑐
(0) = {(𝑢, V) ∈ R

2
| 𝑢 = ℎ (V) , ‖V‖ < 𝛿,

ℎ (0) = 0,𝐷ℎ (0) = 0 | 𝛿 > 0} ,

(14)

where 𝛿 is sufficiently small, 𝐷ℎ is the derivative of ℎ with
respect to V.

Now, the first task is to compute the center manifold
𝑊
𝑐
(0). For the purpose, we assume ℎ(V) has the form

𝑢 = ℎ (V) = ℎ
2
V2 + ℎ

3
V3 + ℎ

4
V4 + ℎ

5
V5 + ⋅ ⋅ ⋅ , (15)

where ℎ
𝑖
, 𝑖 = 2, . . . , 5, are constants to be determined in the

following. By the invariance of𝑊𝑐(0) under the dynamics of
(12), ℎ(⋅) satisfies

𝐷ℎ ⋅ 𝑓
2
(ℎ, V) + 𝜂ℎ − 𝑓

1
(ℎ, V) = 0. (16)

Substituting (11) into (12), and then equating coefficients on
each power of V to zero, yields

ℎ
2
=

−𝜔

2𝜎𝜂2
(2𝜔𝜂 ((1 − 𝑟) (𝜙 (1 − 𝑝) + 𝑝) + 𝑟)

+𝜂
2
((1 − 𝜙) (𝑝

2
(1 − 𝑟) + 𝑟) + 𝜙) + 𝜔

2
) ,

ℎ
3
=

−𝜔

4𝜎2𝜂3
(2𝜙
2
(𝑟 − 1)

2
(𝑝 − 1)

2
(𝑝 + 1)

2
+ 2𝜙 (1 − 𝑟)

× (1 − 𝑝) (2𝑟 (1 − 𝑝) (1 + 𝑝)
2
+ 𝑝
2
⋅ (2𝑝 + 3))

− 2 (𝑟 (1 − 𝑝) (1 + 𝑝)
2

+ 𝑝 (𝑝
2
+ 𝑝 − 1) (𝑟𝑝 − 𝑝 − 𝑟)) 𝜂

4

+ (10𝜙
2
𝜔(1 − 𝑟)

2
⋅ (1 + 𝑝) (1 − 𝑝)

2
+ 𝜙 (1 − 𝑟)

× (1 − 𝑝) (20𝑝
2
+ 13𝑝 − 1 − 20𝑟 (1 − 𝑝

2
))

+ 𝜔 (10𝑝
3
(𝑟 − 1)

2
+ (1 − 𝑟) (10𝑟 + 3) 𝑝

2

+2 (1 − 𝑟) (5𝑟 − 2) 𝑝 + 𝑟 (10𝑟 − 1))) 𝜂
3

+ (12𝜙
2
𝜔
2
(1 − 𝑟)

2
⋅ (1 − 𝑝)

2
+ 𝜙𝜔
2

× (1 − 𝑟) (1 − 𝑝) (29𝑝 − 24𝑟𝑝 + 24𝑟 − 5)

+ 𝜔
2
((𝑟 − 1) (12𝑟 − 17) 𝑝

2
)

+ 24𝑟 (1 − 𝑟) 𝑝 + (3𝑟 + 2) (4𝑟 − 1)) 𝜂
2

+ (12𝜔
2
(1 − 𝑟) (1 − 𝑝) 𝜙

− 𝜔
3
(12 (1 − 𝑟) ⋅ (1 − 𝑝) − 11)) 𝜂 +3𝜔

4
) ,

ℎ
4
=

−1

2𝜎3𝜂
((2ℎ
2
𝑝
2
𝜎 ((1 − 𝑟) (1 − 𝜙) (1 − 𝑝) − 𝑝𝑟)

− (1 − 𝑟) (1 − 𝜙) (1 − 𝑝) 𝑝
3
𝜔) 𝜂
3

+ (6ℎ
2
𝜎𝑝𝜔 (1 − 𝑟) (1 − 𝑝) (1 − 𝜙)
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+ 2ℎ
2

2
𝜎
2
(1 − 2 (1 − 𝑟) (1 − 𝑝) (1 − 𝜙))

− 3ℎ
3
𝜎
2
⋅ ((1 − 𝜙) (𝑝

2
(1 − 𝑟) + 𝑟) + 𝑟)

− 3𝑝
2
𝜔
2
(1 − 𝑟) (1 − 𝜙) (1 − 𝑝)) 𝜂

2

− (ℎ
3
𝜎
2
𝜔 (8 (1 − 𝑟) ⋅ (1 − 𝑝) (1 − 𝜙) − 7)

− 4ℎ
2
𝜎𝜔
2
(1 − 𝑟) (1 − 𝑝) (1 − 𝜙)

+2ℎ
2

2
𝜎
2
𝜔
2
− 3𝑝𝜔

3
(1 − 𝑟) ⋅ (1 − 𝑝) (1 − 𝜙)) 𝜂

−4ℎ
3
𝜎
2
𝜔
2
− (1 − 𝑟) (1 − 𝑟) (1 − 𝜙)) .

(17)

On substituting (18) into the second equation of system
(12), we obtain the following equation on the center manifold
𝑊
𝑐
(0):

dV (𝑡)
d𝑡

= 𝑑
2
V(𝑡)2 + 𝑑

3
V(𝑡)3 + ⋅ ⋅ ⋅ , (18)

where

𝑑
2
=
−2

𝜎

× (((𝑝
2
− 1) (1 − 𝜙) (1 − 𝑟) − 1) 𝜂

2

+2𝜔 (1 − (1 − 𝑝) (1 − 𝑟) (1 − 𝜙)) 𝜂 + 𝜔
2
) ,

𝑑
3
=
−3

𝜂𝜎2
(2𝑝
2
(𝑟 − 1) (𝜙 − 1) (𝑝 − 1) 𝜂

4

+ 𝜔 (2𝜙
2
(𝑟 − 1)

2
(𝑝 − 1)

2
(𝑝 + 1) + 𝜙 (1 − 𝑝)

⋅ (4𝑟
2
(𝑝 − 1) (𝑝 + 1) − 𝑟 (8𝑝

2
+ 5𝑝 − 5)

+4𝑝
2
+ 5𝑝 − 1)

+ 𝑝 (2𝑝
2
+ 3𝑝 − 1) − 𝑟 ⋅ (4𝑝

2
+ 𝑝 − 6)

+2𝑟
2
(1 − 𝑝)

2
(1 + 𝑝)) 𝜂

3

+ 𝜔
2
(𝜙
2
(4(1 − 𝑟)

2
+ 𝑝 (𝑝 − 2)

+𝑝
2
𝑟 (𝑟 − 2) + 𝑝𝑟 (𝑝𝑟 + 4))

+ 𝜙 (1 − 𝑝)

× (9𝑝 + 1 − 𝑟 (17𝑝 − 7) − 8𝑟
2
(1 − 𝑝))

+ 5𝑝
2
− 2 + (1 − 𝑝) (1 + 9𝑝)

+4𝑟
2
(1 − 𝑝)

2
) 𝜂
2

+𝜔
3
(3 − 4 (1 − 𝑝) (1 − 𝑟) (1 − 𝜙)) 𝜂 + 𝜔

4
) .

(19)

Therefore, by using the center manifold theorem [30], we
have the following results.

Theorem 3. If 𝑅
0
= 1, the disease-free equilibrium 𝐸

0
is

unstable since 𝑑
2
< 0.

It can be seen that (11) always has a negative root −𝜂. To
investigate the stability of the disease-free equilibrium when
𝜏 > 0, we reduce (11) to the following

𝜆 + 𝑝
1
+ 𝑞
1
𝑒
−𝜆𝜏

= 0, (20)

where 𝑝
1
= 𝜂 + 𝜔 − 𝜂(1 − 𝜙)(1 − 𝑟)(1 − 𝑝), 𝑞

1
= −(𝛽𝜎/𝜂).

Suppose that𝜆 = 𝑖𝑦,𝑦 > 0 is a root of (20), then𝑦 satisfies
𝑝
1
+ 𝑞
1
cos (𝑦𝜏) = 0, 𝑦 − 𝑞

1
sin (𝑦𝜏) = 0. (21)

Eliminating the trigonometric functions yields

𝑦
2

𝑞
2

1

=
𝑞
2

1
− 𝑝
2

1

𝑞
2

1

. (22)

It can be computed that

𝑞
2

1
− 𝑝
2

1
= −

𝜂 + 𝜔

𝑞
2

1

((1 − 𝑅
0
)
2
+

2𝛽𝜎

𝜂 (𝜂 + 𝜔)
(1 − 𝑅

0
)) . (23)

Then (22) leads to a contradiction if 𝑅
0
< 1, and we have the

following results.

Theorem 4. If 𝑅
0
< 1, the disease-free equilibrium 𝐸

0
is

asymptotically stable for any 𝜏 > 0. If 𝑅
0
> 1 + (𝛽𝜎/𝜂(𝜂 + 𝜔)),

𝐸
0
is unstable for any 𝜏 > 0.

It can be seen that 𝑞2
1
− 𝑝
2

1
> 0 if 1 < 𝑅

0
< 1 + (𝛽𝜎/𝜂(𝜂 +

𝜔)), which means that (22) has a unique positive root 𝑦
0
=

√𝑞
2

1
− 𝑝
2

1
. That is, there is a single pair of purely imaginary

roots ±𝑖𝑦
0
of (20). Let 𝜏

𝑘
= (1/𝑦

0
)arccos(−𝑝1/𝑞1) + 2𝑘𝜋/𝑦

0
,

𝑘 = 1, 2, 3, . . ..

Theorem 5. If 1 < 𝑅
0
< 1 + (𝛽𝜎/𝜂(𝜂 + 𝜔)), the disease-free

equilibrium 𝐸
0
is unstable for any 0 < 𝜏 < 𝜏

0
.

Theorem 6. If 𝜏 = 𝜏
𝑘
and 1 < 𝑅

0
< 1 + (𝛽𝜎/𝜂(𝜂 + 𝜔)), system

(6) undergoes Hopf bifurcations at the disease-free equilibrium
𝐸
0
.

Proof. Differentiating (20) with respect to 𝜏 yields

(1 − 𝑞
1
𝜏𝑒
−𝜆𝜏
)
d𝜆
d𝜏

= 𝜆𝑞
1
𝑒
−𝜆𝜏
, (24)

which gives

(
d𝜆
d𝜏
)

−1

= −
𝜏

−𝜆
−

1

𝜆 (𝜆 + 𝑝
1
)
. (25)

When 𝜆 = ±𝑖𝑦
0
and 𝜏 = 𝜏

𝑘
, we obtain

(
dRe {𝜆}

d𝜏
)

−1󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜆=±𝑖𝑦0 ,𝜏=𝜏𝑘

= Re(
d𝜆
d𝜏
)

−1󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜆=±𝑖𝑦0 ,𝜏=𝜏𝑘

=
𝑦
2

0

𝑦
4

0
+ 𝑝
2

1
𝑦
2

0

> 0.

(26)

The transversality condition for Hopf bifurcations holds.
Then system (6) undergoes Hopf bifurcations at the disease-
free equilibrium 𝐸

0
when 𝜏 = 𝜏

𝑘
.
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3. Normal Forms on the Center Manifold for
a Simple Zero Eigenvalue

It can be obtained that zero is a simple eigenvalue of 𝑅
0
=

1 and 𝜏 ̸= 1/𝑞
1
. In this section, we refer the reader to Hale

and Lunel [31] for notation and general results on the
theory of retarded functional differential equations (RFDES).
To determine the dynamic properties of the disease-free
equilibrium 𝐸

0
with 𝑅

0
= 1, 𝜏 > 0, we have to compute

the normal forms on the center manifold.Themethod we use
is based on the center manifold reduction and normal form
theory; see Faria andMagalhaes [32, 33]. In the following, we
shall compute the normal form of model (6) associated with
the zero eigenvalue.

For convenience, we rescale the time by 𝑡 → 𝑡/𝜏 to
normalize the delay of system (9) and obtain

d𝑢
1
(𝑡)

d𝑡
= 𝜏 [ − 𝜂𝑢

1 (𝑡) − 𝜂 (1 − 𝜙) (𝑝 − 1) (𝑟 − 1) 𝑢2 (𝑡)

−
𝛽𝜎

𝜂
𝑢
2 (𝑡 − 1) − 𝛽𝑢1 (𝑡 − 1) 𝑢2 (𝑡 − 1)

+ (𝜂
2
(𝑟 − 1) (𝑝 − 1) (1 − 𝜙)

× (𝑢
2 (𝑡) (𝑝 − 1) − 𝑢1 (𝑡)) 𝑢2 (𝑡))

× (𝜂 ((𝑝 − 1) 𝑢
2 (𝑡) − 𝑢1 (𝑡)) − 𝜎)

−1
] ,

d𝑢
2 (𝑡)

d𝑡
= 𝜏 [ (𝜂 (1 − 𝜙) (1 − 𝑟) (1 − 𝑝) − (𝜂 + 𝜔)) 𝑢

2
(𝑡)

+
𝛽𝜎

𝜂
𝑢
2
(𝑡 − 1) + 𝛽𝑢

1
(𝑡 − 1) 𝑢

2
(𝑡 − 1)

− (𝜂
2
(1 − 𝜙) (1 − 𝑟) (1 − 𝑝)

× (𝑢
2
(𝑡) (𝑝 − 1) − 𝑢

1
(𝑡)) 𝑢
2
(𝑡))

×(𝜂 ((𝑝 − 1) 𝑢
2
(𝑡) − 𝑢

1
(𝑡)) − 𝜎)

−1
] .

(27)

LetC = C([−1, 0],R2) be the Banach space of continuous
functions from [−1, 0] into R2 with supremum norm. We
define 𝑧

𝑡
∈ C, as 𝑧

𝑡
(𝜃) = 𝑧(𝑡 + 𝜃), 𝜃 ∈ [−1, 0]. Using the

perturbation: of 𝛽 = 𝛽
0
+ 𝜖, where 𝛽

0
= (𝜂/𝜎)(𝜂 + 𝑤 − (1 −

𝜙)(1−𝑟)(1−𝑝)𝜂), system (27) can be written as the functional
differential equation

𝑧̇ (𝑡) = 𝐿 (𝜖) (𝑧
𝑡
) + 𝐹 (𝑧

𝑡
, 𝜖) , (28)

where 𝜖 ∈ 𝑉 is considered as a parameter, 𝑉 is a neighbor-
hood of zero in space of real numbers, 𝐿 : C × 𝑉 → R2 is
a parameterized family of bounded linear operators, and 𝐹 :

C × 𝑉 → R2 is a function with 𝐹(0, 𝜖) = 0, 𝜕𝐹(0, 𝜖)/𝜕𝑧 = 0
for all 𝜖 ∈ R, and they have the following respective forms:

𝐿 (𝜖) (𝜑) = 𝐿
0
𝜑 + 𝐿

1
(𝜖) 𝜑, 𝐹 (𝜑, 𝜖)

= 𝐹
2
(𝜑, 𝜖) + 𝐹

3
(𝜑, 𝜖) + h.o.t,

(29)

where h.o.t stands for the higher-order terms, 𝜑 = (𝜑
1
, 𝜑
2
)
𝑇,

and

𝐹
2
(𝜑, 𝜖) = 𝜏(

𝜂
2

𝜎
(𝑟 − 1) (𝑝 − 1) (1 − 𝜙) ((𝑝 − 1) 𝜑

2

2
(0) − 𝜑

1
(0) 𝜑
2
(0)) − 𝛽

0
𝜑
1
(−1) 𝜑

2
(−1)

𝜂
2

𝜎
(1 − 𝑟) (1 − 𝑝) (𝜙 − 1) ((𝑝 − 1) 𝜑

2

2
(0) − 𝜑1 (0) 𝜑2 (0)) + 𝛽0𝜑1 (−1) 𝜑2 (−1)

) ,

𝐹
3
(𝜑, 𝜖) = 𝜏

(
(

(

−𝜖
0
𝜑
1
(−1) 𝜑

2
(−1) +

𝜂
3

𝜎2
(𝑟 − 1) (𝑝 − 1) (1 − 𝜙) 𝜑

2
(0)

⋅ (𝜑
1
(0) − (𝑝 − 1) 𝜑

2
(0)) ((𝑝 − 1) 𝜑

2
(0) − 𝜑

1
(0))

𝜖
0
𝜑
1
(−1) 𝜑

2
(−1) +

𝜂
3

𝜎2
(𝑟 − 1) (𝑝 − 1) (𝜙 − 1) 𝜑

2
(0)

⋅ (𝜑
1
(0) − (𝑝 − 1) 𝜑

2
(0)) ((𝑝 − 1) 𝜑

2
(0) − 𝜑

1
(0))

)
)

)

,

𝐿
0
𝜑 = 𝜏

(
(
(

(

−𝜂(1 − 𝜙) (1 − 𝑝) (𝑟 − 1) 𝜑
2
(0)

−
𝛽
0
𝜎

𝜂
𝜑
2 (−1) − 𝜂𝜑1 (0)

(𝜂 (−𝜙) (1 − 𝑟) (1 − 𝑝) − 𝜂 − 𝜔)

𝜑
2
(0) +

𝛽
0
𝜎

𝜂
𝜑
2
(−1)

)
)
)

)

, 𝐿
1
(𝜖) 𝜑 = 𝜏(

−
𝜎

𝜂
𝜖𝜑
2 (−1)

𝜎

𝜂
𝜖𝜑
2 (−1)

) .

(30)

From the Riesz representation theorem the linear map 𝐿
can be expressed in integral form as follows: 𝐿 (𝜖) (𝜑) = ∫

0

−1

d𝜂
𝜖 (𝜃) 𝜑 (𝜃) , (31)
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where 𝜂
𝜖
(⋅) is a bounded variation function on [−1, 0] and can

be defined as

𝜂
𝜖
(𝜃) = 𝜏𝑀𝛿 (𝜃) + 𝜏𝑁 (𝜖) 𝛿 (𝜃 + 1) , (32)

𝛿(⋅) is the Dirac delta function, and𝑁(𝜖) = ( 0 −((𝛽0+𝜖)𝜎/𝜂)
0 (𝛽0+𝜖)𝜎/𝜂

).
LetR2∗ be the 2-dimensional vector space of row vectors

and denote C∗ = C([−1, 0],R2∗). We define the adjoint
bilinear form onC∗ ×C as follows:
⟨𝜓 (𝑠) , 𝜑 (𝜃)⟩ = 𝜓 (0) 𝜑 (0)

− ∫

0

−1

∫

𝜃

0

𝜓 (𝜉 − 𝜃) d𝜂
𝜖
(𝜃) 𝜑 (𝜉) d𝜉,

(33)

where 𝜓 = (𝜓
1
, 𝜓
2
) ∈ C∗ and 𝜑 = (𝜑

1
, 𝜑
2
)
𝑇
∈ C.

Let 𝐴(𝜖) be the infinitesimal generator of the flow for
the linear system 𝑧̇(𝑡) = 𝐿(𝜖)𝑧

𝑡
, with spectrum 𝜎[𝐴(𝜖)].

The adjoint operator 𝐴∗(𝜖) is defined as the infinitesimal
generator for the solution operator of the adjoint equation in
C∗

𝑤̇ (𝑡) = −∫

0

−1

𝑤 (𝑡 − 𝜃) d𝜂𝜖 (𝜃) . (34)

It is well known that the eigenvalues of 𝐴(𝜖) with zero
real parts play an important role in the bifurcation theory
of RFDES. Let 𝐴

0
= 𝐴(0) and denote all of its singular

eigenvalues by the set Λ
0
; that is,

Λ
0
= {𝜆 ∈ 𝜎 (𝐴

0
) | Re𝜆 = 0} . (35)

According to the discussion in Section 2, we have Λ
0
= {0}.

Using the formal adjoint theory for FDEs in Hale and
Lunel [31], the phase space C can be decomposed by Λ

0
as

C = 𝑃 ⊕ 𝑄, where 𝑃 is the generalized eigenspace associated
with the eigenvalues in Λ

0
, 𝑄 = {𝜑 ∈ C | ⟨𝜓, 𝜑⟩ =

0 for all 𝜓 ∈ 𝑃
∗
}, and the dual space 𝑃∗ is the generalized

eigenspace for 𝐴∗(0) associated with the eigenvalues in Λ
0
.

In particular, we consider bases for 𝑃 and 𝑃∗ denoted by Φ
andΨ, respectively, and satisfying ⟨Ψ(𝑠), Φ(𝜃)⟩ = 1.Then, we
can choose Φ and Ψ as follows:

Φ (𝜃) = (𝜂 + 𝜔, −𝜂)
𝑇
, −1 ≤ 𝜃 ≤ 0,

Ψ (𝑠) = (0, 𝑘) , 0 ≤ 𝑠 ≤ 1,

where 𝑘 = − 1

𝜂 + 𝛽
0
𝜎𝜏
.

(36)

Let 𝐵 = 0. Then, the following equations satisfy
simultaneously

Φ̇ = Φ𝐵, Ψ̇ = −𝐵Ψ. (37)

As shown in Faria andMagalhaes [32, 33], an appropriate
phase space for considering normal forms of (28) is the
Banach space BC of functions from [−1, 0] intoR2 which are
uniformly continuous on [−1, 0)with a jump discontinuity at
0. Then, the elements of BC have the form 𝜑 + 𝑋

0
𝜌, where

𝜑 ∈ C, 𝜌 ∈ R2, and

𝑋
0
(𝜃) = {

𝐼, 𝜃 = 0,

0, −1 ≤ 𝜃 < 0,
(38)

so thatBC is identifiedwithC×R2 with the norm |𝜑+𝑋
0
𝜌| =

|𝜑|
𝐶
+ |𝜌|R2 .
Let 𝜋 : BC → 𝑃 denote the projection

𝜋 (𝜑 + 𝑋
0
𝜌) = Φ (⟨Ψ, 𝜑⟩ + Ψ (0) 𝜌) , 𝜑 ∈ C, 𝜌 ∈ R

2
,

(39)

and then the decomposition C = 𝑃 ⊕ 𝑄 yields a decom-
position of BC by Λ

0
as the topological direct sum BC =

𝑃⊕Ker 𝜋with the property𝑄 ⊂ Ker 𝜋, where𝑄 is an infinite-
dimensional complementary subspace of 𝑃 and C as shown
above. Now, we decompose 𝑧

𝑡
∈ C1 in (28) as 𝑧

𝑡
= Φ𝑥(𝑡) +𝑦,

where 𝑥(𝑡) ∈ R and 𝑦 ∈ 𝑄
1
= 𝑄 ∩ C1, and C1 is the subset

of C consisting of continuously differentiable functions. We
rewrite system (28) as

𝑧̇ (𝑡) = 𝐿
0
𝑧
𝑡
+ (𝐿 (𝜖) − 𝐿

0
) 𝑧
𝑡
+ 𝐹 (𝑧

𝑡
, 𝜖) , (40)

and then, under the composition 𝑧
𝑡
= Φ𝑥(𝑡) + 𝑦, system (28)

can be decomposed as a system of ODEs in R × Ker 𝜋 as
follows:

𝑥̇ = 𝐵𝑥 + Ψ (0) ((𝐿 (𝜖) − 𝐿
0
) (Φ𝑥 + 𝑦) + 𝐹 (Φ𝑥 + 𝑦, 𝜖)) ,

̇𝑦 = 𝐴
𝑄1
𝑦 + (𝐼 − 𝜋)𝑋0

× ((𝐿 (𝜖) − 𝐿
0
) (Φ𝑥 + 𝑦) + 𝐹 (Φ𝑥 + 𝑦, 𝜖)) ,

(41)

where𝐴
𝑄1
= ̇𝑦+𝑋

0
(𝐿(𝑦)− ̇𝑦(0)) is an operator from𝑄

1 into
Ker 𝜋.

Considering the Taylor expansion of the functions to the
right of (41), we have

𝑥̇ = 𝐵𝑥 + ∑

𝑗≥2

1

𝑗!
𝑓
1

𝑗
(𝑥, 𝑦, 𝜖) ,

̇𝑦 = 𝐴
𝑄1
𝑦 + ∑

𝑗≥2

1

𝑗!
𝑓
2

𝑗
(𝑥, 𝑦, 𝜖) ,

(42)

where

1

𝑗!
𝑓
1

𝑗
(𝑥, 𝑦, 𝜖)

= Ψ (0) [
1

(𝑗 − 1)!
𝐿
𝑗−1 (𝜖) (Φ𝑥 + 𝑦) +

1

𝑗!
𝐹
𝑗
(Φ𝑥 + 𝑦, 𝜖)] ,

1

𝑗!
𝑓
2

𝑗
(𝑥, 𝑦, 𝜖)

= (𝐼 − 𝜋)𝑋
0
[

1

(𝑗 − 1)!
𝐿
𝑗−1

(𝜖) (Φ𝑥 + 𝑦)+
1

𝑗!
𝐹
𝑗
(Φ𝑥 + 𝑦, 𝜖)].

(43)

It can be obtained that
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1

2!
𝑓
1

2
(𝑥, 𝑦, 𝜖) = 𝑘𝜏 [

𝜖𝜎

𝜂
(𝑦
2 (−1) − 𝜂𝑥) +

𝜂
2

𝜎
(1 − 𝜙) (1 − 𝑟) (1 − 𝑝)

× ((𝑝 − 1) (𝜂𝑥 − 𝑦
2 (−1))

2
+ (𝜂𝑥− 𝑦

2 (0)) ((𝜂 + 𝜔) 𝑥+ 𝑦1 (0))) −𝛽0 ((𝜂 + 𝜔) 𝑥 + 𝑦1 (−1)) (𝜂𝑥 + 𝑦2 (−1)) ],

1

2!
𝑓
2

2
(𝑥, 𝑦, 𝜖) = (𝐼 − 𝜋)𝑋

0

⋅

(
(
(
(

(

−
𝜖𝜎𝜏

𝜂
(𝑦
2
(−1) − 𝜂𝑥) − 𝛽

0
𝜏 ((𝜂 + 𝜏) 𝑥 + 𝑦

1
(−1)) (𝑦

2
(−1) − 𝜂𝑥)

−
𝜂
2
𝜏

𝜎
(1 − 𝜙) (1 − 𝑟) (1 − 𝑝) [(𝑝 − 1) (𝑦

2
(0) − 𝜂𝑥)

2
− ((𝜂 + 𝜔) 𝑥 + 𝑦

1
(0)) (𝑦

2
(0) − 𝜂𝑥)]

𝜖𝜎𝜏

𝜂
(𝑦
2 (−1) − 𝜂𝑥) + 𝛽0𝜏 ((𝜂 + 𝜏) 𝑥 + 𝑦1 (−1)) (𝑦2 (−1) − 𝜂𝑥)

−
𝜂
2
𝜏

𝜎
(1 − 𝜙) (1 − 𝑟) (1 − 𝑝) [(𝑝 − 1) (𝑦

2
(0) − 𝜂𝑥)

2
− ((𝜂 + 𝜔) 𝑥 + 𝑦

1
(0)) (𝑦

2
(0) − 𝜂𝑥)]

)
)
)
)

)

.

(44)

As for autonomous ODEs in R2, the normal forms are
obtained by a recursive process of changes of variables. At
a step 𝑗, the terms of order 𝑗 ≥ 2 are computed from the
terms of the same order and from the terms of lower orders
already computed in previous steps. Assume that steps of
orders 2, 3, . . . , 𝑗 − 1 have already been performed; this leads
to

𝑥̇ = 𝐵𝑥 +

𝑗−1

∑

𝑙≥2

1

𝑙!
𝑔
1

𝑙
(𝑥, 𝑦, 𝜖) +

1

𝑗!
𝑓
1

𝑗
(𝑥, 𝑦, 𝜖) + h.o.t,

̇𝑦 = 𝐴
𝑄1
𝑦 +

𝑗−1

∑

𝑙≥2

1

𝑙!
𝑔
2

𝑙
(𝑥, 𝑦, 𝜖) +

1

𝑗!
𝑓
2

𝑗
(𝑥, 𝑦, 𝜖) + h.o.t.

(45)

Following the algorithm of Faria and Magalhaes [32, 33] at
step 𝑗, using a change of variables of the form

(𝑥, 𝑦) = (𝑥, 𝑦) + 𝑈
𝑗
(𝑥, 𝜖) ≡ (𝑥, 𝑦) + [𝑈

1

𝑗
(𝑥, 𝜖) , 𝑈

2

𝑗
(𝑥, 𝜖)] ,

(46)

where𝑥, 𝑥 ∈ R,𝑦, 𝑦 ∈ 𝑄1, and𝑈1
𝑗
: R2 → R,𝑈2

𝑗
: R2 → 𝑄

1

are homogeneous polynomials of degree 𝑗 in 𝑥 and 𝜖, after
dropping the hats for simplification of notations, system (42)
can be put into the normal form

𝑥̇ = 𝐵𝑥 + ∑

𝑗≥2

1

𝑗!
𝑔
1

𝑗
(𝑥, 𝑦, 𝜖) ,

̇𝑦 = 𝐴
𝑄
1𝑦 + ∑

𝑗≥2

1

𝑗!
𝑔
2

𝑗
(𝑥, 𝑦, 𝜖) ,

(47)

where

𝑔
1

𝑗
(𝑥, 𝑦, 𝜖) = 𝑓

1

𝑗
(𝑥, 𝑦, 𝜖) − [𝐷

𝑥
𝑈
1

𝑗
(𝑥, 𝜖) 𝐵𝑥 − 𝐵𝑈

1

𝑗
(𝑥)] ,

𝑔
2

𝑗
(𝑥, 𝑦, 𝜖) = 𝑓

2

𝑗
(𝑥, 𝑦, 𝜖) − [𝐷

𝑥
𝑈
2

𝑗
(𝑥, 𝜖) 𝐵𝑥 − 𝐴

𝑄
1𝑈
2

𝑗
(𝑥)] .

(48)

It can be verified that system (28) satisfies nonresonance
conditions since Λ

0
= {0}; see Faria and Magalhaes [32].

Then, the locally invariant manifold of system (28) tangent
to 𝑃 at zero must be 𝑦 = 0 and the flow on this manifold is
given by 1-dimensional ODE as follows:

𝑥̇ = 𝐵𝑥 +
1

2!
𝑔
1

2
(𝑥, 0, 𝜖) +

1

3!
𝑔
1

3
(𝑥, 0, 𝜖) + h.o.t. (49)

Thenonlinear terms in (47) are in normal form in the classical
sense with respect to matrix 𝐵. In applications, 𝑔1

𝑗
(𝑥, 0, 𝜖)

usually can be determined by the following procedure.

Definition 7. For 𝑗 ≥ 2, let𝑀
𝑗
denote the operator defined in

𝑉
𝑗
(R2 × Ker𝜋), with values in the same place, by

𝑀
𝑗
(ℎ
1
, ℎ
2
) = (𝑀

1

𝑗
ℎ
1
,𝑀
2

𝑗
ℎ
2
) ,

(𝑀
1

𝑗
ℎ
1
) (𝑥, 𝜖) = 𝐷

𝑥
ℎ
1
(𝑥, 𝜖) 𝐵𝑥 − 𝐵ℎ

1
(𝑥, 𝜖) ,

(𝑀
2

𝑗
) (𝑥, 𝜖) = 𝐷𝑥ℎ2 (𝑥, 𝜖) 𝐵𝑥 − 𝐴𝑄1

[ℎ
2 (𝑥, 𝜖)] ,

(50)

with domain 𝐷(𝑀
𝑗
) = 𝑉

2

𝑗
(R2) × 𝑉

2

𝑗
(𝑄
1
). Here, we use

the notation 𝑉
2

𝑗
(𝑌) to denote the space of homogeneous

polynomials of degree 𝑗 in 2 variables (𝑥, 𝜖) ∈ R2, with
coefficients in a Banach space 𝑌.

According to Faria and Magalhaes [32, 33], we have

𝑈
𝑗 (𝑥) = 𝑀

−1

𝑗
𝑃
𝐼,𝑗
𝑓
𝑗 (𝑥, 0, 𝜖) ∈ Ker (𝑀

𝑗
)
𝑐

,

𝑔
1

𝑗
(𝑥, 0, 𝜖) = (𝐼 − 𝑃

𝐼,𝑗
) 𝑓
1

𝑗
(𝑥, 0, 𝜖) ∈ Im (𝑀

1

𝑗
)
𝑐

,

(51)

where𝑃
𝐼,𝑗
= (𝑃
1

𝐼,𝑗
, 𝑃
2

𝐼,𝑗
) is the projection of𝑉2

𝑗
(R2)×𝑉2

𝑗
(Ker 𝜋)

on Im(𝑀1
𝑗
) × Im(𝑀2

𝑗
).
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Since 𝐵 = 0, it can be checked that [Im(𝑀1
2
)]
2

=

span{𝑥2, 𝑥𝜖, 𝜖2}. Then, we have

1

2
𝑔
1

2
(𝑥, 0, 𝜖)

= 𝑘𝜏(−𝜖𝜎𝑥 +
𝜂
2

𝜎
(1 − 𝜙) (1 − 𝑟) (1 − 𝑝)

× ((𝑝 − 1) 𝜂
2
𝑥
2
+ 𝜂 (𝜂 + 𝜔) 𝑥

2
− 𝛽
0
𝜂 (𝜂 + 𝜔) 𝑥

2
))

= 𝑘𝜏 (−𝜖𝜎𝑥 + 𝑘
1
𝑥
2
) ,

(52)

where 𝑘
1
= (𝜂
3
/𝜎)(1 − 𝜙)(1 − 𝑟)(1 − 𝑝)((𝑝𝜂 + 𝜔) − 𝛽

0
(𝜂 + 𝜔)).

Further the normal form of (41) on the invariant local center
manifold 𝑦 = 0 is given by

𝑥̇ = 𝑘𝜏 (−𝜖𝜎𝑥 + 𝑘
1
𝑥
2
) + h.o.t. (53)

Furthermore, if 𝑘
1
= 0, we have to compute 𝑔1

3
(𝑥, 0, 𝜖). It

can be obtained that Ker(𝑀1
2
)
𝑐
= 0, and

𝑈
2
(𝑥, 𝜖) = 𝑀

−1

2
𝑃
𝐼,2
(

𝑓
1

2
(𝑥, 0, 𝜖)

𝑓
2

2
(𝑥, 0, 𝜖)

) = (
0

ℎ
2
(𝜃) (𝑥, 𝜖)

) , (54)

where ℎ
2
(𝜃)(𝑥, 𝜖) = (ℎ

(1)

2
(𝜃)(𝑥, 𝜖), ℎ

(2)

2
(𝜃)(𝑥, 𝜖))

𝑇 is the unique
solution in 𝑈2

2
(𝑄
1
) of the equation

𝑀
2

2
ℎ
2 (𝜃) (𝑥, 𝜖) = (𝐼 − 𝜋)𝑋0 (

2𝜖𝜎𝜏𝑥

−2𝜖𝜎𝜏𝑥
) . (55)

Let

ℎ
(𝑖)

2
(𝜃) (𝑥, 𝜖) = ∑

|𝑞|=2

ℎ
(𝑖)

2,𝑞
(𝜃) (𝑥, 𝜖)

𝑞

= ℎ
(𝑖)

220
(𝜃) 𝑥
2
+ ℎ
(𝑖)

211
(𝜃) 𝑥𝜖 + ℎ

(𝑖)

202
(𝜃) 𝜖
2
,

𝑖 = 1, 2.

(56)

By (55), we get

𝑀ℎ
2
(0) (𝑥𝜖) + 𝑁 (0) ℎ

2
(−1) (𝑥, 𝜖) − ℎ̇

2
(0) (𝑥, 𝜖)

= (
2𝜎𝜏𝜖𝑥

−2𝜖𝜏𝜖𝑥
) ,

(

ℎ̇
(1)

220
(𝜃) 𝑥
2
+ ℎ̇
(1)

211
(𝜃) 𝑥𝜖 + ℎ̇

(1)

201
(𝜃) 𝜖
2

ℎ̇
(2)

220
(𝜃) 𝑥
2
+ ℎ̇
(2)

211
(𝜃) 𝑥𝜖 + ℎ̇

(2)

201
(𝜃) 𝜖
2
)

+(

2𝑘 (𝜂 + 𝜔) 𝜏𝜖𝑥

−2𝑘𝜂𝜎𝜏𝜖𝑥
) = 0,

(57)

which leads to

− 𝜂𝜏ℎ
(1)

220
(0) − 𝜏 (𝜂 + 𝜔 −

𝛽
0
𝜎

𝜂
) ℎ
(2)

220
(0)

−
𝛽
0
𝜎𝜏

𝜂
ℎ
(2)

220
(−1) − ℎ̇

(1)

220
(0) = 0,

− 𝜂𝜏ℎ
(1)

211
(0) − 𝜏 (𝜂 + 𝜔 −

𝛽
0
𝜎

𝜂
) ℎ
(2)

211
(0)

−
𝛽
0
𝜎𝜏

𝜂
ℎ
(2)

211
(−1) − ℎ̇

(1)

211
(0) = 2𝜎𝜏,

− 𝜂𝜏ℎ
(1)

202
(0) − 𝜏 (𝜂 + 𝜔 −

𝛽
0
𝜎

𝜂
) ℎ
(2)

202
(0)

−
𝛽
0
𝜎𝜏

𝜂
ℎ
(2)

202
(−1) − ℎ̇

(1)

202
(0) = 0,

−
𝛽
0
𝜎𝜏

𝜂
ℎ
(2)

220
(0) +

𝛽
0
𝜎𝜏

𝜂
ℎ
(2)

220
(−1) − ℎ̇

(1)

220
(0) = 0,

−
𝛽
0
𝜎𝜏

𝜂
ℎ
(2)

211
(0) +

𝛽
0
𝜎𝜏

𝜂
ℎ
(2)

211
(−1) − ℎ̇

(1)

211
(0) = −2𝜎𝜏,

−
𝛽
0
𝜎𝜏

𝜂
ℎ
(2)

202
(0) +

𝛽
0
𝜎𝜏

𝜂
ℎ
(2)

202
(−1) − ℎ̇

(1)

202
(0) = 0.

(58)

After computation, we arrive at

ℎ
220 (𝜃) = (

0

0
) , ℎ

202 (𝜃) = (
0

0
) ,

ℎ
211

(𝜃) = (
𝑐
1
+ 𝑎𝜃

𝑐
2
+ 𝑏𝜃

) ,

(59)

where 𝑐
1
= −(𝛽

0
𝜏𝜎(𝜂 + 𝜔)𝑏/2𝜂(𝜂 + 𝛽

0
𝜎𝜏)) + (2𝑘𝜎𝜔/𝜂), 𝑐

2
=

𝛽
0
𝜎𝜏𝑏/2(𝜂 + 𝛽

0
𝜎𝜏), 𝑎 = −2𝑘(𝜂 + 𝜔)𝜎𝜏, and 𝑏 = 2𝑘𝜂𝜎𝜏.

Then, we have

𝑈
2
(𝑥, 𝜖) = (

0

𝑎𝜃 + 𝑐
1

𝑏𝜃 + 𝑐
2

)𝑥𝜖. (60)

Substituting the change of variables (𝑥, 𝑦) = (𝑥, 𝑦) +

(1/2)𝑈
2
(𝑥, 𝜖) into (48) and dropping the hats, we have
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1

3!
𝑓
1

3
(𝑥, 0, 𝜖) =

𝜎𝜏𝜖

𝜂
Ψ (0) (

(𝑏
2
− 𝑐
2
) 𝑥𝜖

(𝑐
2
− 𝑏) 𝑥𝜖

) + 𝜏Ψ (0)(

𝜂
5

𝜎2
(𝑟 − 1) (𝑝 − 1) (1 − 𝜙) (𝜔 + 𝑝𝜂)

2
𝑥
3
+ 𝜂 (𝜂 + 𝜔) 𝜖𝑥

2

−
𝜂
5

𝜎2
(𝑟 − 1) (𝑝 − 1) (1 − 𝜙) (𝜔 + 𝑝𝜂)

2
𝑥
3
− 𝜂 (𝜂 + 𝜔) 𝜖𝑥

2

)

= 𝑘𝜏(
(𝑐
2
− 𝑏) 𝜎

𝜂
𝜖
2
𝑥 − 𝜂 (𝜂 + 𝜔) 𝜖𝑥

2
−
𝜂
5

𝜎2
(𝑟 − 1) (𝑝 − 1) (1 − 𝜙) (𝜔 + 𝑝𝜂)

2
𝑥
3
) .

(61)

Since [Im(𝑀1
3
)]
𝑐

= span(𝑥3, 𝑥2𝜖, 𝑥𝜖2, 𝜖3), we have

1

3!
𝑔
1

3
(𝑥, 0, 𝜖) = Proj

[Im(𝑀1
3
)]
𝑐

1

3!
𝑓
1

3
(𝑥, 0, 𝜖)

=
𝑘𝜏𝜎 (𝑐

2
− 𝑏)

𝜂
𝜖
2
𝑥 − 𝑘𝜏𝜂 (𝜂 + 𝜔) 𝜖𝑥

2

−
𝑘𝜏𝜂
5

𝜎2
(𝑟 − 1) (𝑝 − 1) (1 − 𝜙) (𝜔 + 𝑝𝜂)

2
𝑥
3
,

(62)

which, together with (53), implies that when 𝑘
1
= 0, the

normal form on the invariant local center manifold 𝑦 = 0

is given by

𝑥̇ = (−𝑘𝜎𝜏 +
𝑘𝜏𝜎 (𝑐

2
− 𝑏)

𝜂
𝜖) 𝜖𝑥 − 𝑘𝜏𝜂 (𝜂 + 𝜔) 𝜖𝑥

2

−
𝑘𝜏𝜂
5

𝜎2
(𝑟 − 1) (𝑝 − 1) (1 − 𝜙) (𝜔 + 𝑝𝜂)

2
𝑥
3
+ h.o.t.

(63)

By the center manifold theorem and the bifurcation
theorem, see Carr [34], Guckenheimer andHolmes [35], Hale
and Lunel [31],Wiggins [30], and the references cited therein,
the dynamics of the delayed differential (9) is topologically
equivalent to that of (63) at the sufficiently small neighbor-
hood of 𝜖 = 0. Therefore, by the normal forms on the center
manifold equations (9) and (63), the following results can be
obtained immediately.

Theorem 8. Assume that 𝑅
0
= 1; that is, 𝜖 = 0.

(1) If 𝑘
1
̸= 0, the zero solution of (9) is unstable.

(2) If 𝑘
1
= 0, the zero solution of (9) is stable due to

(𝑘𝜏𝜂
5
/𝜎
2
)(𝑟 − 1)(𝑝 − 1)(1 − 𝜙)(𝜔 + 𝑝𝜂)

2
> 0.

Theorem 9. Assume that 𝛽 = 𝛽
0
+ 𝜖 and |𝜖| is a sufficiently

small positive number.

(1) If 𝑘
1
̸= 0, (9) undergoes a transcritical bifurcation at

the zero solution.
(2) If 𝑘

1
= 0, (9) undergoes a generic pitchfork bifurca-

tion at the zero solution.

4. Sensitive Analysis

Sensitivity indices allow us to measure the relative change
in a variable when a parameter changes. The normalized
forward sensitivity index of a variable to a parameter is the
ratio of the relative change in the variable to the relative
change in the parameter.When the variable is a differentiable
function of the parameter, the sensitivity index may be
alternatively defined using partial derivatives. Here, one
adopts the following definition as described by Chitnis et al.
[36].

Definition 10. The normalized forward sensitivity index of a
variable, 𝑢, that depends differentiably on a parameter, 𝑝, is
defined as 𝛾𝑢

𝑝
= (𝜕𝑢/𝜕𝑝) × (𝑝/𝑢).

Generally speaking, initial disease transmission is directly
related to the threshold parameter 𝑅

0
, and the disease

prevalence is directly related to the positive equilibrium
𝐸
∗, specifically to the magnitude of 𝐼∗. In the following,

we calculate the sensitivity indexes of 𝑅
0
and the positive

equilibrium 𝐸
∗ to the parameters in system (6).The values of

parameters used in this section are chosen from the literatures
Gibson andAritua [3], Holt and Chancellor [37], and van den
Bosch et al. [10], as shown in Table 1.

Table 2 shows the sensitivity indices of 𝑅
0
with respect to

each of the seven parameters in system (6). The indices with
positive signs increase the value of𝑅

0
when they are increased

and those having negative signs decrease the value of𝑅
0
when

they are increased. It can be seen from Table 2 that 𝛾𝑅0
𝜙

∈

[−0.338963, 0], 𝛾𝑅0
𝑟

∈ [−0.022013, 0], 𝛾𝑅0
𝑝

∈ [−0.033138, 0],
𝛾
𝑅0

𝜂
∈ [−1.860169, −1.353863], and 𝛾𝑅0

𝛽
= 𝛾
𝑅0

𝜎
∈ [0.746847, 1]

as 𝜙 is varying in [0, 1]. The most sensitive parameters to
𝑅
0
are the transmission rate 𝛽 and the planting rate 𝜎,

which means that increasing (or decreasing) 𝛽 and 𝜎 by 10%
increases (or decreases) 𝑅

0
by more than 7.46%. Obviously,

to maintain the reproduction of a plant, it is not practical to
reduce 𝑅

0
by decreasing the planting rate 𝜎. We also observe

that 𝑅
0
is most sensitive to the harvest rate 𝜂 in an inversely

proportional way. That is to say 𝑅
0
is a decreasing function

of 𝜂, where increasing 𝜂 will decrease 𝑅
0
and decreasing 𝜂

will increase𝑅
0
. Furthermore𝑅

0
is a decreasing function of𝜙,

𝑟, 𝑝, and 𝜔. These results suggest that intervention strategies
should be targeted to transmission rate 𝛽, harvest time 1/𝜂,
fraction planted from in vitro propagated, virus free, material
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Table 1: Description of variables and parameters in model (6).

Parameter Description Estimated values Reference
𝜙 Fraction planted from virus free material — —
𝑟 Ratio of reversion 0.08 van den Bosch et al. [10]
𝑝 Probability of detecting an infected cutting (0, 0.2316) van den Bosch et al. [10]
𝜂 Harvest rate 2 × 10

−3 Holt and Chancellor [37]
𝛽 Transmission rate 6.4 × 10

−3 van den Bosch et al. [10]
𝜎 Planting rate 1.5 × 10

−3 Gibson and Aritua [3]
𝜔 Roguing rate 3.3 × 10

−4 van den Bosch et al. [10]

Table 2: Sensitivity indices of 𝑅
0
to all parameters.

Parameter 𝑗 𝜙 𝑟 𝑝 𝜂 𝛽 𝜎 𝜔

𝛾
𝑅0

𝑗

3 × 10
−6
𝜙

𝑙
1
(𝜙)

3 × 10
−7
(𝜙 − 1)

𝑙
1
(𝜙)

4 × 10
−7
(𝜙 − 1)

𝑙
1
(𝜙)

−
𝑙
2
(𝜙)

𝑙
1
(𝜙)

1 × 10
−5

𝑙
1
(𝜙)

1 × 10
−5

𝑙
1
(𝜙)

−0.139831

where 𝑙1(𝜙) = 1.3 × 10
−5
− 3 × 10

−6
𝜙 and 𝑙2(𝜙) = 1.7 × 10

−5
+ 5 × 10

−7
𝜙.
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Figure 1: 𝜏 = 0, 𝑅
0
< 1. The solutions of system (6) approach to the disease-free equilibrium 𝐸

0
= (1, 0).
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Figure 2: 𝜏 > 0, 𝑅
0
< 1. The solutions of system (6) tends to the disease-free equilibrium 𝐸

0
= (0.1, 0).

Table 3: Sensitivity indices of 𝐸∗ with 𝜙 = 0.2.

Parameter 𝑆
∗

𝐼
∗

𝑁
∗

𝜙 +0.663446 −0.110946 +0.552500

𝑟 +0.230764 −0.038590 +0.192174

𝑝 +0.107352 −0.010476 +0.096876

W𝜂 +1.006333 −1.195680 −0.189352

𝛽 −1.114529 +0.163789 −0.928150

𝜎 −0.114529 +1.186579 +1.072050

𝜔 +0.222730 −0.177077 +0.045653

𝜙, the ratio of reversion 𝑟, the probability of detecting an
infected cutting 𝑝, and the roguing rate 𝜔.

As the analytical expressions for the sensitivity indices of
the positive equilibrium 𝐸

∗ do not possess good structures,
we therefore evaluate the sensitivity indices at the parameter
values in Table 1, and then show the sensitivity indices of the

state variables for low and high planting rates of virus free
material (e.g., 𝜙 = 0.2, 0.8) in Tables 3 and 4, respectively.

It can be seen from Tables 3 and 4 that the most sensitive
parameter to the population size 𝑁∗ is the planting rate 𝜎
for both the low and high proportions of virus free material,
followed in an inverse way by the transmission rate 𝛽 and
the ratio of reversion 𝑟. The most sensitive parameter to the
infected plant 𝐼∗ is the harvest rate 𝜂 in an inverse way,
followed by the planting rate 𝜎. The most sensitive parameter
to the susceptible plant 𝑆∗ is the transmission rate 𝛽 in an
inverse way, followed by the harvest rate 𝜂.

5. Number Simulations

Numerical simulation is an effective method to investigate
the properties of system (6). In this section, we present
numerical simulations to support the theoretical analysis
given in Sections 2 and 3.
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Figure 3: 𝜏 > 0, 𝑅
0
= 1. The solutions of system (6) tends to the disease-free equilibrium 𝐸

0
= (0.20405, 0).

Table 4: Sensitivity indices of 𝐸∗ with 𝜙 = 0.8.

Parameter 𝑆
∗

𝐼
∗

𝑁
∗

𝜙 +0.797581 −0.543699 +0.253882

𝑟 +0.017339 −0.011820 +0.005519

𝑝 +0.041648 −0.008413 +0.033235

𝜂 +0.888967 −2.147856 −1.258887

𝛽 −1.022566 +0.697064 −0.325502

𝜎 −0.022566 +1.697066 +1.674500

𝜔 +0.156165 −0.246287 −0.090121

Firstly, let 𝜏 = 0, 𝛽 = 0.01, 𝜙 = 0.1, 𝑝 = 0.01, 𝑟 = 0.01,
𝜔 = 0.01, 𝜎 = 0.01, and 𝜂 = 0.01. Then, it is easy to obtain
that 𝑅

0
≈ 0.94 < 1. From the second case of Theorem 2, the

disease-free equilibrium is asymptotically stable if𝑅
0
< 1 and

𝜏 = 0. Figure 1 exhibits that all of the solutions approach the
disease-free equilibrium 𝐸

0
.

Secondly, let 𝜏 = 0.5, 𝜙 = 0.1, 𝑝 = 0.1, 𝑟 = 0.1,
𝜂 = 0.1, 𝜔 = 0.001, 𝜎 = 0.01, and 𝛽 = 0.01. Then, it is
easy to obtain that 𝑅

0
≈ 0.73 < 1. From Theorem 4, the

disease-free equilibrium is asymptotically stable if𝑅
0
< 1 and

𝜏 > 0. Figure 2 exhibits that all of the solutions approach the
disease-free equilibrium 𝐸

0
.

Finally, let 𝜏 = 0.5, 𝜙 = 0.1, 𝑝 = 0.1, 𝑟 = 0.1, 𝜂 = 0.1, 𝜔 =

0.01, 𝜎 ≈ 0.0204, and 𝛽 ≈ 0.1818. Then, we have 𝑅
0
= 1 and

𝑘
1
= 0. From the second case of Theorem 9, the disease-free

equilibrium is stable if 𝑅
0
= 1 and 𝑘

1
= 0. Figure 3 exhibits

that all of the solutions approach the disease-free equilibrium
𝐸
0
.

6. Conclusions

It is still an interesting topic to determine how the time
delay affects overall disease progression and, mathematically,
how the delay affects the dynamics of systems. In this paper,
a delayed disease model with continuous cultural control
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strategy is formulated. By analyzing the transendental char-
acteristic equation, we derive some conditions on the stability
of the disease-free equilibrium. The disease-free equilibrium
is stable, if 𝑅

0
< 1, and unstable if 𝑅

0
> 1, 0 ≤ 𝜏 < 𝜏

0
.

Then, by virtue of themethods in Guckenheimer andHolmes
[35] and Wiggins [30], the stability of the nonhyperbolic
disease-free equilibrium is discussed if 𝑅

0
= 1 and 𝜏 =

0. Furthermore, if 𝑅
0
= 1, 𝜏 > 0 and ̸= 1/𝑞

1
, zero is

a simple root of the characteristic equation (20), and the
delayed model (6) exhibits rich dynamics. Employing the
center manifold reduction and normal form theory due to
Faria and Magalhaes [32, 33], we compute the normal form
of system (6) associated with zero eigenvalue. By analyzing
the normal form, we get that the disease-free equilibrium
is unstable if 𝑘

1
̸= 0 and stable if 𝑘

1
= 0. From the view of

bifurcation, system (6) undergoes transcritical bifurcation if
𝑘
1
̸= 0 and generic pitchfork bifurcation if 𝑘

1
= 0 at the origin

with small 𝜖.
Then, the sensitivity analysis of 𝑅

0
and the positive

equilibrium 𝐸
∗ is carried out in order to determine the

relative importance of different factors responsible for dis-
ease transmission. The results show that the most sensitive
parameters to 𝑅

0
are the transmission rate 𝛽 and the planting

rate 𝜎, the most sensitive parameter to the state variable 𝐼∗
is the harvest rate 𝜂 followed by the planting rate 𝜎, the most
sensitive parameter to the state variable 𝑆∗ is the transmission
rate 𝛽 followed by the harvest rate 𝜂, and the most sensitive
parameter to the population size𝑁∗ is the planting rate 𝜎 for
both the low and high proportions of virus free material 𝜙,
followed by the transmission rate 𝛽 and the ratio of reversion
𝑟.

At last, numeric simulations are used to verify the
qualitative results obtained in the present paper.
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