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Presence of an alternative energy source along with the Internal Combustion Engine (ICE) in Hybrid Electric Vehicles (HEVs)
appeals for optimal power split between them for minimum fuel consumption and maximum power utilization. Hence HEVs
provide better fuel economy compared to ICE based vehicles/conventional vehicle. Energy management strategies are the
algorithms that decide the power split between engine and motor in order to improve the fuel economy and optimize the
performance of HEVs. This paper describes various energy management strategies available in the literature. A lot of research
work has been conducted for energy optimization and the same is extended for Plug-in Hybrid Electric Vehicles (PHEVs). This
paper concentrates on the battery powered hybrid vehicles. Numerous methods are introduced in the literature and based on these,
several control strategies are proposed.These control strategies are summarized here in a coherent framework.This paper will serve
as a ready reference for the researchers working in the area of energy optimization of hybrid vehicles.

1. Introduction

Hybrid Electric Vehicles (HEVs) and Plug-in Hybrid Electric
Vehicles (PHEVs) consist of two power sources, that is, (1)
Internal Combustion Engine (ICE) and (2) battery. Power
split between these two is of utmost importance to minimize
the fuel consumption without affecting the vehicle speed.The
literature reveals that various power split strategies have been
developed and implemented. These strategies vary in opti-
mization type (global or local), computational time, struc-
tural complexity, a priori knowledge of driving pattern, and
effectiveness of the algorithm. A survey of these available
methods would be of great use for researchers and practition-
ers working on HEVs/PHEVs.

This paper includes several powerful methods of energy
optimization proposed in the literature.

These methods are not mutually exclusive and can be
used alone or in combinations. The authors have compiled
more than 180 papers cognate with optimal performance of
HEVs/PHEVs published till 2012. The authors apologize if
any paper, method, or improvement is unintentionally omit-
ted. Figure 1 shows the summary of papers published from

various refereed journals, conferences, and magazines. This
data is based on the papers studied and cited in this paper.

2. Emergence of Hybrid Electric Vehicle

Automobiles have made great contribution to the growth of
modern society by satisfying the needs for greater mobility in
everyday life. The development of ICE has contributed a lot
to the automobile sector. But large amounts of toxic emissions
in the form of carbon dioxide (CO

2
), carbonmonoxide (CO),

nitrogen oxides (NOx), unburned hydrocarbons (HCs), and
so forth have been causing pollution problems, global warm-
ing, and destruction of the ozone layer. These emissions are
a serious threat to the environment and human life. Also, as
petroleum resources are limited, consumption of petroleum
needs to be reduced. One prominent solution to these prob-
lems is to go for an alternate transportation technology, which
uses ICE as primary power source and batteries/electric
motor as peaking power source.This concept has brought the
new transportation medium such as Electric Vehicles (EVs),
HEVs and PHEVs, which are clean, economical, efficient, and
environment friendly.
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Figure 1: Graphical representation of papers published per year.

The EVs are enabled by high efficiency electric motor and
controller and powered by alternative energy sources. The
first EV was built by a Frenchman Gustave Trouve in 1881. It
was a tricycle powered by a 0.1 hp direct current motor fed by
lead-acid batteries. EV is a clean, efficient, and environment
friendly urban transportation medium but has limited range
of operation.

Due to higher battery cost, limited driving range, and
performance of EVs, HEVs came into existence. HEVs use
both electric machine and an ICE to deliver power during
vehicle propulsion. It has advantages of both ICE vehicles and
EVs and eliminates their disadvantages [1]. In HEVs battery
is the supportive power system to ICE during vehicle propul-
sion and hence reduces the liquid fuel consumption and toxic
emissions. In 1901 Ferdinand Porsche developed the Lohner-
Porsche Mixte Hybrid, the first gasoline-electric hybrid vehi-
cle [2].

In HEVs batteries are charged either by engine or by
regenerative braking and are not plugged-in externally which
limits its electric range. They also take longer time in
recharging. PHEVs offer a promising medium-term solution
to reduce the energy demand as the batteries are charged
through the grid. PHEVs are displacing liquid fuels by storing
the energy in a battery with cheaper grid electricity [3].
PHEVs have a large on-board rechargeable battery and larger
sized motors compared to HEVs. Presence of larger size
battery with high energy capacity increases the fuel efficiency
of PHEVs. In PHEVs battery is used as primary power source
and ICE as secondary power source. The battery can be
recharged through mains power supply anywhere at home,
parking lots, or garages.

3. Architecture of Hybrid Electric Vehicles

HEVs are classified mainly into three categories: (1) series
hybrid, (2) parallel hybrid, and (3) series-parallel (power-
split) hybrid. The series configuration consists of an electric
motor with an ICE without any mechanical connection
between them. ICE is used for running a generator when the
battery does not have enough power to drive the vehicle; that
is, ICE drives an electric generator instead of directly driving
the wheels. Series hybrids have only one drive train but

require two distinct energy conversion processes for all oper-
ations. These two energy conversion processes are gasoline
to electricity and electricity to drive wheels. Fisher Karma,
Renault Kangoo, Coaster light duty bus, Orion bus, Opel
Flextreme, and Swiss auto REX VW polo use series config-
uration.

In parallel configuration, single electric motor and ICE
are installed in such a way that both individually or together
can drive the vehicle. Parallel hybrids allow both power
sources to work simultaneously to attain optimum perfor-
mance. While this strategy allows for greater efficiency and
performance, the transmission and drive train aremore com-
plicated and expensive. Parallel configuration is more com-
plex than the series, but it is advantageous. Honda’s Insight,
Civic, Accord, General Motors Parallel Hybrid Trucks, BAS
Hybrid such as SaturnVAUandAuraGreenline, andChevro-
let Mali by hybrids utilize parallel configuration.

Power split hybrid has a combination of both series and
parallel configuration in a single frame. In this configuration
engine and battery can, either alone or together, power the
vehicle and battery can be charged simultaneously through
the engine. Basically, it extends the all-electric range (AER)
of hybrid vehicle. The current dominant architecture is
the power-split configuration which is categorized into two
modes: (1) one (single)mode and (2) two (dual)modes. Single
mode contains one planetary gear set (PGS) and dual mode
contains two PGS which are required for a compound power
split. It is further classified into three types: (1) input split,
(2) output split, and (3) compound split as determined by the
method of power delivery.

In the input split power configuration or single mode
electromechanical infinitely variable transmission (EVT),
planetary gear is located at the input side as shown in
Figure 2(a). The input power from the ICE is split at the
planetary gear. It gives low efficiency at high vehicle speed [4].
Toyota Prius employs an input split power configuration.

The output split power train consists of one planetary
gear at the output side as shown in Figure 2(b). The output
split system uses power recirculation at low vehicle speed
and power splitting at high vehicle speed. Power recirculation
means that a portion of the engine power is recirculated by
the charging of any one motor/generator and discharging of
the other. Due to charging and discharging efficiency of the
motors, recirculated power negatively affects the system effi-
ciency. Hence output split power train displays poor per-
formance at low vehicle speed compared to input split [5].
Chevrolet volt uses output split configuration.

In dual mode configuration, the two clutches provide a
torque advantage of the motor at low speed while fundamen-
tally changing the power flow through the transmission as
shown in Figure 2(c). When the first clutch is applied and
the second clutch is open, the system operates as an input
split. When the second clutch is applied and the first clutch
is released, the system operates as a compound split. This
hybrid can shift between these two (input-split as well as
compound-split) in a synchronous shift, involving only
torque transfer between elements without sharp changes in
the speeds of any element. Lexus HS250h, Lexus RX400h,
Toyota Camry and Highlander, Lexus GS450h, and Lexus
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Figure 2: Power-split configurations: (a) input split, (b) output split, and (c) compound split.

LS600h use compound split configuration. The combination
of a compound split and an input split enables a two-mode
hybrid system. The use of dual mode solves the problems
of the single mode power train and provides better vehicle
performance with respect to fuel economy, acceleration, and
motor size. In dualmode, PGS are used for both the input split
and compound split [6]. Two-mode hybrids includes General
Motors two-mode hybrid full-size trucks and SUVs, BMW
X6 Active Hybrid and Mercedes ML 450 hybrid, Allison EV
Drive, Chrysler Aspen, Chevrolet Tahoe, and GMC Yukon
hybrid (GHC, 2013).

All the configurations ofHEVcan be employed in PHEV’s
drive trains. In PHEVs battery is initially charged through the
mains power supply to the full capacity, which supports HEV
architecture to propel it for longer distances with a very less
fuel consumption.

4. Problem Overview

The presence of two power sources focuses on the need of
designing an energy management strategy to split power
between them. The strategy should be able to minimize the
fuel consumption and maximize the power utilization. In
HEVs, the battery is a supporting power source which gets
chargedwhen ICEpowers the vehicle and also through regen-
erative braking. In HEVs the state of charge (SOC) of the
battery is the same at the start and end of the trip; that is,
it works in charge sustaining mode. In PHEVs, the batteries

are charged throughmains; therefore it can be depleted to the
permissible minimum level at the end of the trip; that is, it
works in a charge depletion mode. PHEVs may call upon to
work in charge sustaining, charge depletion, or combination
of both based on the requirement.

5. Overview of Different
Optimization Strategies

Due to the complex structure of HEVs/PHEVs, the design
of control strategies is a challenging task. The preliminary
objective of the control strategy is to satisfy the driver’s power
demand with minimum fuel consumption and toxic emis-
sions and with optimum vehicle performance. Moreover, fuel
economy and emissions minimization are conflicting objec-
tives; a smart control strategy should satisfy a trade-off bet-
ween them.

Various control strategies are proposed for optimal per-
formance of HEVs/PHEVs. The strategies published till 2012
are reviewed and categorized here. A detailed overview of dif-
ferent existing control strategies along with their merits and
demerits is presented. A broad classification of these strate-
gies is given in Figure 3. All these strategies are compared
in terms of structural complexity, computation time, type
of solution (real, global, and local), and a priori knowledge
of driving pattern.

There is no commonly accepted answer for “structural
complexity” but the intersection of almost all answers is
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Figure 3: Classification of control strategies.

nonempty. Structural complexity deals with the complexity
classes, internal structure of complexity classes, and relations
between different complexity classes. Complexity class is
a set of problems of related source-based complexity and
can be characterized in terms of mathematical logic needed
to express them. Computation time is the length of time
required to perform a computational process.

A controller designed for a particular set of parameters is
said to be robust if it performs fairly well under a different set
of assumptions. To deal with uncertainty, robust controllers
are designed to function properly with uncertain parameter
set or disturbance set.

Local optimal of an optimization problem is optimal
(either maximal or minimal) within a neighboring set of
solutions. A global optimal, in contrast to local, is the optimal
solution amongst all possible solutions of an optimization
problem.

Control strategies are broadly classified into rule-based
and optimization-based control strategy and all other subcat-
egories are classified based on these two main categories.

5.1. Rule-Based Control Strategies. Rule-based control strate-
gies are fundamental control schemes that depend on mode
of operation. They can be easily implemented with real-time
supervisory control to manage the power flow in a hybrid

drive train. The rules are determined based on human intel-
ligence, heuristics, or mathematical models and generally
without prior knowledge of a drive cycle.

The rule-based controllers are static controllers. Basically,
the operating point of the components (ICE, traction motor,
and generator, etc.) is chosen using rule tables or flowcharts
to meet the requirements of the driver and other components
(electrical loads and battery) in the most efficient way.
The decisions are related to instantaneous inputs only. This
strategy is further subcategorized into deterministic rule-
based and fuzzy rule-based.

By recognizing the road load, an energy management
system for belt driven starter generator (BSG) type hybrid
vehicle is developed by Shaohua et al. [7]. It gives a good fuel
economy as well as launch performance.The dynamic perfor-
mance and drivability are also improved at the same time. For
energy and power management of multisource (battery and
super-capacitor) hybrid vehicles, a two-level management
scheme is formulated. First level uses a certain set of rules
to restrict the search area and second level uses a metaheuris-
tic approach. Trovão et al. [8] provide a quality solution for
sharing energy online between the two energy sources with
improved range and extended battery life.

5.1.1. Deterministic Rule-Based Control Strategy. The rules are
designed with the aid of fuel economy or emission data,
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ICE operating maps, power flow within the drive train, and
driving experience. Implementation of rules is performed via
lookup tables to share the power demand between the ICE
and the electric traction motor. Kim et al. [9] proposed a
concept of hybrid optimal operation line for parallel HEV,
which is derived based on effective specific fuel consumption
with continuously varying transmission (CVT). They deter-
mined the optimal values of parameters (such as a CVT gear
ratio, motor torque, and engine throttle) while maximizing
overall system efficiency. For the optimal robust control, [10]
developed a rule-based control algorithm and tuned it for
different work cycles.

Thermostat control strategy uses the generator and ICE
to generate electrical energy used by the vehicle. In this
strategy the battery SOC is always maintained between
predefined high and low levels, by simply turning on/off the
ICE. Although the strategy is simple, it is unable to supply
necessary power demand in all operating modes.

Electric assist control strategy utilizes ICE as the main
source of power supply and electric motor to supply addi-
tional power when demanded by the vehicle. Due to charge
sustaining operation, the battery SOC is maintained during
all operating modes.

5.1.2. Fuzzy Rule-Based Control Strategy. L. A. Zadeh intro-
duced the term fuzzy logic and described the mathematics
of fuzzy set theory. Fuzzy logic system is unique to handle
numerical data and linguistic knowledge simultaneously.
Fuzzy sets represent linguistic labels or term sets such as slow,
fast, low, medium, high, and so forth. In fuzzy logic, the truth
of any statement is amatter of degree. Fuzzy control is simple,
easy to realize, and has strong robustness. It can converse
experience of designer to control rules directly. Fuzzy logic
is a form of multivalued logic derived from fuzzy set theory
to deal with reasoning that is approximate rather than precise.

Intelligent control is performed using fuzzy logic as a tool.
Fuzzy logic enables the development of rule-based behavior.
The knowledge of an expert can be coded in the form of a
rule base and used in decision making. The main advantage
of fuzzy logic is that it can be tuned and adapted if necessary,
thus enhancing the degree of freedom of control. It is also
a nonlinear structure and is especially useful in a complex
system such as an advanced power train. In essence a fuzzy
logic controller (FLC) is a natural extension of many rules
based controllers implemented (via lookup tables) in many
vehicles today. Fuzzy logic based methods are insensitive to
model uncertainties and are robust against the measurement
of noises and disturbances but require a faster microcon-
troller with larger memory.

(a) Traditional Fuzzy Control Strategy. Efficiency is decided
based on the selection of input, output, and rule-based
control strategy. Two operating modes, namely, optimize fuel
use and fuzzy efficiencymodes, are used to control drive train
operation.The fuzzy logic controller accepts battery SOC and
the desired ICE torque as inputs. Based on these inputs as
well as the selected mode, the ICE operating point is set. The
power required by the electric tractionmotor is the difference
of total load power required and power required from ICE.

In the optimum fuel use strategy, the FLC limits instan-
taneous fuel consumption, calculated from the fuel use
map, and maintains sufficient battery SOC, while delivering
demanded torque. In the fuzzy efficiency strategy, the ICE has
operated in its most efficient operating region. The operating
points of the ICE are set near the torque region, where effi-
ciency is highest at a particular engine speed. Load balancing
is achieved using electric motors. This control strategy uses
a motor to force ICE to operate in the region of minimal
fuel consumption, while maintaining SOC in battery. Load
balancing is necessary to meet power demand and avoid
unnecessary charging and discharging of the electrical stor-
age system (ESS). A major drawback of this control strategy
is that the peak efficiency points are near high torque region;
thereby ICE generates more torque than required, which in
turn increases fuel consumption.Also, during load balancing,
heavy regeneration overcharges the ESS. To avoid this, the
control strategy should be used with a downsized ICE.

(b) Adaptive Fuzzy Control Strategy. This strategy can opti-
mize both fuel efficiency and emissions simultaneously. How-
ever, fuel economy and emissions are conflicting objectives,
which means that an optimal solution cannot be achieved
by satisfying all the objectives. The optimal operating point
can be obtained using weighted-sum approach optimization
of conflicting objectives. Due to various driving conditions,
appropriate weights have to be tuned for fuel economy and
emissions. Considering stringent air pollution laws, operat-
ing pointswith high emissions are heavily penalized.The con-
flicting objectives within the adaptive fuzzy logic controller
include fuel economy, NOx, CO, and HC emissions. In order
to measure the interrelationship of the four contending
optimizing objectives with a uniform standard, it is essential
to normalize the values of fuel economy and emissions by
utilizing the optimal values of fuel consumption and emis-
sions at current speed. The optimal values of fuel economy
and emissions at particular ICE speed can be obtained from
the ICE data map.

The relative weights are adaptively assigned to each
parameter based on their importance in different driving
environments. Moreover, weights must be selected for each
ICE, based on their individual data maps. This control strat-
egy is able to control any one of the objectives, by changing
the values of relative weights. Further, tremendous reduction
in vehicle emission is achieved, with negligible compromise
in fuel economy.

(c) Predictive Fuzzy Control Strategy. If the information on the
driving trip is a priori known, it is extremely trivial to obtain a
global optimum solution, to minimize fuel consumption and
emissions. However, the primary obstacles entail acquiring
further information on planned driving routes and perform-
ing real-time control. This problem can be resolved using
global positioning system (GPS) which can easily identify
the probable obstacles like heavy traffic or a steep grade. The
control strategies can be developed for specific situations; for
example, if a vehicle is running on a highway and will enter
into a city (where heavy traffic may be encountered), it is
advised to restore more energy by charging the batteries, for
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later use. General inputs to the predictive FLC are vehicle
speed variations, the speed state of the vehicle in a look-
ahead window, and elevation of sampled points along a
predetermined route. Based on the available history of vehicle
motion and its variability in the near future, FLC determines
the optimal torque that ICE contributes to the current vehicle
speed.Thepredictive FLCoutputs a normalizedGPS signal in
(−1, +1), which informs themaster controller to charge or dis-
charge the batteries and to restore enough energy for future
vehicle operating modes.

Being robust and fast, it is advised to design FLCs for non-
linear and uncertain systems. FLCs result in small overshoot,
short adjustment time, and good dynamic/static quality.
Usingmix-modelling approach, Arsie et al. [11] implement an
FLC to control the parameters related to the driver-vehicle
interaction, torque management, and battery recharging
strategy. To improve energy conversion efficiency, several
fuzzy logic based energy management strategies are imple-
mented [12–14]. Galichet and Foulloy [15] implement a fuzzy
logic based proportional integral (PI) controller for nonlinear
control of the plants. Lee et al. [16] introduce an FLC for
driving strategy implementation. This is useful for nonlinear
and uncertain systems and is not affected by vehicle load
variation and road pattern. Brahma et al. [17] design an HEV
modelling tool using FLC to optimize the fuel consump-
tion which may be used to implement any desired model.
Baumann et al. [18] demonstrate the effectiveness of FLC to
increase the fuel economy and show that it works well for
a nonlinear, multidomain, and time-varying plant. Tao and
Taur [19] design a less complex PID-like FLC with a heuristic
functional scaling which is easy to adjust even in the absence
of the plant’s completemathematicalmodel.Won andLangari
[20] design anFLC for torque distribution. Schouten et al. [21]
apply driver command, battery SOC, and motor/generator
speed as fuzzy sets to design an FLC for parallel HEVs. Patel
andMohan [22] design a very simple PI controller using fuzzy
logic with less number of universes of discourse. Intelligent
energymanagement agent (IEMA) is implemented for torque
distribution and charge sustenance on the basis of current
vehicle state, driver demand, and available online drive cycle
data [23]. Bathaee et al. [24] implement a FL based torque
controlled optimal energy management strategy for parallel
HEV. Zeng and Huang [25] and Khoucha et al. [26] design
(1) SOC based and (2) desired torque based FLCs for parallel
HEV to optimize power split. Jianlong et al. [27] propose
an effective, fast, and compact fuzzy supervisory controller
with double input single output. Golkar and Hajizadeh [28]
implement fuzzy logic based real-time intelligent controllers
which optimally settle ICE torque and vehicle drivability with
reduced fuel consumption and emissions. Syed et al. [29]
implement a dynamic model of HEV, which is capable of
analyzing the steady state and transient behavior of vehicle
under different driving situations. Poursamad andMontazeri
[30] introduce a genetic algorithm tunedFLC tominimize the
fuel consumption and emissions and to improve the driving
performance of a parallelHEV. Liu et al. [31] propose a battery
SOC and power notification based FLC for series HEV. In this
method, a high level of energy is always maintained and the
engine works in the high efficiency region. Syed et al. [32]

design an FLC to intelligently control the engine power and
speed in an HEV. In this scheme, the required gain of PI con-
troller is decided by fuzzy gain scheduling based on system’s
operating conditions. It improves the response and settling
time and eliminates overshoots. Zhou et al. [33] devise an FLC
for toque demand and battery SOC (as input) and required
torque (as output) based on particle swarm optimization
(PSO) for energy management in a parallel HEV. To improve
its accuracy, adaptability, and robustness, a compressibility
factor was used with PSO. Won and Langari [34] propose an
intelligent energymanagement strategy, based on the concept
of driving situation awareness for parallel HEV. The authors
basically implemented an IEMA which gives knowledge
about driving situation awareness. Lu et al. [35] implement
FLC for torque distribution between engine and motor in a
PHEV.They simulated the controller using ADVISOR for the
different driving/road conditions and showed a significant
reduction in exhaust gases and improvement in fuel economy.
Kachroudi et al. [36] design a predictive decision support
system for optimal energy flow distribution among engine
and other auxiliaries. They determined the global optimum
using PSO, which was further validated using hardware-in-
loop (HIL) technique. Fu et al. [37] designed a fuzzy control,
energy management strategy, using ADVISOR and claimed
improvement in the fuel economy with a reduction in the
toxic emissions.

5.2. Optimization-Based Control Strategy. In optimization-
based control strategies, the goal of a controller is tominimize
the cost function. The cost function (objective function)
for an HEV may include the emission, fuel consumption,
and torque depending on the application. Global optimum
solutions can be obtained by performing optimization over a
fixed DC.These control techniques do not result in real-time
energy management directly, but, based on an instantaneous
cost function, a real-time control strategy can be obtained.
This instantaneous cost function relies on the system vari-
ables at the current time only. It should include equivalent
fuel consumption to guarantee self-sustainability of electrical
path. Optimization-based control strategies can be divided
into two main groups, namely, global optimization and real-
time optimization. These are discussed in the following
sections in detail.

5.2.1. Global Optimization. A global optimization technique
for energy management strategy in an HEV requires the
knowledge of entire driving pattern which includes battery
SOC, driving conditions, driver response, and the route.
Due to computational complexity, they are not easily imple-
mentable for real-time applications. Linear programming,
dynamic programming, genetic algorithms, and so forth are
used here to resolve vehicle energymanagement issues. Based
on optimal control theory and assuming that minimizing
the fuel consumption reduces the pollutant emissions, a
global optimization algorithm is developed [38]. Delprat et al.
[39] propose a global optimization strategy for HEVs perfor-
mance analysis but do not provide optimal results. Delprat
et al. [40] suggest a global optimization strategy for known
driving cycle (DC) and for all SOC ranges. This offers
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the quick global optimal solution and minimizes the fuel
consumption. To get a better optimal solution forHEVdesign
and control, another global optimization technique has been
suggested by [41].

(1) Linear Programming. The fuel economy optimization is
considered as a convex nonlinear optimization problem,
which is finally approximated by linear programming
method. Linear programming is mostly used for fuel effi-
ciency optimization in series HEVs. Formulation of fuel
efficiency optimization problem using linear programming
may result in a global optimal solution.

In hybrid power trains, better degree of freedom to
control exists. By controlling the gear ratio and torque, an
optimized design and control of a series hybrid vehicle are
proposed in [42]. The problem is formulated as a nonlinear
convex optimization problem and approximated as a linear
programming problem to find the fuel efficiency. Kleimaier
and Schroeder [43] propose a convex optimization technique
for analysis of propulsion capabilities using linear program-
ming, which provides independence from any specific con-
trol law. Pisu et al. [44] design supervisory control strategies
for hybrid electric drive trains tominimize fuel consumption.
They designed a stable and robust controller using linear
matrix inequalities. Miaohua and Houyu [45] design a
sequential quadratic programming based energy manage-
ment strategy to minimize fuel consumption. They consider
balanced SOC as a constraint and showed improved results.

(2) Dynamic Programming.Dynamic programming (DP) was
originally used in 1940 by Richard Bellman to describe the
process of solving problems where one needs to find the best
decisions successively. DP is both a mathematical optimiza-
tion method and a computer programming method. In both
contexts, it refers to simplifying a complicated problem by
breaking it into simpler subproblems in a recursive manner.

The very essence of this technique is based on the prin-
ciple of optimality. Having a dynamical process and the cor-
responding performance function, there are two ways to
approach the optimal solution to the problem. One is the
Pontryagin’s maximum principle and the other is Bellman’s
dynamic programming. It has the advantage of being appli-
cable to both linear and nonlinear systems as well as con-
strained and unconstrained problems. But it also suffers from
a severe disadvantage called curse of dimensionality which
amplifies the computational burden and limits its application
to complicated systems.

Since the knowledge of the duty cycle is required before-
hand, the DP algorithm cannot be implemented in real time.
However, its outputs can be used to formulate and tune actual
controllers. The power management strategy in an HEV is
computed through dynamic optimization approach by var-
ious researchers as mentioned below.

Power optimization can be done offline for known DC
using deterministic DP [46, 47]. An adaptive neural-fuzzy
inference system (ANFIS) along with DP is used to get the
optimal solution to the problem [48]. Using DP and a rule-
based approach, optimal power split between both of energy
sources is obtained for a series HEV [49]. They suggest

that to increase computational efficiency, the discrete state
formulation approach of DP should be used. To reduce the
fuel consumption, a DP based optimal control strategy for
a parallel hybrid electric truck is reported in [50]. They
developed a feedforward, parallel HEV simulator in order to
maximize fuel efficiency and proposed DP and rule-based
power optimization algorithm for sustaining mode of battery
operation. Sundstrom et al. [51] study the hybridization ratio
of two types of parallel HEVs, namely, (1) torque assist and
(2) full hybrid. Further, using DP optimal fuel consumption
is achieved for different hybridization ratios.The results show
that both fuel consumption and need of hybridization are
less in case of the full hybrid model. A medium-duty hybrid
electric truck is implemented using DP [52] to optimize
the power and fuel economy. It results in 45% higher fuel
economy than ICE truck. A near optimal powermanagement
strategy is obtained using DP, considering sustained SOC as a
constraint. Koot et al. [53] proposed an energy management
strategy for HEVs and verified it through DP, quadratic pro-
gramming, and modified DP (DP1) strategies. DP takes large
time as number of computation increases with theDC length.
To reduce the computation time for longer DCs, quadratic
programming is used which also promises global solution. In
DP1, the complete DC is divided into various segments and
DP is implemented in incremented steps for entireDC.DP1 is
preferred over DP and quadratic programming as it does not
require future knowledge of DC and exploits nonconvexity of
cost function. Further, it is easy to implement online. Electric
vehicle centric and engine-motor blended control strategies
which are applicable to PHEVs using DP to get an optimal
power split are explored by [54]. They concluded that, for
urban driving pattern, electric vehicle centric control strategy
provides better fuel economy over others. To keep energy
levels in a prescribed range without affecting the battery
health in HEVs, [55] formulated a finite horizon dynamical
optimization problem and solved it using DP. Gong et al.
[56] implement a power optimization strategy using DP for
PHEVs in charge depletion mode. For global optimization of
charge depletion control of PHEVs, two-scale DP approach
is adapted which results in reduction of fuel consumption
by 3.7% compared to conventional DP. Van Keulen et al.
[57] solve an energy management problem for HEVs and
optimize it using DP in charge sustaining mode. Gong et al.
[58] use an efficient on-board implementable two-scale DP
for PHEVs to get a global optimal solution. Electric mode of
operation is used first for known trip distance.The rest of the
distance is divided into different segments of known length
and for each segment fuel consumption and SOC level are
calculated. Finally, spatial domain optimization is performed
to find the solution. Sundström and Guzzella [59] propose a
generic DP function, to solve discrete time optimal control
problem using Bellman’s DP algorithm. The authors in [60,
61] useDP and on-board implementable energy consumption
minimization strategy (ECMS) for charge depletion mode
operation. They conclude that, for long distances and large
size batteries, ECMS and DP provide a similar fuel economy
and SOC profile. Shen and Chaoying [62] used an improved
DP to solve optimal control problem to reduce computation
time using a forward search algorithm. Along with DP,
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classical optimal control theory is applied to reduce the fuel
consumption in parallel HEVs for a known route profile.
This results in an improvement of 11% in fuel economy as
compared to standard city drive cycle [63]. Kum et al. [64]
firstly found an optimal solution using DP and estimate
battery SOC with respect to remaining trip distance using
energy-to-distance ratio (EDR). Then they implement an
adaptive supervisory power train controller (SPC) to reduce
fuel consumption and emissions based on extracted results
fromEDR and catalyst temperature system. For amultisource
HEV containing gen set, [65] proposed a DP for optimizing
power management system. In case of known trip distance
it can give global optimal solution and save 12.6% gasoline.
Li and Kar [66] use DP to design a power split device
(PSD) in PHEVs, whichminimizes the fuel consumption and
enhances the vehicle performance. Ravey et al. [67] initially
propose a method to minimize the size of the components
(energy source) using genetic algorithm. Later they use DP to
optimize the power management strategy and claim a higher
fuel economy. Shams-Zahraei et al. [68] implement an opti-
mal energy management strategy using DP considering the
significance of temperature noise factors. With the variation
in temperature, fuel efficiency, and emissions, energy man-
agement system changes even for the same driving patterns
and conditions.

(3) Stochastic Control Strategy. Stochastic strategy is a frame-
work for modelling, optimization problems that involve
uncertainty. In this strategy, an infinite-horizon stochastic
dynamic optimization problem is formulated. The power
demand from the driver is modelled as a random Markov
process. The Markov driver model predicts the future power
demands by generating the probability distribution for them.
The past decisions are not required for this prediction. The
optimal control strategy is then obtained using stochastic
dynamic programming (SDP). The obtained control law is
in the form of a stationary full-state feedback and can be
directly implemented. It is found that the obtained SDP con-
trol algorithm outperforms a suboptimal rule-based control
strategy trained from deterministic DP results. As opposed
to deterministic optimization over a given DC, the stochastic
approach optimizes the control policy over a family of diverse
driving patterns.

(a) Stochastic Dynamic Programming. Optimization method
which uses random variables to formulate an optimization
problem is called stochastic optimization. In dynamic pro-
gramming if either state or decision is known in terms of
probability function, it is called stochastic dynamic program-
ming (SDP). A high performance computing technique is
required to solve the stochastic optimal control problem.

For better optimality in comparison to supervisory con-
trol strategy, [69] proposes an infinite-horizon SDP in which
power demand by the driver is modelled as a randomMarkov
process.The control law obtained is real-time implementable
in HEVs. In a parallel hybrid electric truck, both infinite-
horizon SDP and shortest path SDP (SP-SDP) optimization
problems are formulated which yield a time-invariant causal
state-feedback controller. In SP-SDP power management

strategy variation of battery SOC from a desired set-point
is allowed to get a trade-off between fuel consumption and
emissions.The SP-SDP based controller is advantageous over
SDP as it offers better SOC control and less number of
parameters to be tuned [70]. Using SDP, [71] formulated a
hybrid power optimal control strategy using engine-in-loop
(EIL) setup, which instantly analyzes the effect of transients
on engine emissions. Tate et al. [72] used the SP-SDP to find
a trade-off between fuel consumption and tailpipe emissions
for an HEV, facilitated with a dual mode EVT. With simple
methods SP-SDP solution takes eight thousand hours while
using linear programming and duality it takes only three
hours.Moura et al. [73] presented a power optimization strat-
egy for PHEVs using SDP to optimize the power split between
ICE and electric motor for a number of DCs. At the same
time, authors proposed a trade-off for electricity and liquid
fuel usage and also analyzed the relative fuel and electricity
price variation for optimal performance. Using SP-SDP, [74]
proposes a real-time energy management controller. This
considers drive cycle as a stationary-finite scale Markov
process.This controller is found to be 11%more efficient than
an industrial baseline controller. Wang and Sun [75] propose
an SDP-extremum seeking (SDP-ES) algorithm with state-
feedback control. It contains the nature of global optimality
of SDP and SOC sustainability. Further extremum seeking
output feedback compensates for its optimal control error.
Opila et al. [76] develop an energy management strategy
based on SDP and implemented successfully in a prototype
HEV. The feature of this controller is that they run in real-
time embedded hardware with classic automotive computing
ability and the energymanagement strategy gets updated very
frequently to yield a strong driving characteristic.

(b) Genetic Algorithm. Genetic algorithm (GA) is a heuristic
search algorithm to generate the solution to optimization and
search problems. Thus a branch of artificial intelligence is
inspired by Darvin’s theory of evolution. GA begins with a
set of solutions (chromosomes) called a population.The solu-
tions from one population are taken according to their fitness
to form new ones. Most suitable solutions will get a better
chance than the poorer solutions to grow and the process is
repeated until the desired condition is satisfied. GA is a robust
and feasible approach with a wide range of search space and
rapidly optimizes the parameters using simple operations.
They are proven to be effective to solve complex engi-
neering optimization problems, characterized by nonlinear,
multimodal, nonconvex objective functions. GA is efficient
at searching the global optima, without getting stuck in local
optima.

Unlike the conventional gradient basedmethod,GA tech-
nique does not require any strong assumption or additional
information about objective parameters. GA can also explore
the solution space very efficiently. However, this method is
very time consuming and does not provide a broader view to
the designer.

Piccolo et al. [77] utilize GA for energymanagement of an
on-road vehicle and minimize the cost function containing
fuel consumption and emission terms. For dynamic and
unpredictable driving situations, a fuzzy clustering criterion
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is used with GA which reduces the computational effort and
improves the fuel economy [78]. GA in HEVs is used simul-
taneously to optimize the component sizes and to minimize
the fuel consumption and emissions [79–84].Wang and Yang
[85] implement a robust, easy, and real-time implementable
FL based energymanagement strategy and use theGA to tune
and optimize the same. To optimize the fuel consumption and
emissions in a seriesHEV,GAbased control strategy has been
used by [86]. It is a flexible and global optimal multiobjective
control strategy which is found to be better than thermostatic
and divide rectangle (DIRECT) algorithm. Reference [87]
uses multiobjective genetic algorithm (MOGA) to solve an
optimization problem for series HEV. Control strategy based
onMOGA is flexible,multiobjective and gives global optimal.
AMOGA is further used by [88, 89] to solve the optimization
problem of HEVs which optimizes control system and power
train parameters simultaneously and yields a Pareto-optimal
solution. Montazeri-Gh et al. [90] present a genetic-fuzzy
approach and find an optimal region for the engine to work.
It provides an optimal solution to the optimization problem.
Wimalendra et al. [91] applied GA to parallel HEV to find
the optimal power split for improved vehicle performance
and also promise to give maximum fuel economy for known
DC for a parallel HEV using GA. References [30, 92] imple-
mented fuzzy control strategy for reduced fuel consumption
and emissions which is optimized by GA. MOGA is devel-
oped to reduce fuel consumption and emissions as well as
to optimize power train component sizing [93]. Using non-
dominated sorting genetic algorithm (NSGA), a Pareto-
optimal solution is obtained for reduced component sizing,
fuel consumption, and emissions [94].

A genetic algorithm is a powerful optimization tool which
is particularly appropriate to multiobjective optimization.
The ability to sample trade-off surfaces in a global, efficient,
and directed way is very important for the extra knowledge it
provides. In the case where there are two or more equivalent
optima, the GA is known to drift towards one of them in a
long term perspective. This phenomenon of genetic drift has
been well observed in nature and is due to the populations
being finite. It becomes more and more important as the
populations get smaller. NSGA varies from GA only in the
way the selection operator works. Crossover and mutation
operations remain the same. This is similar to the simple GA
except the classification of nondominated fronts and sharing
operations. MOGA is a modification of GA at selection level.
MOGAmay not be able to find the multiple solutions in case
where different Pareto-optimal points correspond to the same
objective.

5.2.2. Real-Time Optimization. Due to the causal nature of
global optimization techniques, they are not suitable for real-
time analysis. Therefore, global criterion is reduced to an
instantaneous optimization, by introducing a cost function
that depends only on the present state of the system param-
eters. Global optimization techniques do not consider varia-
tions of battery SOC in the problem. Hence, a real-time opti-
mization is performed for power split while maintaining the
battery charge.

Instantaneous optimization techniques based on simpli-
fied model and/or efficiency maps are proposed in [95, 96].
Reference [95] presents the concept of real-time control
strategy for efficiency and emission optimization of a parallel
HEV. It considers all engine-motor torque pairs which fore-
cast the energy consumption and emissions for every given
point. Reference [96] developed a control strategy for parallel
hybrid vehicle in a charge sustaining mode of operation for
instantaneous fuel efficiency optimization. And to implement
the global constraint, the authors developed a nonlinear
penalty function in terms of battery SOC deviation from its
desired value.

(1) Equivalent Consumption Minimization Strategy. Paganelli
et al. propose the concept of equivalent fuel consumption for
energymanagement strategy. It reduces a global optimization
problem into an instantaneous minimization problem and
provides solution at each instant. Energy consumption min-
imization strategy (ECMS) calculates the fuel equivalent as a
function of current system status and quantities measurable
on board, online. It does not require prior knowledge of
driving pattern to get an optimal solution and it is real-time
implementable.

ECMS is developed by calculating the total fuel consump-
tion as sum of real fuel consumption by ICE and equivalent
fuel consumption of electric motor. This allows a unified
representation of both, the energy used in the battery and
the ICE fuel consumption. Using this approach, equivalent
fuel consumption is calculated on a real-time basis, as a func-
tion of the current system measured parameters. No future
predictions are necessary and only a few control parameters
are required. These parameters may vary from one HEV
topology to another as a function of the driving conditions.
ECMS can compensate the effect of uncertainties of dynamic
programming.The only disadvantage of this strategy is that it
does not guarantee charge sustainability of the plant.

Equivalent fuel consumption is calculated based on the
assumption that SOC variation in the future is compensated
by the engine running at current operating point. Jalil et al.
[97] use thermostatic control strategy to turn the engine
on/off based on SOC profile but did not yield optimal results.
Paganelli et al. [96] implement an ECMS for a hybrid electric
sport utility vehicle in charge sustaining mode, to minimize
the fuel consumption and pollutant emission. This instan-
taneous minimization results in reducing the toxic emis-
sions without degrading the fuel economy. Paganelli et al.
[98] implement an ECMS for PHEVs, which gives an instan-
taneous power split strategy in charge sustaining mode.
Paganelli et al. [99] implement an ECMS to minimize fuel
consumption of HEV by splitting the power between ICE
and electric motor. They achieve a reduction in the fuel con-
sumption by 17.5% as compared to ICE based vehicle alone.
This result is also verified using global optimization theory
as utilized in [38]. Supina and Awad [100] suggest turning
on/off the engine according to the battery energy level and
thus this results in improved fuel efficiency of 1.6% to 5% over
the thermostat control. Without the knowledge of future
driving conditions to find the real-time control of fuel con-
sumption of parallel HV is presented in [101]. It uses ECMS
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for the instantaneous optimization of the cost function and
it depends only upon the current system operation. Won et
al. [102] propose an energy management strategy for torque
distribution and charge sustenance of HEV using ECMS. In
this, a multiobjective torque distribution strategy is formu-
lated first and then it is converted into single objective linear
optimization problem. References [103, 104] implement a
modifiedECMS for a seriesHVconfigurationwith twodiffer-
ent energy sources which is a generalization of instantaneous
ECMS proposed in [98, 99]. For real-time energy manage-
ment, [105, 106] propose an adaptive equivalent consumption
minimization strategy (A-ECMS). It continuously updates
the control parameter according to road load condition
and provides a quasi-static solution for supervisory control
in comparison to ECMS and rule-based strategy. Salmasi
[107] designs a novel control strategy for series HEV, which
does not require any model of vehicle device and consumes
less computation time. Sciarretta and Guzzella [108] analyze
that ECMS is a close optimal solution for PHEV energy man-
agement. An ECMS, which is an instantaneous optimization
strategy, is implemented in a series city hybrid bus. These
buses have different power train configurations like fuel cell
and battery or diesel engine and battery [109]. Using ECMS,
[110, 111] present real time implementable control strategy
which even in the absence of future driving information
supplies optimal results for fuel consumption minimization
and toxic emission reduction. Tulpule et al. [112] propose
an ECMS, which requires knowledge of total trip distance
instead of driving pattern information to improve fuel econ-
omy. Marano et al. [113] compared ECMS and DP for the
comparison of optimal performance of PHEVs and con-
cluded ECMS as an on-board implementable control strategy.
He et al. [114] present an A-ECMS for power-split PHEVs
using predictive speed profiles. During the whole journey
optimization, window sizes are identified which result in
improvement in fuel consumption. The fuel consumption
ratio varies with DC chosen and operating modes. Cui et al.
[115] develop an energy management strategy which com-
prises two stages: (1) instantaneous optimization using ECMS
and (2) global parameter estimation using DP. Knowledge
of distance of the next charging station during travel gives
a noteworthy fuel economy and full knowledge of terrain
preview gives almost 1% of fuel economy improvement.

(2) Model Predictive Control (MPC).Model predictive control
(MPC) is a good method for dynamic model of the process
which is obtained by system identification. The main feature
of theMPC is to allow current timeslot to be optimized taking
future timeslots into account. This is achieved by optimizing
a finite time-horizon and implementing the current timeslot
only. MPC can anticipate future events and can take control
actions accordingly.

Using MPC, West et al. [116] enhance the battery lifetime
and vehicle driving range and at the same time reduce the
toxic emissions and drive train oscillations for EVs and
HEVs. Model based strategy for real-time control of parallel
hybrid without knowing future driving conditions is pro-
posed by [101]. Real-time implementable energymanagement
strategy of an HEV using MPC is presented in [117, 118].

Reference [117] uses mixed integer linear programming to
envisage the best control. They state that the predictive
optimal control offers superior fuel economy compared to
that of instantaneous strategies. In classical model predictive
control, at each step an online optimization problem is
required to solve. To address this, an MPC with improved
speed is implemented by [119]. Mahapatra [120] formulates a
model based design forHEVswith an idea to reuse this design
at various development stages. It also benefits in the form of
lower cost and time saving. Kermani et al. [121] implement a
Lagrange formula based global optimization algorithm using
MPC. An energy management strategy for a series HEV is
proposed by [122] using MPC and quadratic programming.
Using a quasi-static simulator developed in the MATLAB
environment,MPCalgorithm is applied.They also investigate
the length and type of predictions. Ripaccioli et al. [123]
describe a hybrid MPC strategy to coordinate power train
subsystem and to enforce state and control constraints.
Firstly, authors develop a hybrid dynamical model using
linear and piecewise affine identification method and then
design an MPC to reduce emissions. Borhan et al. [124]
develop a nonlinear MPC for HEVs to solve the power-
split optimization problem online. In the absence of a priori
knowledge of driving pattern, [125] presented a stochastic-
model predictive control for power management of series
HEV. Power demand from the driver is modelled as aMarkov
chain. This algorithm optimizes over a distribution of future
requested power demand from the current demand at each
sample time. Vogal et al. [126] use a predictive model to
improve fuel efficiency. The authors utilize a probabilistic
driving route prediction system and train it using inverse
reinforcement learning. Borhan et al. [127] propose an MPC
based minimum fuel consumption strategy for power-split
hybrid vehicles. The complex energy management problem
is divided into two levels. For the first level (supervisory
level) MPC is used to calculate future control sequences that
minimize a performance index and then is applied to the
first element of the computed control sequence of the hybrid
vehicle model. For a parallel HEV, an MPC torque-split
strategy is developed [128] considering the effect of the diesel
engine transient characteristic.The authors conclude that the
MPC based method can improve the fuel economy. For min-
imization of fuel consumption and to keep the SOC within
a specified range, [129] presented an MPC based controller,
which works on torque demand predictions estimated from
the desired SOC and desired vehicle speed. Cui et al. [115]
proposed an online receding controller, which works on the
principle of predictive control for parallel HEVs. The energy
management strategy based on this predictive control gives
the fuel economy of 31.6% compared to rule-based control.
This shows the potential of predictive control. The authors
conclude that predictive control strategies utilize battery
power more effectively and hence give better fuel efficiency
and reduced emissions compared to the rule-based.

(3) Neural Networks. McCulloch and Pitts in 1943 firstly
designed the neural network and Hebb in 1949 developed
the first learning rule. Artificial neural network (ANN) is a
network of artificial neurons and is a parallel computation
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technique consisting of many processing blocks connected
together in a specific way to perform a specific task. ANN is
a powerful computational method which learns and gener-
alizes from training data. This uses the principle of function
approximation. The output of a neuron is a function of the
weighted sum of the inputs and a bias. The function of
the entire neural network is simply the computation of the
outputs of all the neurons.

NN’s adaptive structure makes it suitable for any control
applications. A well designed network can get fit to any
lookup table and can adapt itself by training to update the
table data. This feature makes it better than rule-based con-
trollers. Recurrent NNs are networked with dynamic feed-
back which means they can also be modelled as dynamic
controller. NN is an effective approach for pattern recognition
and function fitting.

Baumann et al. [130] usedANNand fuzzy logic for imple-
menting a load leveling strategy and implemented a supervi-
sory controller, which takes care of fuel economy and reduced
emissions in case of different drivers and driving pattern. For
analysis and control of power split in a parallel HEV, Arsie
et al. [131] modelled a dynamic system with vehicle-driver
interaction, ICE, and electric motor/generator. Using this,
vehicle load estimation is performed using NN to optimize
the supervisory control strategy for the optimized perfor-
mance of the vehicle. Mohebbi et al. [132] presented a neuro-
fuzzy controller, which is implemented using ANFISmethod.
This controller is designed based on (1) torque required for
driving and (2) battery SOC; and it maximizes the driving
torque andminimizes the fuel consumption. Prokhorov [133]
proposed NN controller for Toyota Prius HEV based on
recurrent NN using online and offline training, including
extended Kalman filtering and simultaneous perturbation
stochastic approximation. Author claimed better results by
combining online and offline methods. For the nonlinear
control system, Liu [134] implemented a high accuracy fuzzy
neural network (FNN) controller. The membership function
of FNN is optimized using modified genetic algorithm and
error-compensationmethod and results are found better than
the normal FLC. Suzuki et al. [135] designed a hybrid con-
troller for HEVs to optimize torque distribution, liquid fuel,
and electric current consumption during vehicle propulsion
using NN with online simulation. Gong et al. [136] derived a
NNbased improved tripmodel for driving pattern of PHEVs;
hence an increased fuel economy is achieved. In lack of a
priori information about driving pattern, a real-time con-
troller using neurodynamic programming is proposed by
[137] which gives optimal power split for parallel hybrid
electric light commercial vehicle. Murphey et al. [138] used
NN to predict road and traffic conditions optimal power
split in HEVs. The authors first developed a machine-
learning framework for energy optimization in an HEV;
then they present three online intelligent energy con-
trollers: (1) IEC HEV SISE; (2) IEC HEV MISE; and (3)
IEC HEV MIME. The three online controllers were inte-
grated into the Ford Escape hybrid vehicle model for online
performance evaluation. All three online intelligent energy
controllers were trained within the machine-learning frame-
work to generate the best combination of engine power and

battery power to minimise the total fuel consumption. The
performance of IEC HEV MISE controller was found best
and led to fuel savings ranging from 5% to 19% as compared
to default Ford Escape controller.

(4) Particle Swarm Optimization. Particle swarm optimiza-
tion (PSO) is a faster, inexpensive, robust stochastic global
optimization technique developed by Eberhart and Kennedy
in 1995.This technique is used for continuous nonlinear func-
tion and was developed based on the swarm in nature as bird
[139, 140]. PSO is a heuristic evolutionary search algorithm
which is an iterative optimization method using particles
(population of candidate solutions) and moving these parti-
cles around in the search space according to a mathematical
formula over the particle’s position and velocity. In PSO,
particles move around a search space and are guided by
best known positions in the search space as well as entire
swarm’s best known position. When improved positions are
discovered, these will guide the movements of the swarm
particles. The process is repeated but does not guarantee the
satisfactory solution.

PSO is a metaheuristic approach as it makes few or no
assumptions about the problem being optimized and can
search very large spaces of candidate solutions. However,
metaheuristics such as PSOdonot guarantee an optimal solu-
tion. More specifically, PSO does not use the gradient of the
problem being optimized, whichmeans PSOdoes not require
the optimization problem to be differentiable as is required
by classical optimization methods, such as gradient descent
and quasi-Newton methods. PSO can therefore also be used
on optimization problems that are partially irregular and
noisy, change over time, and so forth.

The multilevel hierarchical control strategy optimized by
the improved PSO algorithm can properly determine the
direction and quantity of the energy flow in theHEVs/PHEVs
and make the main power train components operate at high
efficiency so that the fuel consumption can be reduced.

For parallel HEV, a multilevel hierarchical control strat-
egy is proposed by [141, 142] using MATLAB/Simulink/
Stateflow and optimized using PSO to get an optimal energy
flow between engine and electric motor. Wang et al. [143]
proposed a power control strategy to optimize fuel consump-
tion and emissions in HEVs using PSO and it is compared
with DIRECT algorithm. By simulating these strategies for
severalDCs, PSO is found to be better thanDIRECT.Wu et al.
[144] implemented an FLC for energy management system.
Membership function and the rules of FLC are optimized
by using PSO to find improved fuel economy and decreased
emissions in HEVs. For a charge sustaining operation this
strategy gives better fuel efficiency. Al-Aawar et al. [145] com-
bined PSO and electromagnetic-team fuzzy logic (EM-TFL)
together for the design optimization of the HEV power train
system to find best electromechanical component sizes for
higher efficiency and reduced fuel consumption. Desai and
Williamson [146] optimized both power train and con-
trol strategy (objective function and constrained function)
parameters using PSO for improved fuel economy and effi-
ciency and reduced emissions. Hegazy and Van Mierlo [147]
conclude that PSO consumes less time than GA to obtain
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a solution and is easier to implement. Varesi and Radan [148]
used PSO to find the optimal degree of hybridization in
series-parallel HEV using advance vehicle simulator (ADVI-
SOR) to optimize the vehicle performance with reduced fuel
consumption and emissions. To optimize the various com-
ponents of HEV, EM-TFL with PSO has been used by [149]
in the form of a case study which concludes that a smaller
size engine, electricmotor performance, is optimized and fuel
economy is improved by 22% and reduction in toxic emis-
sions is noticed. Junhong [150] proposed PSO for energy opti-
mization in PHEVs using MATLAB/Simulink and showed
an improvement in fuel economy and reduction in pollutant
emissions. Su and Chow [151] optimized the capacity of a
parking lot with five hundred PHEVs with objective func-
tion as “average SOC” and constraints as “remaining SOC,”
“remaining charge time,” and “energy prices.” Wu et al. [152]
optimized the component size and control strategy simulta-
neously in parallel HEVs. This proposed a self-adaptive PSO
algorithm and uses applied fuzzy set theory to extract the best
suitable solutions.

(5) Pontryagin’s Minimum Principle. Pontryagin’s minimum
principle (PMP), formulated in 1956 by the Russian mathe-
matician Lev Semenovich, gives the best possible control to
take a dynamical system from one state to another state in
the presence of constraints for some state or input control.
PMP is a special case of Euler-Lagrange equation of calcu-
lus of variations. For an optimum solution, PMP provides
only necessary conditions and the sufficient conditions are
satisfied by Hamilton-Jacobi-Bellman equation. In PMP, the
number of nonlinear second-order differential equations
linearly increases with the dimension so the control based
on PMP takes less computational time for getting an optimal
trajectory but it could be a local optimal, not a global solution.
Under certain assumptions optimal trajectory obtained by
PMP should be considered as a global optimal trajectory.
These are as follows: (1) trajectory obtained from PMP is
unique and satisfies the necessary and boundary conditions,
(2) some geometrical properties of the optimal field provide
the possibility of optimality clarification, and (3) as a general
statement of the second approach, the absolute optimality is,
mathematically, proven by clear proposition [153].

Geering [154] explains PMP to reduce a global energy
optimization problem into a local optimization problem. Ser-
rao and Rizzoni [155] implement an optimal control strategy
using PMP to get an optimal solution. They have converted
global optimization problem into an instantaneous optimiza-
tion problem.Kim et al. [156] applied PMP to find the optimal
control law for PHEVs using instantaneous optimization.
The available literature concludes that by proper selection of
state constraints instantaneous optimization strategy results
in near optimal solution as given byDP.A real-time controller
can be obtained as this technique becomes very simple after
selection of the state constraint. Stockar et al. [157] used
PMP to build an optimal supervisory controller by reducing a
global optimization problem into local. The advantage of this
is that it reduces computational requirement and gives the
freedom to solve the problem in the continuous time domain.
Stockar et al. [158] proposed a model based control strategy

to minimize the CO
2
emission. A supervisory energy man-

agement strategy is implemented as a global optimization
problem and then converted into local and using PMP, opti-
mal energy utilization for PHEVs is obtained. For real-time
implementation of an energy management strategy, the tools
used by [159] consist of PMP based offline optimizer which
results in ECMS and is implementable in real-time environ-
ment. A real-time optimal control can be obtained using PMP
as it uses instantaneous minimization of the Hamiltonian
function. Kim et al. [160] state that solution based on PMP
can be a global optimal under some certain assumptions.
Kim et al. [161] applied PMP based control strategies to the
PHEVs and found that it gives a number of alternative solu-
tions. They concluded the blended mode control results as
the best strategy in term of battery usage and provide a
near global optimal solution as can be obtained by DP. Kim
et al. [162] find that PMP provides a near-optimal solution
for optimal power management of HEVs if future driving
conditions are known. It is suggested to find proper costate
to keep SOC at a desired and predefined level.

As the trajectory derived from PMP might not be a
global optimal solution, therefore, the control based on PMP
can be considered as inferior to the DP. DP requires more
computing time than PMP because DP solves all possible
optimal controls to fill the optimal field. Since DP is a numer-
ical representation of the HJB equation, it needs a similar
computation load as the Hamilton-Jacobi-Bellman equation,
which solves a partial differential equation. PMP solves just
nonlinear second-order differential equations.The drawback
of DP with regard to the computational load becomes
compounded due to the “curse of dimensionality.”

6. Other Power Management Strategies

Power management methodology with CVT for HEVs is
implemented to optimize the power [102, 163, 164].Won et al.
[102] give a power management strategy for charge suste-
nance mode and torque distribution in HEV. Ceraolo et al.
[165] provide an energy flux based optimal energy consump-
tion approach which helps out in solving the problems occur-
ring at design stage. Khayyam et al. [166] provide an intelli-
gent energy management model which considers the impact
of rolling, drag, slope, and accessory loads. Under various
driving conditions this model minimizes the fuel consump-
tion. Amjad et al. [167] designed a microprocessor based
energy management strategy for the optimal power split. Ji
et al. [168] proposed a real-time energy management strategy
for a CVT based parallel HEV to avoid charging of the battery
directly through the engine. The energy recuperated during
regenerative braking is distributed to achieve a dynamic
converging characteristic. A charge blended energy manage-
ment strategy named as equivalent fuel consumptionmethod
(EFCM) for PHEVs is presented by [169]. EFCM controller
is associated with a proportion plus integral (PI) controller.
For any type of drive cycle or any size of the battery, PI
controller outputs time varying charge sustaining penalty
function which controls battery SOC. Reference [170] sug-
gested robust multivariable control systems better than exist-
ing torque management strategies. The proposed controller
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Table 1: Comparison chart for various control strategies.

Methods Structural
complexity

Computation
time

Type of
solution

Requirement of a
priori knowledge

Fuzzy logic N S G Y
Genetic algorithm Y M G N
Particle swarm optimization N M G N
Energy consumption minimization strategy Y S L N
Pontryagin’s minimum principle N S L Y
Dynamic programming Y M G Y
Model predictive N S G N
Stochastic dynamic programming Y M G N
Neural network Y S G Y
G = global, L = local, N = no, Y = yes, M = more, and S = small.

works on dynamicmodels of plant and considers the drivabil-
ity requirements. It is also capable of posing the significant
robustness in the presence of any type of uncertainties like
change in dynamics of plant and nonavailability of vehicle
load torque. Shahi et al. [171] proposed an approach for
optimal PHEV hybridization using Pareto set pursuing (PSP)
multiobjective optimization algorithm. The main feature of
this algorithm is that it uses very less time (17 days) compared
to exhaustive search approach (560 days) for PHEV 20 on
urban dynamometer driving schedule (UDDS).Moreover the
authors conclude that optimal hybridization scheme (battery,
motor, and engine should work collectively for optimum
performance) varies with DCs and AERs and strongly affects
the fuel efficiency.

7. Conclusion and Future Direction

As HEVs are gaining more popularity, the role of the energy
management system in the hybrid drive train is escalating.
A thorough description and comparison of all the control
strategies to optimize the power split between the primary
and secondary sources of HEVs/PHEVs used are given here.
Evolution of control strategies from thermostat to advanced
intelligent methods is included in the study.

Rule-based controllers are easily implementable, but the
resultant operation may be quite far from optimal; that is, the
power consumption is not optimized for the whole trip. In
order to achieve the global optimality a priori information
of trip is required. Although real-time energy management
is not directly possible using optimization-based methods,
an instantaneous cost function based strategy may result in
real-time optimization.The strategies discussed in this paper
are real-time implementable and are robust in nature. Table 1
is the concluding table and serves as a guide to choose the
correct method of optimization. It is suggested that strategies
should take less computational time, provide global optimal
results, and get fit to the dynamic simulation environment.

To obtain reduced liquid fuel consumption and larger
electric operating range without compromising with the
speed and performance of vehicle, a new technology, that is, a
PHEV, is in practice globally. PHEVs’ charge depletion mode
of operation is desirable, but a blended mode of operation

may be a promising solution to extend operating electric
range. The control strategies suggested so far are required to
be explored more in context of operating specifications and
their true potential for PHEVs.
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