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Developing matching algorithms from stereo image pairs to obtain correct disparity maps for 3D reconstruction has been the
focus of intensive research. A constant computational complexity algorithm to calculate dissimilarity aggregation in assessing
disparity based on separable successive weighted summation (SWS) among horizontal and vertical directions was proposed but
still not satisfactory.This paper presents a novel method which enables decoupled dissimilarity measure in the aggregation, further
improving the accuracy and robustness of stereo correspondence. The aggregated cost is also used to refine disparities based
on a local curve-fitting procedure. According to our experimental results on Middlebury benchmark evaluation, the proposed
approach has comparable performance when compared with the selected state-of-the-art algorithms and has the lowest mismatch
rate. Besides, the refinement procedure is shown to be capable of preserving object boundaries and depth discontinuities while
smoothing out disparity maps.

1. Introduction

Stereo vision is the technique of constructing a 3D descrip-
tion of the scene from stereo image pairs, which is important
in many computer vision tasks such as inspection [1], 3D
object recognition [2], robot manipulation [3], and autono-
mous navigation [4]. Stereo vision systems can be active
or passive. Active techniques utilize ultrasonic transducers
and structured light or laser to simplify the stereo matching
problem. On the other hand, passive stereo vision based only
on stereo image pairs is less intrusive and typically able to
provide a compact and affordable solution for range sensing.

For passive stereo vision systems, stereo matching algo-
rithms are crucial for correct and accurate depth estimation,
which find for each pixel in one image the corresponding
pixel in the other image. A 2D picture of displacements
between corresponding pixels of a stereo image pair is named
as a disparity map [5].

Reference [6] is an intensively cited classification of
stereo matching algorithms for rectified image pairs. The
paper divides most of the algorithms into four sequential
parts: matching cost calculation, cost aggregation, disparity
computation, anddisparity refinement. Among the steps, cost
aggregation determines the performance of an algorithm in
terms of computational complication and correctness.

Cost aggregation can be local [7–12] or global [13–16],
based on differences in the range of supporting regions or
windows. Global methods assume that the scene is piece-
wise smooth and search for disparity assignments over the
whole stereo pair [6], which requires high computational
operation. The local methods, also known as window-based,
typically require less memory and computation. As a result,
the window-based algorithms are popular for fast disparity
calculations [17].

Local methods tend to be sensitive to noise; however, and
its correctness at regions with sparse texture or near depth
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discontinuities relies on proper selection of window size. To
overcome this problem, [7] proposed variable windows for
matching calculation, while [8] proposed multiple windows
to enhance correctness at regions near depth discontinuities.
Nevertheless, performance of these approaches is limited,
since same aggregationweights are applied over the windows.

Recent years have seen adaptive support weight ap-
proaches [9] to improve quality of disparity maps. Unfortu-
nately, these approaches require independent supportweights
calculation for each pixel and dramatically increase compu-
tational complexity.

To simplify computation, [10] introduced joint histogram
to reduce the search region of disparity and [11] proposed the
usage of a sparse Census mask. A summed normalized cross-
correlation was proposed in [12] to calculate matching cost in
two stages. Segmentation and plane fitting on disparity planes
[13–16] are also popular to improve accuracy of disparity, but
the performance relies on correctness in both segmentation
and plane fitting.

An effective local stereo matching algorithm is intro-
duced in [18], which significantly simplifies the intensity-
dependent aggregation procedure of localmethods.The algo-
rithm aggregates cost values effectively in terms of bilateral
filtering by only four passes along regions, called separable
successive weighted summation (SWS), eliminating iteration
and support area dependency. However, the dissimilarity
measures are coupled, which significantly restrict the flexi-
bility in weighting the aggregated costs.

In this paper, we present an improved stereo matching
algorithm. Similar to [18], our algorithm uses whole regions
as matching primitives to assess disparity based on SWS
among horizontal and vertical directions. We also use the
basic metrics, such as truncated sum of absolute difference
and truncated absolute gradient difference, as dissimilarity
measure to provide a trade-off between accuracy and com-
plexity.

The main contribution of this paper is to afford a decou-
pled aggregation algorithm to access the stereomatching cost
under the framework of SWS. The algorithm is simply yet
efficient as well as robust. In addition, the resultant disparity
map is in a discrete space, which is unsuitable for image-
based rendering.Wepropose a subpixel refinement technique
that employs inferior candidate disparities, rather than spatial
neighbors, to smooth out discrete values in the disparity
map. By this arrangement for curve-fitting, even regions near
discontinuous depth can be correctly refined. Moreover, this
technique increases the resolution of a stereo algorithm with
marginal additional computation.

2. Aggregation Algorithm Design

Our stereo matching algorithm consists of three main stages.
First, initial cost values are calculated based on dissimilarity
measure between pixels in the reference and target images,
and the costs are aggregated using the proposed method.
Second, we perform initial disparity estimation by the use of
a winner-takes-all minimum search based on the aggregated
costs. Third, we check differences between the disparity
values of corresponding pixel pairs for the existence of

obscured regions and patch them by the smallest disparity
values of nearby regions. Finally, the disparity map is refined
by a proposed curve-fitting procedure.

2.1. Cost Definition. Assuming that the image pair is rectified
and horizontally aligned, two dissimilaritymeasures between
the pixels on the reference image and the target image are
used in this work.

The truncated absolute difference cost, 𝑒
𝐷
, is defined as

the absolute difference between the intensity of pixels with the
corresponding pixel being shifted 𝑑 pixels, along horizontal
direction on the reference image:

𝑒
𝐷
(𝑥, 𝑦, 𝑑) = min[
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𝐼
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𝐷
] ,

(1)

where 𝐼
𝑅
and 𝐼
𝑇
are the intensities of the pixels on reference

and target images with 𝑛 = 1, 2, 3 corresponding to three-
channel colors: 𝑅, 𝐺, and 𝐵, respectively, (𝑥, 𝑦) are pixel
coordinates, and ℎ

𝐷
is a threshold value for 𝑒

𝐷
with ℎ

𝐷
> 0.

The use of a threshold to restrict cost value has been a well-
adopted practice to reduce the effects of noise and potential
mismatch in obscured regions.

Besides, the truncated absolute gradient difference cost is
defined as
𝑒
𝐺
(𝑥, 𝑦, 𝑑)

= min[
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(2)

where ∇
𝑥
and ∇

𝑦
are the horizontal and vertical gradient

operators, respectively, and ℎ
𝐺
is a threshold value for 𝑒

𝐺
with

ℎ
𝐺
> 0.

2.2. Cost Aggregation. Aggregation of primary costs deter-
mines correctness and accuracy of disparity estimation [19–
21]. Based on the observation that costs, such as the absolute
difference and the absolute gradient difference, represent dif-
ferent dissimilarity characteristics, they should be indepen-
dently weighted in aggregation. This section proposes a new
method that is compatible with separable successive weighted
summation (SWS) [18] while efficiently provides decoupled
dissimilarity aggregation for robust stereo matching.

Once the 𝑒
𝐷
and 𝑒
𝐺
cost measures are obtained, as was

defined in the last subsection, the aggregated cost function 𝐶
is set as the weighted sum of both measures according to a
weighting factor, 𝜆:

𝐶 (𝑥, 𝑦, 𝑑) = 𝜆

𝑚

∑
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𝑛
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+ (1 − 𝜆)
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≜ 𝜆𝐶
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(𝑥, 𝑦, 𝑑) + (1 − 𝜆) 𝐶𝐺

(𝑥, 𝑦, 𝑑) .

(3)
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In (3), definition of the weightings,𝑊
𝑖𝑥
,𝑊
𝑗𝑦
,𝑈
𝑖𝑥
, and𝑈

𝑗𝑦
,

are based on the operational principles of bilateral filters [22]
to dramatically reduce computation:
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The values of 𝑊
𝑖𝑥

and 𝑊
𝑗𝑦

increase with smaller 𝑒
𝐷
,

while the values of 𝑈
𝑖𝑥

and 𝑈
𝑗𝑦

rise with lesser 𝑒
𝐺
. Also,

the weightings are the multiples of horizontal and vertical
weightings, which decrease with the increase of distances
to the reference pixels. Hence, for each pixel, neighboring
pixels with similar intensity have higher support during the
aggregation.

The aggregation is a two-dimensional convolution. To
reduce the computational complexity, each convolution is
further decomposed into four one-dimensional convolutions
[18].These one-dimensional convolutions operate from left to
right, from right to left, from top to bottom, and from bottom
to top, respectively.

Let us take the absolute difference part of 𝐶, denoted
as 𝐶
𝐷
in (3), as an example. If we define the left-to-right

weighted sum, 𝐶L2R
𝐷

, as

𝐶
L2R
𝐷
(𝑥, 𝑗, 𝑑) ≜
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𝑒
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from the definition of𝑊
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we have that 𝐶L2R
𝐷

can be written in a recursive form
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𝐶
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Similarly, wemay define the right-to-left weighted sum,𝐶R2L
𝐷

,
as

𝐶
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𝐷
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We have that

𝐶
𝐷
(𝑥, 𝑦, 𝑑) =
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−𝑒
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Note that, in (13), we have defined

𝐶
𝐻
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(𝑥, 𝑗, 𝑑)

(14)

to simplify the following derivation.
In the vertical direction, if we define the top-to-bottom

and bottom-to-top weighted sums, 𝐶T2B
𝐷

and 𝐶B2T
𝐷

, as

𝐶
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we have that
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In calculating (16), both 𝐶T2B
𝐷
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𝐷
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obtained as

𝐶
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𝐷
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𝐶
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Hence, the first part of the aggregated cost, 𝐶
𝐷
, can be

efficiently calculated by (10), (12), and (17).
With similar procedure, we have that

𝐶
𝐺
(𝑥, 𝑦, 𝑑) = 𝐶
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𝐺
(𝑥, 𝑗, 𝑑) ,
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(𝑥, 𝑗, 𝑑) ,

𝐶
R2L
𝐷
(𝑥, 𝑗, 𝑑) ≜

𝑚

∑

𝑖=𝑥+1

𝑊
𝑖𝑥
𝑒
𝐷
(𝑖, 𝑗, 𝑑) + 𝑒

𝐷
(𝑥, 𝑗, 𝑑) .

(20)

These terms can all be written in the following recursive form:

𝐶
T2B
𝐺
(𝑥, 𝑦, 𝑑) = 𝑈

(𝑦−1)𝑦
𝐶
T2B
𝐺
(𝑥, 𝑦 − 1, 𝑑) + 𝑒

𝐺
(𝑥, 𝑦, 𝑑) ,

𝐶
B2T
𝐺
(𝑥, 𝑦, 𝑑) = 𝑈

𝑦(𝑦+1)
𝐶
B2T
𝐺
(𝑥, 𝑦 + 1, 𝑑) + 𝑒

𝐺
(𝑥, 𝑦, 𝑑) ,

𝐶
L2R
𝐺
(𝑥, 𝑗, 𝑑) = 𝑈

(𝑥−1)𝑥
𝐶
L2R
𝐺
(𝑥 − 1, 𝑗, 𝑑) + 𝑒

𝐺
(𝑥, 𝑗, 𝑑) ,

𝐶
R2L
𝐺
(𝑥, 𝑗, 𝑑) = 𝑈

𝑥(𝑥+1)
𝐶
R2L
𝐺
(𝑥 + 1, 𝑗, 𝑑) + 𝑒

𝐺
(𝑥, 𝑗, 𝑑) .

(21)

2.3. Disparity Computation. In the last section, the matching
cost is aggregated through weighted summation over the
entire image, nd the disparity which provides minimum cost
is assigned to the corresponding pixel. That is, the assigned
disparity for a pixel in the reference image, 𝐷ref, is the one
with the minimum aggregated matching cost:

𝑑Ref (𝑥, 𝑦) = arg min
𝑑∈[0,1,...,𝑑max]

𝐶 (𝑥, 𝑦, 𝑑) , (22)

where [0, 1, . . . , 𝑑max] is the disparity search space with 𝑑max
being the maximum possible disparity value.

The initial disparity map normally contains obscured
outlier regions. The disparities at these regions are signifi-
cantly different when they are found from different reference
images. If 𝑑

Left
Ref and 𝑑

Right
Ref are the disparities with the left and

right images as reference images, respectively, we can apply
the Left-Right Consistency Check (LRC) [23] to determine if
a pixel is located at an obscured region:









𝑑

Left
Ref (𝑥, 𝑦) − 𝑑

Right
Ref (𝑥 − 𝑑

Left
Ref (𝑥, 𝑦) , 𝑦)









> 1,









𝑑

Right
Ref (𝑥, 𝑦) − 𝑑

Left
Ref (𝑥 + 𝑑

Right
Ref (𝑥, 𝑦) , 𝑦)









> 1.

(23)
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Once the obscured regions are found, occlusion handling
[24] can be applied to patch them with the smallest disparity
values of nearby regions, and the corresponding costs are also
assigned for disparity refinement, as to be used in the next
subsection.

2.4. Disparity Refinement. The disparity map obtained by
the method proposed in the last section is discrete, since
the disparity search space is an integer set. We propose a
smoothing technique for the disparity refinement in this
subsection.

Considering that the initial disparity has the smallest
aggregation cost in the potential solution space, we may
interpolate for refined value by fitting data sets to upward
curves. Besides, rather than directly using the neighboring
disparity for refinement, we use both the costs and disparity
in the curve-fitting.

Assuming that 𝐶(𝑥, 𝑦, 𝑑) is the cost value corresponding
to disparity 𝑑 at (𝑥, 𝑦) on the reference image, we denote
𝐶
𝑑
≜ 𝐶(𝑥, 𝑦, 𝑑), such that 𝐶

𝑑+1
≜ 𝐶(𝑥, 𝑦, 𝑑 + 1) and 𝐶

𝑑−1
≜

𝐶(𝑥, 𝑦, 𝑑 − 1), to simplify the following presentation.
Firstly, the disparity-cost sets around the pixel, (𝑑 −

1, 𝐶
𝑑−1
), (𝑑, 𝐶

𝑑
), and (𝑑 + 1, 𝐶

𝑑+1
), are fitted to a hyperbolic

function

𝜑 = 𝑓 (𝜉) = 𝑎1
𝜉 +

𝑎
2

𝜉

+ 𝑎
3
, where

𝑎
1
, 𝑎
2
, 𝑎
3
∈ 𝑅, 𝑎

1
> 0, 𝑎

2
> 0.

(24)

As the minimum value of the curve is located at 𝑑
∗

1
=

√𝑎
2
/𝑎
1
, we have that

𝑑

∗

1
=
√

(𝑑

3

− 𝑑) (𝐶
𝑑+1
+ 𝐶
𝑑−1
− 2𝐶
𝑑
)

𝑑 (𝐶
𝑑+1
+ 𝐶
𝑑−1
− 2𝐶
𝑑
) + 𝐶
𝑑+1
− 𝐶
𝑑−1

.
(25)

Secondly, an upward parabola equation

𝜃 = 𝑔 (𝜁) = 𝑏1
𝜁
2
+ 𝑏
2
𝜁 + 𝑏
3
, where

𝑏
1
, 𝑏
2
, 𝑏
3
∈ 𝑅, 𝑏

1
> 0, 𝑏

2
< 0

(26)

is used to fit other disparity-cost sets around the pixel, (𝑑 −
2, 𝐶
𝑑−2
), (𝑑, 𝐶

𝑑
), and (𝑑 + 2, 𝐶

𝑑+2
). As the minimum value of

the parabola is located at 𝑑
∗

2
= −𝑏
2
/2𝑏
1
, we have

𝑑

∗

2
= 𝑑 −

𝐶
𝑑+2
− 𝐶
𝑑−2

𝐶
𝑑+2
+ 𝐶
𝑑−2
− 2𝐶
𝑑

. (27)

The averaged value, 𝑑
∗

= (𝑑

∗

1
+ 𝑑

∗

2
)/2, is then used as the

refined disparity.

3. Experimental Study

In contrast to the approach of [18], the proposed algorithm
applied independent weights to themismatchmeasures while

Table 1: Comparison of percentage of miss-matches among the
proposed algorithm and [18] in nonoccluded regions.

Image set Algorithm
Proposed InfoPerm [18]

Tsukuba 3.53% 5.99%
Venus 0.34% 1.32%
Teddy 6.09% 6.20%
Cones 3.60% 4.58%

preserving comparable computational efficiency. Below, we
rewrite the aggregated cost function, (3), for comparison:

𝐶 (𝑥, 𝑦, 𝑑) = 𝜆

𝑚

∑

𝑖=1

𝑛

∑

𝑗=1

𝑊
𝑖𝑥
𝑊
𝑗𝑦
𝑒
𝐷
(𝑖, 𝑗, 𝑑)

+ (1 − 𝜆)

𝑚

∑

𝑖=1

𝑛

∑

𝑗=1

𝑈
𝑖𝑥
𝑈
𝑗𝑦
𝑒
𝐺
(𝑖, 𝑗, 𝑑) .

(28)

The aggregated cost function of [18] is equivalent to

𝐶

(𝑥, 𝑦, 𝑑)

=

𝑚

∑

𝑖=1

𝑛

∑

𝑗=1

𝑊
𝑖𝑥
𝑊
𝑗𝑦
[𝜇𝑒
𝐷
(𝑖, 𝑗, 𝑑) + (1 − 𝜇) 𝑒CENSUS (𝑖, 𝑗, 𝑑)] ,

(29)

where 𝑒CENSUS is the Census measure [25, 26]. It is clear from
the comparison between (28) and (29) that the proposed algo-
rithm (28) enables separate weightings on different measures
in the aggregation.

A performance comparison between the proposed
method and the algorithm of [18], denoted as InfoPerm
[18], using the Middlebury stereo test bench [27, 28] is
presented in Figure 1. In the computation, the parameters of
the proposed algorithm, ℎ

𝐷
, ℎ
𝐺
, 𝛼, 𝛽, and 𝜆, are selected as

22, 38, 32, 23, and 0.6, respectively.
In Figure 1, and hence the following presentations, dis-

parities with errors larger than 0.5 disparity levels are named
as mismatches, which are denoted in gray at non-occluded
regions and black for occluded regions. The percentages
of mismatches are further calculated and summarized in
Table 1, which shows that the proposed algorithm outper-
forms InfoPerm [18] in correctness at non-occluded regions
in the benchmark tests.

In addition to InfoPerm [18], several state-of-the-art
methods, such as SNCC [12], HistAggr2 [10], RTCensus [11],
InfoPerm [18], AdaptWeight [9], FeatureGC [13], Object-
Stereo [15], and AdaptingBP [16] were also implemented on
the Middlebury stereo test bench [25, 26] for a complete per-
formance comparison. Among them, SNCC [12], HistAggr2
[10], RTCensus [11], InfoPerm [18], and AdaptWeight [9]
are local stereo match algorithms, while FeatureGC [13],
ObjectStereo [15], are AdaptingBP [16] are global techniques.

Figure 2 shows a comparison of the disparity maps
between RTCensus [11], SNCC [12], AdaptWeight [9] and
the proposed approach, where all the disparity maps have
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 1: A comparison of disparity estimation performance between [18] and the proposed algorithms. Top-to-bottom: (1) first row: images
(Tsukuba, Venus, Teddy, and Cones) fromMiddlebury stereo database, (2) second row: ground truth disparity maps, (3) third row: disparity
maps by the InfoPerm [18] algorithm, (4) fourth row:mismatches of the InfoPerm [18] algorithm, (5) fifth row: disparitymaps by the proposed
algorithm, and (6) sixth row: mismatches of the proposed algorithm.

been refined. The results show that the proposed method has
comparable performance with these state-of-the-art meth-
ods, and the refinement strategy, introduced in Section 2.4,
is able to preserve clear boundaries.

The complete comparison of the mismatch rates between
these algorithms is summarized in Table 2. In the table,

“nonocc.” denotes the pixels in the non-occluded region, and
“disc.” represents the discontinuous but visible pixels near the
occluded regions. According to Table 2, the proposed algo-
rithm outperforms AdaptWeight [9] in all of the mismatch
evaluations, although it seems inferior to AdaptWeight [9] in
generating sharp boundary, as shown in Figure 1.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 2: Top-to-bottom: (1) color views (Tsukuba, Venus, Teddy, and Cone), (2) ground truth disparity maps, (3) disparity maps via
RTCensus [11], (4) disparity maps via SNCC [12], (5) disparity maps via AdaptWeight [9], and (6) disparity maps via the proposed approach.

It is also interesting to note that the local stereo matching
algorithms, such as RTCensus [11] and SNCC [12], out-
perform other algorithms for the Teddy and Cones image
pairs. Nevertheless, the global stereo matching algorithms,
such as FeatureGC [13] and AdaptingBP [16], perform better
for the Tsukuba and Venus image pairs. This observation
indicates that both the local and global approaches are case-
sensitive. However, the proposed approach has comparable

performance in all of the cases and has the lowest mismatch
rate in the benchmark evaluation.

4. Conclusion

Stereo matching algorithms are crucial for correct and accu-
rate depth estimation in passive stereo vision systems. A
stereo matching algorithm processes rectified stereo image



8 Mathematical Problems in Engineering

Table 2: Comparison of mismatch percentage among the proposed algorithm and several representative algorithms.

Algorithms Tsukuba Venus Teddy Cones Average percent of mismatch
nonocc. all disc. nonocc. all disc. nonocc. all disc. nonocc. all disc.

SNCC [12] 11.3 12.3 27.5 2.35 3.23 15.4 10.6 15.2 28.6 4.71 11.1 13.2 13.0
HistAggr2 [10] 15.2 15.7 16.4 6.44 7.00 12.5 11.5 18.2 24.4 7.90 13.7 14.2 13.6
RTCensus [11] 12.9 14.1 28.1 3.67 4.63 17.8 11.4 18.6 27.7 5.54 11.8 15.9 14.4
InfoPerm [18] 25.7 26.2 21.2 8.64 9.34 15.0 15.0 22.1 29.2 7.68 15.1 15.1 17.5
AdaptWeight [9] 18.1 18.8 18.6 7.77 8.40 15.8 17.6 23.9 34.0 14.0 19.7 20.6 18.1
FeatureGC [13] 8.22 8.86 13.3 4.58 4.73 10.1 14.7 17.0 32.5 11.5 18.0 21.0 13.7
ObjectStereo [15] 16.4 16.8 16.1 2.56 2.67 7.69 19.6 22.7 30.3 16.3 20.7 19.7 16.0
AdaptingBP [16] 19.1 19.3 17.4 4.84 5.08 7.84 12.8 16.7 26.3 7.02 13.2 14.0 13.6
Proposed 9.12 10.2 15.0 1.04 1.72 8.35 11.2 17.0 26.8 6.36 12.6 15.1 11.2
nonocc.: the pixels in the nonoccluded region; disc.: the visible pixels near the discontinuous regions.

pairs to generate the disparity map, which is used to cal-
culate the depth image (z-map), and hence the 3D point
cloud in camera coordinates. For practical applications, the
algorithms should require less computational resources and
provide precise disparity maps.

In this paper, we proposed an efficient stereo matching
algorithm and a refinement strategy for the disparity maps.
The algorithm effectively aggregates cost values in terms of
bilateral filtering by only four passes along regions, which is
able to provide a decoupled dissimilarity measure aggrega-
tion while preserving computational efficiency. Besides, the
refinement strategy is a simple application of the aggregated
costs that use both the costs and disparity in the curve-
fitting, rather than directly using the neighboring disparity
for refinement.

Experimental results using the Middlebury stereo test
bench [25, 26] show that the algorithm has comparable
performance with the state-of-the-art algorithms and outper-
forms the representative algorithms in the overall mismatch
rate.
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