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Abstract. We present exact solutions of the incompressible Navier-Stokes equations in a background linear
shear flow. The method of construction is based on Kelvin’s investigations into linearized disturbances in
an unbounded Couette flow. We obtain explicit formulae for all three components of a Kelvin mode in
terms of elementary functions. We then prove that Kelvin modes with parallel (though time-dependent)
wave vectors can be superposed to construct the most general plane transverse shearing wave. An explicit
solution is given, with any specified initial orientation, profile and polarization structure, with either
unbounded or shear-periodic boundary conditions.

1 Introduction

In 1986 Craik and Criminale [1] presented a class of exact solutions of the Navier-Stokes equations which were
wavelike disturbances in background shear flows. Since then these solutions have proved extremely useful in the
study of astrophysical and atmospheric fluid dynamics; a very useful collection of exact solutions can be found in [2].
The approach taken in [1] was a generalization of a century-old method invented by Kelvin [3] to study linearized
perturbations of Couette flows; see also [4]. These shearing wave solutions, also referred to as Kelvin modes, have
time-dependent wave vectors and amplitudes. This feature makes them extremely useful in local stability analysis [5,
6]. Although a single Kelvin mode is an exact solution of the full Navier-Stokes (NS) equations, it has been remarked [1]
that until about 1965 there seems to be no evidence that this was so recognized; in fact, the first published mention
is as late as 1983 [7]. Moreover, an explicit formula has been published [3,1] for only one of the three components of
the disturbance.

In this paper we present exact solutions for all three components of the velocity field of a Kelvin mode, in closed
form using only elementary mathematical functions. We identify a subset of these modes whose wave vectors —though
time-dependent— remain parallel to each other for all time. These are used to synthesize the most general plane
transverse shearing wave, which can have any specified initial orientation, profile and polarization structure, with
either unbounded or shear-periodic boundary conditions.

Let (ê1, ê2, ê3) be the unit basis vectors of a Cartesian coordinate system in the laboratory frame. Using notation
x = (x1, x2, x3) for the position vector and t for time, we write the total fluid velocity as (Sx1ê2 + v), where S is the
rate of shear parameter and v(x, t) is the incompressible disturbance (∇ · v = 0), which obeys the NS equations

(∂t + Sx1∂2) v + Sv1ê2 + (v · ∇) v = −∇p + ν∇2v,

∇2p = −∇ · [(v · ∇) v] − 2S∂2v1. (1)
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We seek a solution in the form of a single Kelvin mode

vk(x, t) = Re
{
A(k, t) exp

[
iksh(t) · x

]}
,

pk(x, t) = Re
{
ψ(k, t) exp

[
iksh(t) · x

]}
, (2)

where the time-dependent sheared wave vector, ksh(t), has components

ksh
1 = k1 − Stk2, ksh

2 = k2, ksh
3 = k3, (3)

with k ≡ (k1, k2, k3) being a constant wave vector. Our task now is to determine the amplitudes A(k, t). Incompress-
ibility requires that ksh(t) · A(k, t) = 0. Therefore, when eqs. (2) and (3) are substituted in eqs. (1), the nonlinear
term, (v · ∇)v vanishes because

(A · ∇) exp
[
iksh(t) · x

]
=

(
iksh(t) · A

)
exp

[
iksh(t) · x

]
= 0. (4)

The pressure can be eliminated by using the second of eqs. (1): |ksh(t)|2ψ = 2iSk2A1, where |ksh(t)|2 = [(k1−Stk2)2 +
k2
2 + k2

3]. Then A satisfies

∂tA + SA1ê2 = 2S

(
k2k

sh(t)
|ksh(t)|2

)
A1 − ν

∣
∣ksh(t)

∣
∣2 A. (5)

We now obtain explicit solutions for A. To do this, define a new amplitude variable, a(k, t), by

A(k, t) = G̃ν(k, t)a(k, t), (6)

where G̃ν(k, t) is a Fourier-space viscous Green’s function,

G̃ν(k, t) = exp
[
−ν

∫ t

0

ds
∣
∣ksh(s)

∣
∣2

]
= exp

[
−ν

(
k2t − Sk1k2t

2 +
S2

3
k2
2t

3

)]
. (7)

When eqs. (6) and (7) are substituted in eq. (5), we obtain the following equations for the three components of a(k, t):

∂ta1 − 2S

[
(k1 − Stk2)k2

(k1 − Stk2)2 + k2
2 + k2

3

]
a1 = 0, (8)

∂ta2 − 2S

[
k2
2

(k1 − Stk2)2 + k2
2 + k2

3

− 1
2

]
a1 = 0, (9)

∂ta3 − 2S

[
k2k3

(k1 − Stk2)2 + k2
2 + k2

3

]
a1 = 0. (10)

Equation (8) can be solved to get an explicit expression for a1(k, t),

a1(k, t) =
k2

(k1 − Stk2)2 + k2
2 + k2

3

a1(k, 0), (11)

which is given in [3]. When this is substituted in eqs. (9) and (10), the latter can be integrated to obtain expressions
for a2(k, t) and a3(k, t). However, neither Kelvin nor anyone else, to the best of our knowledge, have published explicit
formulae for these two components1. Thus we were pleasantly surprised to find that a2(k, t) and a3(k, t) could be
expressed entirely in terms of elementary functions:

a2(k, t) = a2(k, 0) +

{
k2k2

3

k2(k2
2 + k2

3)3/2

[

arctan

(
k1 − Stk2√

k2
2 + k2

3

)

− arctan

(
k1√

k2
2 + k2

3

)]

− k2k2

k2
2 + k2

3

[
k1 − Stk2

(k1 − Stk2)2 + k2
2 + k2

3

− k1

k2

]}
a1(k, 0), (12)

a3(k, t) = a3(k, 0) −
{

k2k3

(k2
2 + k2

3)3/2

[

arctan

(
k1 − Stk2√

k2
2 + k2

3

)

− arctan

(
k1√

k2
2 + k2

3

)]

+
k2k3

k2
2 + k2

3

[
k1 − Stk2

(k1 − Stk2)2 + k2
2 + k2

3

− k1

k2

]}
a1(k, 0). (13)

1 Markus and Press [4] study perturbations of plane Couette flow using Kelvin waves. However, their analysis is limited to
two-dimensional perturbations, whereas the shearing waves we consider here are fully three-dimensional.



Eur. Phys. J. Plus (2017) 132: 403 Page 3 of 5

Fig. 1. Plots of the three components of the velocity field, measured at the origin, as functions of St. We have chosen k = (1, 1, 1)
and a(k, 0) = (1, 0,−1). The bold lines are for v1(0, t), the dotted for v2(0, t), and the dashed for v3(0, t). Panel (a) is for the non-
viscous case, ν = 0, so the velocity components are identical to the amplitudes, a(k, t), of eqs. (11)–(13). Panel (b) corresponds
to (νk2/S) = −0.1, and all three components ultimately suffer viscous decay.

Incompressibility requires that ksh(t) · a(k, t) = 0, which is guaranteed if the initial conditions are chosen such that
k · a(k, 0) = 0. From eqs. (11)–(13), we can see that, at late times, a1(k, t) → 0, whereas both a2(k, t) and a3(k, t)
saturate at non-zero values. This happens because the background flow shears out the a1 component, and generates
the a2 and a3 components.

When eqs. (6), (7), (11)–(13) are substituted in eq. (2), we obtain the full velocity field of a single Kelvin mode;
it is readily verified that structure of the mode depends on the dimensionless variable, St, and the dimensionless
parameter, (νk2/S). The spatio-temporal behavior of these modes is briefly explored through figs. 1 and 2. In order
to understand its time variation, it is convenient to measure the velocity components at the origin, as is done in fig. 1.
Then, v(0, t) = G̃ν(k, t)Re{a(k, t)}. Figure 1(a) corresponds to the case of zero viscosity, (νk2/S) = 0. In this case
G̃ν = 1, and the plots give v(0, t) = Re{a(k, t)}, where we can see the decay of a1 and the saturation of a2 and a3

discussed above. In fig. 1(b), we have chosen (νk2/S) = −0.1, so that all three components of v(0, t) ultimately suffer
viscous decay. It can be seen that, before this decay, there is transient amplification of v2 and v3, due to competition
between shear and viscosity. For larger values of viscosity (not shown here), this transient amplification may be absent
because the damping can overwhelm shear.

Until now we have considered an unbounded flow. However, in numerical simulations of the local dynamics of differ-
entially rotating discs in astrophysical systems [8,9], it is customary to employ “shear-periodic” boundary conditions.
Let us define sheared coordinates by

xsh
1 = x1, xsh

2 = x2 − Stx1, xsh
3 = x3. (14)

These may be thought of as the Lagrangian coordinates of fluid elements that are carried along by the background
shear flow. A function is said to be shear-periodic when it is a periodic function of (xsh

1 , xsh
2 , xsh

3 ) with periodicities
(L1, L2, L3), respectively. The phase of the function vk can be written as ksh(t)·x = k ·xsh. Therefore, a shear-periodic
Kelvin mode has wave vectors k ∈ (2πm1/L1, 2πm2/L2, 2πm3/L3), where the mi take any integer values.

We now use the explicit expressions obtained for the Kelvin modes to construct the most general plane transverse
shearing wave. Let us consider two Kelvin modes, vk(x, t) and vk′(x, t) corresponding to wave vectors k and k′, which
are parallel to each other but could differ in magnitudes. Using eqs. (3), we see that the corresponding sheared wave
vectors, ksh(t) and k

′sh(t), are also parallel to each other for all time. Incompressibility implies that vk(x, t) and
vk′(x, t) are perpendicular to ksh(t) and k

′sh(t) for all time. So, if we superpose vk(x, t) and vk′(x, t), the nonlinear
term in the NS equations vanishes, because the superposed velocity field remains parallel to the wavefronts. Thus the
superposition of an arbitrary number of Kelvin modes, all with wave vectors parallel to each other, is an exact solution
of the NS equations.

Let us choose a unit vector n̂ = (n1, n2, n3), and define the sheared (non-unit) vector nsh(t) by

nsh
1 = (n1 − Stn2) , nsh

2 = n2, nsh
3 = n3. (15)



Page 4 of 5 Eur. Phys. J. Plus (2017) 132: 403

Fig. 2. Evolution of plane transverse shearing wavepackets. The polarization structure of the velocity field is indicated on some
sections of the plane wavefronts. The parameters values used are S = −1, ν = 1, W0 = 1, σ = 10 and k = 1. Panels (a) and
(b): Linearly polarized (h = 0) wavepackets at times t = 0 and t = 1. Panels (c) and (d): Right circularly polarized (h = 1) at
times t = 0 and t = 1.

Superposing all Kelvin modes with wave vectors q = qn̂, where −∞ < q < ∞, we obtain an exact plane-wave solution
of the NS equations with wavefronts perpendicular to nsh(t):

vi(x, t) =
∫ ∞

−∞

dq

2π
G̃ν(qn̂, t) W̃i(q) exp

[
iqnsh(t) · x

]

+

[
Fi

(
nsh(t)

)
− Fi(n̂)

n2
2 + n2

3

] ∫ ∞

−∞

dq

2π
G̃ν(qn̂, t) W̃1(q) exp

[
iqnsh(t) · x

]
, (16)

where the dimensionless and scale-invariant functions, Fi(Q), are defined by

Fi(Q) =
Q3√

Q2
2 + Q2

3

[
Q3

Q2
δi2 − δi3

]
arctan

(
Q1√

Q2
2 + Q2

3

)

− Q1Qi

Q2
. (17)

For shear-periodic boundary conditions, the integral over q in eq. (16) should be replaced by an appropriate sum.
The W̃ (q) are Fourier-space initial conditions corresponding to the a(k, 0) of eqs. (11)–(13), and must satisfy the
incompressibility condition, n̂ · W̃ (q) = 0. They are determined by the initial profile and polarization stucture of the
plane wave. At t = 0, the wavefronts are perpendicular to n̂, so we write v(x, 0) = W (n̂ · x), where n̂ · W = 0. Note
that the only constraint on the initial condition, W , is that it is a vector field that is perpendicular everywhere to
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the unit vector n̂; otherwise it is a quite arbitrary function of its one argument. Thus, no restriction need be placed
on the initial profile and polarization structure of the initial conditions. Given W (y), we can determine W̃ (q) =∫ ∞
−∞ dy W (y) exp[−iqy], and use this in eq. (16) to calculate v(x, t).

Equation (16) is a complete solution for a general plane shearing wave, expressed in terms of a Fourier integral.
However, it is physically more transparent to rewrite the right side in terms of real-space quantities. To do this,
we must introduce the real-space viscous Green’s function, whose natural definition is with respect to the sheared
coordinates [10]

Gν

(
xsh, t

)
=

∫
dk

(2π)3
G̃ν(k, t) exp

[
ik · xsh

]
. (18)

The properties of this function are discussed in [11,10], where it is shown that it takes the form of a sheared heat
kernel, which is an anisotropic Gaussian function of xsh with time-dependent coefficients; all the principal axes increase
without bound and rotate against the direction of the background shear. Noting that nsh(t) ·x = n̂ ·xsh, we can write
the general form of the plane shearing wave as

vi(x, t) =
∫

d3ξ Gν(ξ, t)Wi

(
n̂ · [xsh(t) − ξ]

)
+

[
Fi

(
nsh(t)

)
− Fi(n̂)

n2
2 + n2

3

] ∫
d3ξ Gν(ξ, t)W1

(
n̂ · [xsh(t) − ξ]

)
. (19)

As an illustrative example let us consider the following initial condition, corresponding to a polarized wavepacket
with wave vector pointing along the x2-axis: n̂ = ê2, W1(x2) = W0 exp[−x2

2/2σ2] sin kx2, W2 = 0, W3(x2) =
hW0 exp[−x2

2/2σ2] cos kx2, where −1 ≤ h ≤ 1. The wavepacket is linearly polarized when h = 0, and right/left
circularly polarized when h = ±1; other values of h correspond to different degrees of elliptical polarizations. At a
later time, the wave vector has components nsh

1 = −St, nsh
2 = 1, nsh

3 = 0. Since both Wi and Gν(ξ, t) are Gaussian
functions, the integrals in eq. (19) can be performed analytically and v(x, t) evaluated explicitly. We present the results
graphically in fig. 2 for two cases, one linearly polarized and the other right circularly polarized. As the wavepackets
are sheared, they undergo transient amplification due to the combined action of shear and viscosity, and at late times
suffer viscous damping.

In conclusion, we have constructed exact solutions of the Navier-Stokes equation with a background linear shear
flow. All three components of the velocity field of the Kelvin modes are given in closed form using only elementary
mathematical functions. It is demonstrated that, when Kelvin modes with parallel wave vectors are superposed, they
remain exact solutions. We give in explicit form the most general plane transverse shearing waves, with any specified
initial orientation, profile and polarization structure, with either unbounded or shear-periodic boundary conditions.
Of particular interest is the stability of our solutions; if they are stable then they might serve as local representations
of disturbances in simulations of astrophysical flows.
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