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mathematical biolog sauss predator-prey models in which three
ecologically interag S b d and the behavior of their solutions in the
stability aspect ha nain aim of this paper is to consider the local and
global stability f ts for represented systems. Finally, stability of

wn scientists who studied in various area in mathematics such

ntroduced his standard model in mathematical biology.

dx
a5 = ax-ypx),
(1.1)

d
Z = y(or +ep()
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More general form of this model known as an intermediate mod
interactions is as follows:

Z—f =xg(x) —yp(x),

d
= y(-r+q().

one predator. One may see some analysis of pre
and one predator in references such as [2-8]. Elab
periodic predator-prey system having two preys an

one predator whi
d one predator consisting of effort rate
harvested factor is studied in [4, 5, 7]. A dyna avior of the Holling-II system with two
preys and one predator system and with im

investigated in [8].

2. The Predator-Prey Gauss Model with and Two Predators
Let us consider a system of two p ecosystem independently and
each species baits the prey. The Gaus ! d two predators may be written
as follows:

(2.1)
where x is th i d y and z are the densities of predators species.

on density for one of the predators species is zero, then the system
to the system (1.1).

lation density of prey species is zero, then system (2.1) will be converted
with two predator species that live in an ecosystem independently.
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(iii) Let the population density of two species be zero, then sy:
converted to an equation of growth rate.

(iv) The solutions orbit of system (2.1) is located in the followi
intR® =int{x; | x; >0, i=1,2,3}.

The terms p;(x) and p>(x) have the properties describ

(i) p1(0) =0, p1(x) is continuous and differentiable

(ii) p2(0) = 0, p2(x) is continuous and differentiab

3. Local Stability

We use the linearisation method to study the st
calculate the Jacobian matrix, which may be fo

dpi(x) _dpa(
m-y dx “ dx
dp (x
Noey,z) = Cly—pl( ) (3.1)
~Y2 + C2p2(x)
Now, let (x, 7, z) be the equilibriu system (2.1). Then
-p1(%) —p2(X)
Y1+ c1p1(X) 0 . (3.2)
0 —12 + 2p2(X)

AP ydpl(?) _z4p(%)

dx dx ’
Ay = Clydpt;g(f) ,
Ay =1 +api(x), (3:3)
Ay = szdp;f),

A5 ==Y+ C2p2 (E)
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Then,
Ay —p2(x) —p1(x)
A = ] |(§,y12) = A2 A3 O
Ay 0 As
Therefore,

det A = A1A3A5 + pz(E)AzA
trA=A1+ A3

Hence, the system (2.1) is locally asymptoticall
andA1+A3+A5 <0.
So, the following proposition is proved.

Proposition 3.1. Let A1 A3A5 + p2(X)Az2As + p1(x
(2.1) is locally asymptotically stable at its equilibrium poi

Az + As < 0. The system
enever it exists.

4. Global Stability

In this section, we will prove the global e system (2.1) by constructing a suitable
Lyapunov function.

Theorem 4.1. The system
x<X,y>yandz>Zz.

stable at equilibrium point (X,y, z), where

x + hy + kz, (4.1)

where h =
the last L

bviously v is a positive definite. Now take the derivative from
ct to the time t. So we have

dv dx dy  dz
ar ~ar Thar R

4.2)

/dt and dz/dt in the system (2.1), we obtain the said derivative as

—yp1(x) - zp2(x)] + h[-n1y + crypr (0)] + k[-122 + c2zp2(x)]. (4.3)
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Since (X, y, z) is an equilibrium point for system (2.1), so we can add
to dv/dt as follows:

% = [a1x - yp1(x) - zp2(x)] + h[-11y + crypr ()] + k[-2z + C
= [a1x - yp1(x) = zp2(x) — [a1X = yp1(x) - Zp2(%)] ]

+h[-ny + aiypi(x) - [-1 7 + ayp (X)]] + k[-r2z+c

= [a1(x = %) — yp1(x) + Y1 () — 2p2(x) + Zp2 ()]

+h[-1(y -7) + ciypi (x) - crypr(@)] + k[-1(z

(4.4)
and by putting h = 1/c; and k = 1/¢;, we find out
dov
= - 4.5
T (4.5)
Therefore, dv/dt <0ifx <X,y >yandz>z. T O

d analyze the stability of them.

Consider the following

(5.1)

g—z(—c + o)
a 1+ C2x).

ap —ay —asz —azXx —aszx
bzy —bl + bzx 0 . (52)

3z 0 —C1 + X
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So

ay 0 0
Tl 0,00) = 0 -t 0
0 0 —C1

Thus, the origin is a saddle point for the system (5.1).
The Jacobian matrix for the above system at the e

given by
A1 = Sl /by /ar0) = 54)
Thus,
det(A; - (5.5)
Hence, the equilibrium poi rbolic point for the system (5.1).
The Jacobian matri /2,0, a1/ a3) is obtained by
@me_ma
C2b C
M (5.6)
C
0 0
det(As — AI) = (—b1 Lo A) ()3 + a1c1>. (5.7)
C2

(c1/¢2,0, a1/ az) is hyperbolic point for the system (5.1).
out the following proposition.

lowing statements are true for the system (5.1).
ibrium point (0,0,0) is a saddle point.
brium points (b1 /by, a1/ ay,0) and (c1/¢2,0, a1/ as) are hyperbolic points.
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5.2. Analysis of Example 2

In the second example, we consider that there are two predator sp

It is clear that x #0.

Moreover, the equilibrium points of sys .8) are given by

<ﬂ,o,0>, ( @ o, 2 ,o). (5.9)
ap ap + asvy ap + a,o,

Also, its Jacobian matrix is as follow:

—asXxX

0 (5.10)

1_72_ %

DX
Now by subs (a1/ay,0,0) and simplifying, the Jacobian

matrix becomes
_ aias _ ajas
! ap a

1 o | (5.11)

igenvalues of the e matrix are Ay = Ay = 0 and A3 = —a;. Thus, the system
point (a1/a»,0,0) is stable.
obian matrix at the equilibrium point (a1/(az + a4v2),0, v2a1/(az + asvs))

ajap apas ajay
ap + as oy ay + asvy ap + asoy
]l(al/(ﬂ2+a4 2),0,02a1/ (@r+asvs)) = 0 1 0 : (5.12)

(%} 0 1



8 Abstract and A

The eigenvalues of the above matrix are Ay = 1,1, = =1 and A3 = a1a,/(az
equilibrium point (a;/ay,0,0) is a saddle point for the system (5.8).
Finally, the last equilibrium point is given by

a aio 0
ap + aszo, ! apy + aso, ! g

where its Jacobian matrix is as follows:

a1a
ap + aszop
A= ]l(a1/(a2+a3v1),a1v1/(a2+a3v1),0) = (2] (514)
and so
(5.15)
Therefore, the system (5.8) is locally a e above equilibrium point.
Therefore, we can summarize t f ollowing proposition.

< o o1 0). (5.16)

ap + aszv; ! ap + aszov; !
tem is stable at rium point (ay/ay,0,0).
+ a4v2),0,v2a1/(az + asvy)) is saddle point for the above system.

,a101/ (ax+ azvy),0) is locally asymptotically stable for the said

, one may make the Gauss system having one prey and two
able globally. Furthermore, it can be guessed that the generaliza-
with existing n-preys and m-predators is globally asymptotically
wing statements hold.

of each prey is less than the corresponding component in related equi-
oint.
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(ii) The density of each predator is greater than the corresponding
related equilibrium point. Moreover, one may determine the local stabil
particular model of the Gauss system having one prey and,
(5.1) and (5.8) by using the linearisation method.
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