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A class of martingale estimating functions is convenient and plays an important role for
inference for nonlinear time series models. However, when the information about the first
four conditional moments of the observed process becomes available, the quadratic estimating
functions are more informative. In this paper, a general framework for joint estimation of
conditional mean and variance parameters in time series models using quadratic estimating
functions is developed. Superiority of the approach is demonstrated by comparing the information
associated with the optimal quadratic estimating function with the information associated with
other estimating functions. Themethod is used to study the optimal quadratic estimating functions
of the parameters of autoregressive conditional duration (ACD) models, random coefficient
autoregressive (RCA)models, doubly stochastic models and regressionmodels with ARCH errors.
Closed-form expressions for the information gain are also discussed in some detail.

1. Introduction

Godambe [1] was the first to study the inference for discrete time stochastic processes using
estimating function method. Thavaneswaran and Abraham [2] had studied the nonlinear
time series estimation problems using linear estimating functions. Naik-Nimbalkar and
Rajashi [3] and Thavaneswaran and Heyde [4] studied the filtering and prediction problems
using linear estimating functions in the Bayesian context. Chandra and Taniguchi [5],
Merkouris [6], and Ghahramani and Thavaneswaran [7] among others have studied the
estimation problems using estimating functions. In this paper, we study the linear and
quadratic martingale estimating functions and show that the quadratic estimating functions
are more informative when the conditional mean and variance of the observed process
depend on the same parameter of interest.
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This paper is organized as follows. The rest of Section 1 presents the basics of
estimating functions and information associated with estimating functions. Section 2 presents
the general model for the multiparameter case and the form of the optimal quadratic
estimating function. In Section 3, the theory is applied to four different models.

Suppose that {yt, t = 1, . . . , n} is a realization of a discrete time stochastic process,
and its distribution depends on a vector parameter θ belonging to an open subset Θ of the
p-dimensional Euclidean space. Let (Ω,F, Pθ) denote the underlying probability space, and
let Fy

t be the σ-field generated by {y1, . . . ,yt, t ≥ 1}. Let ht = ht(y1, . . . ,yt,θ), 1 ≤ t ≤ n be
specified q-dimensional vectors that are martingales. We consider the class M of zero mean
and square integrable p-dimensional martingale estimating functions of the form

M =

{
gn(θ) : gn(θ) =

n∑
t=1

at−1ht

}
, (1.1)

where at−1 are p × q matrices depending on y1, . . . ,yt−1, 1 ≤ t ≤ n. The estimating functions
gn(θ) are further assumed to be almost surely differentiable with respect to the components
of θ and such that E[(∂gn(θ)/∂θ) | Fy

n−1] and E[gn(θ)gn(θ)
′ | Fy

n−1] are nonsingular for all
θ ∈ Θ and for each n ≥ 1. The expectations are always taken with respect to Pθ. Estimators of
θ can be obtained by solving the estimating equation gn(θ) = 0. Furthermore, the p×pmatrix
E[gn(θ)gn(θ)

′ | Fy

n−1] is assumed to be positive definite for all θ ∈ Θ. Then, in the class of all
zero mean and square integrable martingale estimating functions M, the optimal estimating
function g∗n(θ) which maximizes, in the partial order of nonnegative definite matrices, the
information matrix

Ign(θ) =
(
E
[
∂gn(θ)
∂θ

| Fy

n−1

])′(
E
[
gn(θ)gn(θ)′ | Fy

n−1
])−1(

E
[
∂gn(θ)
∂θ

| Fy

n−1

])
(1.2)

is given by

g∗n(θ) =
n∑
t=1

a∗t−1ht =
n∑
t=1

(
E
[
∂ht
∂θ

| Fy

t−1

])′(
E
[
hth′

t | F
y

t−1
])−1

ht, (1.3)

and the corresponding optimal information reduces to E[g∗n(θ)g
∗
n(θ)

′ | Fy

n−1].
The function g∗n(θ) is also called the “quasi-score” and has properties similar to those

of a score function in the sense that E[g∗n(θ)] = 0 and E[g∗n(θ)g
∗
n(θ)

′] = −E[∂g∗n(θ)/∂θ′]. This is
a more general result in the sense that for its validity, we do not need to assume that the true
underlying distribution belongs to the exponential family of distributions. The maximum
correlation between the optimal estimating function and the true unknown score justifies the
terminology “quasi-score” for g∗n(θ). Moreover, it follows from Lindsay [8, page 916] that if
we solve an unbiased estimating equation gn(θ) = 0 to get an estimator, then the asymptotic
variance of the resulting estimator is the inverse of the information Ign . Hence, the estimator
obtained from a more informative estimating equation is asymptotically more efficient.
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2. General Model and Method

Consider a discrete time stochastic process {yt, t = 1, 2, . . .}with conditional moments

μt(θ) = E
[
yt | Fy

t−1
]
,

σ2
t (θ) = Var

(
yt | Fy

t−1
)
,

γt(θ) =
1

σ3
t (θ)

E
[(
yt − μt(θ)

)3 | Fy

t−1
]
,

κt(θ) =
1

σ4
t (θ)

E
[(
yt − μt(θ)

)4 | Fy

t−1
]
− 3.

(2.1)

That is, we assume that the skewness and the excess kurtosis of the standardized variable
yt do not contain any additional parameters. In order to estimate the parameter θ based
on the observations y1, . . . , yn, we consider two classes of martingale differences {mt(θ) =
yt − μt(θ), t = 1, . . . , n} and {st(θ) = m2

t (θ) − σ2
t (θ), t = 1, . . . , n} such that

〈m〉t = E
[
m2
t | F

y

t−1
]
= E
[(
yt − μt

)2 | Fy

t−1
]
= σ2

t ,

〈s〉t = E
[
s2t | F

y

t−1
]
= E
[(
yt − μt

)4 + σ4
t − 2σ2

t

(
yt − μt

)2 | Fy

t−1
]
= σ4

t (κt + 2),

〈m, s〉t = E
[
mtst | Fy

t−1
]
= E
[(
yt − μt

)3 − σ2
t

(
yt − μt

) | Fy

t−1
]
= σ3

t γt.

(2.2)

The optimal estimating functions based on the martingale differences mt

and st are g∗M(θ)=−∑n
t=1(∂μt/∂θ)(mt/〈m〉t) and g∗S(θ)=−

∑n
t=1(∂σ

2
t /∂θ)(st/〈s〉t), re-

spectively. Then, the information associated with g∗M(θ) and g∗S(θ) are Ig∗M(θ) =∑n
t=1(∂μt/∂θ)(∂μt/∂θ

′)(1/〈m〉t) and Ig∗S(θ) =
∑n

t=1(∂σ
2
t /∂θ)(∂σ

2
t /∂θ

′)(1/〈s〉t), respectively.
Crowder [9] studied the optimal quadratic estimating function with independent observa-
tions. For the discrete time stochastic process {yt}, the following theorem provides optimality
of the quadratic estimating function for the multiparameter case.

Theorem 2.1. For the general model in (2.1), in the class of all quadratic estimating functions of the
form GQ = {gQ(θ) : gQ(θ) =

∑n
t=1(at−1mt + bt−1st)},

(a) the optimal estimating function is given by g∗Q(θ) =
∑n

t=1(a
∗
t−1mt + b∗

t−1st), where

a∗t−1 =

(
1 − 〈m, s〉2t

〈m〉t〈s〉t

)−1(
−∂μt
∂θ

1
〈m〉t

+
∂σ2

t

∂θ

〈m, s〉t
〈m〉t〈s〉t

)
,

b∗
t−1 =

(
1 − 〈m, s〉2t

〈m〉t〈s〉t

)−1(
∂μt
∂θ

〈m, s〉t
〈m〉t〈s〉t

− ∂σ2
t

∂θ

1
〈s〉t

)
;

(2.3)
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(b) the information Ig∗
Q
(θ) is given by

Ig∗Q(θ)=
n∑
t=1

(
1− 〈m, s〉2t

〈m〉t〈s〉t

)−1(
∂μt
∂θ

∂μt

∂θ′
1

〈m〉t
+
∂σ2

t

∂θ

∂σ2
t

∂θ′
1

〈s〉t
−
(
∂μt
∂θ

∂σ2
t

∂θ′ +
∂σ2

t

∂θ

∂μt

∂θ′

)
〈m, s〉t
〈m〉t〈s〉t

)
;

(2.4)

(c) the gain in information Ig∗Q(θ) − Ig∗M(θ) is given by

n∑
t=1

(
1− 〈m, s〉2t

〈m〉t〈s〉t

)−1(
∂μt
∂θ

∂μt

∂θ′
〈m, s〉2t
〈m〉2t 〈s〉t

+
∂σ2

t

∂θ

∂σ2
t

∂θ′
1

〈s〉t
−
(
∂μt
∂θ

∂σ2
t

∂θ′ +
∂σ2

t

∂θ

∂μt

∂θ′

)
〈m, s〉t
〈m〉t〈s〉t

)
;

(2.5)

(d) the gain in information Ig∗Q(θ) − Ig∗S(θ) is given by

n∑
t=1

(
1 − 〈m, s〉2t

〈m〉t〈s〉t

)−1(
∂μt
∂θ

∂μt

∂θ′
1

〈m〉t
+
∂σ2

t

∂θ

∂σ2
t

∂θ′
〈m, s〉2t

〈m〉t〈s〉t − 〈m, s〉2t

−
(
∂μt
∂θ

∂σ2
t

∂θ′ +
∂σ2

t

∂θ

∂μt

∂θ′

)
〈m, s〉t
〈m〉t〈s〉t

)
.

(2.6)

Proof. We choose two orthogonal martingale differences mt and ψt = st − σtγtmt, where the
conditional variance of ψt is given by 〈ψ〉t = (〈m〉t〈s〉t − 〈m, s〉2t )/〈m〉t = σ4

t (κt + 2 − γ2t ).
That is, mt and ψt are uncorrelated with conditional variance 〈m〉t and 〈ψ〉t, respectively.
Moreover, the optimal martingale estimating function and associated information based on
the martingale differences ψt are

g∗Ψ(θ) =
n∑
t=1

(
∂μt
∂θ

〈m, s〉t
〈m〉t

− ∂σ2
t

∂θ

)
ψt〈
ψ
〉
t

=
n∑
t=1

(
1 − 〈m, s〉2t

〈m〉t〈s〉t

)−1

×
((

−∂μt
∂θ

〈m, s〉2t
〈m〉2t 〈s〉t

+
∂σ2

t

∂θ

〈m, s〉t
〈m〉t〈s〉t

)
mt +

(
∂μt
∂θ

〈m, s〉t
〈m〉t〈s〉t

− ∂σ2
t

∂θ

1
〈s〉t

)
st

)
,

Ig∗Ψ(θ) =
n∑
t=1

(
∂μt
∂θ

〈m, s〉t
〈m〉t

− ∂σ2
t

∂θ

)(
∂μt

∂θ′
〈m, s〉t
〈m〉t

− ∂σ2
t

∂θ′

)
1〈
ψ
〉
t

=
n∑
t=1

(
1 − 〈m, s〉2t

〈m〉t〈s〉t

)−1

×
(
∂μt
∂θ

∂μt

∂θ′
〈m, s〉2t
〈m〉2t 〈s〉t

+
∂σ2

t

∂θ

∂σ2
t

∂θ′
1

〈s〉t
−
(
∂μt
∂θ

∂σ2
t

∂θ′ +
∂σ2

t

∂θ

∂μt

∂θ′

)
〈m, s〉t
〈m〉t〈s〉t

)
.

(2.7)
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Then, the quadratic estimating function based onmt and ψt becomes

g∗Q(θ)=
n∑
t=1

(
1− 〈m, s〉2t

〈m〉t〈s〉t

)−1

×
((

−∂μt
∂θ

1
〈m〉t

+
∂σ2

t

∂θ

〈m, s〉t
〈m〉t〈s〉t

)
mt+

(
∂μt
∂θ

〈m, s〉t
〈m〉t〈s〉t

− ∂σ
2
t

∂θ

1
〈s〉t

)
st

) (2.8)

and satisfies the sufficient condition for optimality

E
[
∂gQ(θ)
∂θ

| Fy

t−1

]
= Cov

(
gQ(θ),g∗Q(θ) | F

y

t−1
)
K, ∀gQ(θ) ∈ GQ, (2.9)

where K is a constant matrix. Hence, g∗Q(θ) is optimal in the class GQ, and part (a) follows.
Since mt and ψt are orthogonal, the information Ig∗Q(θ) = Ig∗M(θ) + Ig∗Ψ(θ) and part (b) follow.
Hence, for each component θi, i = 1, . . . , p, neither g∗

M(θi) nor g∗
S(θ) is fully informative, that

is, Ig∗
Q
(θi) ≥ Ig∗

M
(θi) and Ig∗

Q
(θi) ≥ Ig∗

S
(θi).

Corollary 2.2. When the conditional skewness γ and kurtosis κ are constants, the optimal quadratic
estimating function and associated information, based on the martingale differences mt = yt − μt and
st = m2

t − σ2
t , are given by

g∗Q(θ) =

(
1 − γ2

κ + 2

)−1 n∑
t=1

1
σ3
t

((
−σt

∂μt
∂θ

+
γ

κ + 2
∂σ2

t

∂θ

)
mt +

1
κ + 2

(
γ
∂μt
∂θ

− 1
σt

∂σ2
t

∂θ

)
st

)
,

Ig∗Q(θ) =

(
1 − γ2

κ + 2

)−1(
Ig∗M(θ) + Ig∗S(θ) −

γ

κ + 2

n∑
t=1

1
σ3
t

(
∂μt
∂θ

∂σ2
t

∂θ′ +
∂σ2

t

∂θ

∂μt

∂θ′

))
.

(2.10)

3. Applications

3.1. Autoregressive Conditional Duration (ACD) Models

There is growing interest in the analysis of intraday financial data such as transaction and
quote data. Such data have increasingly been made available by many stock exchanges.
Unlike closing prices which are measured daily, monthly, or yearly, intra-day data or high-
frequency data tend to be irregularly spaced. Furthermore, the durations between events
themselves are random variables. The autoregressive conditional duration (ACD) process
due to Engle and Russell [10] had been proposed to model such durations, in order to study
the dynamic structure of the adjusted durations xi, with xi = ti − ti−1, where ti is the time
of the ith transaction. The crucial assumption underlying the ACD model is that the time
dependence is described by a function ψi, where ψi is the conditional expectation of the
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adjusted duration between the (i − 1)th and the ith trades. The basic ACD model is defined
as

xi = ψiεi,

ψi = E
[
xi | Fx

ti−1
]
,

(3.1)

where εi are the iid nonnegative random variables with density function f(·) and unit
mean, and Fx

ti−1 is the information available at the (i − 1)th trade. We also assume that εi
is independent of Fx

t−1. It is clear that the types of ACD models vary according to different
distributions of εi and specifications of ψi. In this paper, we will discuss a specific class of
models which is known as ACD (p, q)model and given by

xt = ψtεt,

ψt = ω +
p∑
j=1

ajxt−j +
q∑
j=1

bjψt−j ,
(3.2)

where ω > 0, aj > 0, bj > 0, and
∑max(p,q)

j=1 (aj + bj) < 1. We assume that εt’s are iid nonnegative
random variables with mean με, variance σ2

ε , skewness γε, and excess kurtosis κε. In order to
estimate the parameter vector θ = (ω, a1, . . . , ap, b1, . . . , bq)

′, we use the estimating function
approach. For this model, the conditional moments are μt = μεψt, σ2

t = σ2
ε ψ

2
t , γt = γε, and

κt = κε. Letmt = xt − μt and st = m2
t − σ2

t be the sequences of martingale differences such that
〈m〉t = σ2

ε ψ
2
t , 〈s〉t = σ4

ε (κε + 2)ψ4
t , and 〈m, s〉t = σ3

ε γεψ
3
t . The optimal estimating function and

associated information based on mt are given by g∗M(θ) = −(με/σ2
ε )
∑n

t=1(1/ψ
2
t )(∂ψt/∂θ)mt

and Ig∗M(θ) = (μ2
ε/σ

2
ε )
∑n

t=1(1/ψ
2
t )(∂ψt/∂θ)(∂ψt/∂θ

′). The optimal estimating function and the
associated information based on st are given by g∗S(θ) = −2/σ2

ε (κε + 2)
∑n

t=1(1/ψ
3
t )(∂ψt/∂θ)st

and Ig∗S(θ) = (4/(κε + 2))
∑n

t=1(1/ψ
2
t )(∂ψt/∂θ)(∂ψt/∂θ

′). Then, by Corollary 2.2 that the
optimal quadratic estimating function and associated information are given by

g∗Q(θ) =
1

σ2
ε

(
κε + 2 − γ2ε

) n∑
t=1

(
−με(κε + 2) + 2σεγε

ψ2
t

∂ψt
∂θ

mt +
μεγε − 2σεψt

σεψ
3
t

∂ψt
∂θ

st

)
,

Ig∗Q(θ) =

(
1 − γ2ε

κε + 2

)−1(
Ig∗M(θ) + Ig∗S(θ) −

4μεγε
σε(κε + 2)

n∑
t=1

1
ψ2
t

∂ψt
∂θ

∂ψt

∂θ′

)

=
4σ2

ε + μ
2
ε(κε + 2) − 4μεσεγε

σ2
ε

(
κε + 2 − γ2ε

) n∑
t=1

1
ψ2
t

∂ψt
∂θ

∂ψt

∂θ′ ,

(3.3)

the information gain in using g∗Q(θ) over g
∗
M(θ) is

(
2σε − μεγε

)2
σ2
ε

(
κε + 2 − γ2ε

) n∑
t=1

1
ψ2
t

∂ψt
∂θ

∂ψt

∂θ′ , (3.4)
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and the information gain in using g∗Q(θ) over g
∗
S(θ) is

(
με(κε + 2) − 2σεγε

)2
σ2
ε

(
κε + 2 − γ2ε

)
(κε + 2)

n∑
t=1

1
ψ2
t

∂ψt
∂θ

∂ψt

∂θ′ , (3.5)

which are both nonnegative definite.
When εt follows an exponential distribution, με = 1/λ, σ2

ε = 1/λ2, γε = 2, and κε = 3.
Then, Ig∗M(θ) =

∑n
t=1(1/ψ

2
t )(∂ψt/∂θ)(∂ψt/∂θ

′), Ig∗S(θ) = (4/5)
∑n

t=1(1/ψ
2
t )(∂ψt/∂θ)(∂ψt/∂θ

′),
and Ig∗Q(θ) =

∑n
t=1(1/ψ

2
t )(∂ψt/∂θ)(∂ψt/∂θ

′), and hence Ig∗Q(θ) = Ig∗M(θ) > Ig∗S(θ).

3.2. Random Coefficient Autoregressive Models

In this section, we will investigate the properties of the quadratic estimating functions for the
random coefficient autoregressive (RCA) time series which were first introduced by Nicholls
and Quinn [11].

Consider the RCA model

yt = (θ + bt)yt−1 + εt, (3.6)

where {bt} and {εt} are uncorrelated zero mean processes with unknown variance σ2
b and

variance σ2
ε = σ2

ε (θ) with unknown parameter θ, respectively. Further, we denote the
skewness and excess kurtosis of {bt} by γb, κb which are known, and of {εt} by γε(θ), κε(θ),
respectively. In the model (3.6), both the parameter θ and β = σ2

b need to be estimated. Let
θ = (θ, β)′, we will discuss the joint estimation of θ and β. In this model, the conditional
mean is μt = yt−1θ then and the conditional variance is σ2

t = y2
t−1β + σ2

ε (θ). The parameter θ
appears simultaneously in the mean and variance. Letmt = yt − μt and st = m2

t − σ2
t such that

〈m〉t = y2
t−1σ

2
b + σ

2
ε , 〈s〉t = y4

t−1σ
4
b(κb + 2) + σ4

ε (κε + 2) + 4y2
t−1σ

2
bσ

2
ε , 〈m, s〉t = y3

t−1σ
3
bγb + σ

3
ε γε.

Then the conditional skewness is γt = 〈m, s〉t/σ3
t , and the conditional excess kurtosis is

κt = 〈s〉t/σ4
t − 2.

Since ∂μt/∂θ = (yt−1, 0)
′ and ∂σ2

t /∂θ = (∂σ2
ε /∂θ, y

2
t−1)

′, by applying Theorem 2.1, the
optimal quadratic estimating function for θ and β based on the martingale differencesmt and
st is given by g∗Q(θ) =

∑n
t=1 a

∗
t−1mt + b∗

t−1st, where

a∗t−1 =

(
1 − 〈m, s〉2t

〈m〉t〈s〉t

)−1((
− yt−1
〈m〉t

+
∂σ2

ε

∂θ

〈m, s〉t
〈m〉t〈s〉t

)
,
y2
t−1〈m, s〉t
〈m〉t〈s〉t

)′
,

b∗
t−1 =

(
1 − 〈m, s〉2t

〈m〉t〈s〉t

)−1((
yt−1〈m, s〉t
〈m〉t〈s〉t

− ∂σ2
ε

∂θ

1
〈s〉t

)
,−y

2
t−1

〈s〉t

)′
.

(3.7)
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Hence, the component quadratic estimating function for θ is

g∗
Q(θ) =

n∑
t=1

(
1 − 〈m, s〉2t

〈m〉t〈s〉t

)−1

×
((

− yt−1
〈m〉t

+
∂σ2

ε

∂θ

〈m, s〉t
〈m〉t〈s〉t

)
mt +

(
yt−1〈m, s〉t
〈m〉t〈s〉t

− ∂σ2
ε

∂θ

1
〈s〉t

)
st

)
,

(3.8)

and the component quadratic estimating function for β is

g∗
Q

(
β
)
=

n∑
t=1

(
1 − 〈m, s〉2t

〈m〉t〈s〉t

)−1(
y2
t−1〈m, s〉tmt

〈m〉t〈s〉t
− y2

t−1st
〈s〉t

)
. (3.9)

Moreover, the information matrix of the optimal quadratic estimating function for θ and β is
given by

Ig∗Q(θ) =

(
Iθθ Iθβ

Iβθ Iββ

)
, (3.10)

where

Iθθ =
n∑
t=1

(
1 − 〈m, s〉2t

〈m〉t〈s〉t

)−1⎛⎝ y2
t−1

〈m〉t
+

(
∂σ2

ε

∂θ

)2
1

〈s〉t
− 2

∂σ2
ε

∂θ

yt−1〈m, s〉t
〈m〉t〈s〉t

⎞
⎠, (3.11)

Iθβ = Iβθ =
n∑
t=1

(
1 − 〈m, s〉2t

〈m〉t〈s〉t

)−1(
∂σ2

ε

∂θ

1
〈s〉t

− yt−1〈m, s〉t
〈m〉t〈s〉t

)
y2
t−1, (3.12)

Iββ =
n∑
t=1

(
1 − 〈m, s〉2t

〈m〉t〈s〉t

)−1
y4
t−1

〈s〉t
. (3.13)

In view of the parameter θ only, the conditional least squares (CLS) estimating
function and the associated information are directly given by gCLS(θ) =

∑n
t=1 yt−1mt and

ICLS(θ) = (
∑n

t=1 y
2
t−1)

2
/
∑n

t=1 y
2
t−1〈m〉t. The optimal martingale estimating function and the

associated information based on mt are given by g∗
M(θ) = −∑n

t=1(yt−1mt/〈m〉t) and Ig∗
M
(θ) =∑n

t=1(y
2
t−1/〈m〉t). Moreover, the inequality

(
n∑
t=1

y2
t−1〈m〉t

)(
n∑
t=1

y2
t−1

〈m〉t

)
≥
(

n∑
t=1

y2
t−1

)2

(3.14)

implies that ICLS(θ)≤Ig∗
M
(θ). Hence the optimal estimating function is more informative than

the conditional least squares one. The optimal quadratic estimating function based on the
martingale differences mt and st is given by (3.8) and (3.11), respectively. It is obvious to see
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that the information of g∗
Q(θ) is larger than that of g∗

M(θ). Therefore, we can conclude that
for the RCA model, ICLS(θ) ≤ Ig∗

M
(θ) ≤ Ig∗

Q
(θ), and hence, the estimate obtained by solving

the optimal quadratic estimating equation is more efficient than the CLS estimate and the
estimate obtained by solving the optimal linear estimating equation.

3.3. Doubly Stochastic Time Series Model

Random coefficient autoregressive models we discussed in the previous section are special
cases of what Tjøstheim [12] refers to as doubly stochastic time series model. In the nonlinear
case, these models are given by

yt = θtf
(
t,Fy

t−1
)
+ εt, (3.15)

where {θ + bt} of (3.6) is replaced by a more general stochastic sequence {θt} and yt−1 is
replaced by a function of the past, Fy

t−1. Suppose that {θt} is a moving average sequence of
the form

θt = θ + at + at−1, (3.16)

where {at} consists of square integrable independent random variables with mean zero and
variance σ2

a. We further assume that {εt} and {at} are independent, then E[yt | Fy

t−1] depends
on the posterior mean ut = E[at | Fy

t−1], and variance vt = E[(at − ut)2 | Fy

t−1] of at. Under the
normality assumption of {εt} and {at}, and the initial condition y0 = 0, ut and vt satisfy the
following Kalman-like recursive algorithms (see [13, page 439]):

ut(θ) =
σ2
af
(
t,Fy

t−1
)(
yt − (θ +mt−1)f

(
t,Fy

t−1
))

σ2
e(θ) + f2

(
t,Fy

t−1
)(
σ2
a + vt−1

) ,

vt(θ) = σ2
a −

σ4
af

2
(
t,Fy

t−1
)

σ2
e (θ) + f2

(
t,Fy

t−1
)(
σ2
a + vt−1

) ,
(3.17)

where u0 = 0 and v0 = σ2
a. Hence, the conditional mean and variance of yt are given by

μt(θ) = (θ + ut−1(θ))f
(
t,Fy

t−1
)
,

σ2
t (θ) = σ

2
e(θ) + f

2
(
t,Fy

t−1
)(
σ2
a + vt−1(θ)

)
,

(3.18)

which can be computed recursively.
Let mt = yt − μt and st = m2

t − σ2
t , then {mt} and {st} are sequences of martingale

differences. We can derive that 〈m, s〉t = 0, 〈m〉t = σ2
e(θ) + f

2(t,Fy

t−1)(σ
2
a + vt−1(θ)), and 〈s〉t =
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2σ4
e(θ) + 4f2(t,Fy

t−1)σ
2
e(θ)(σ

2
a + vt−1(θ)) + 2f4(t,Fy

t−1)(σ
2
a + vt−1(θ))

2. The optimal estimating
function and associated information based onmt are given by

g∗
M(θ) = −

n∑
t=1

f
(
t,Fy

t−1
)(

1 +
∂ut−1(θ)
∂θ

)
mt

〈m〉t
,

Ig∗
M
(θ) =

n∑
t=1

f2
(
t,Fy

t−1
)
(1 + ∂ut−1(θ)/∂θ)

2

〈m〉t
.

(3.19)

Then, the inequality

(
n∑
t=1

f2
(
t,Fy

t−1
)(

1 +
∂ut−1(θ)
∂θ

)2

〈m〉t
)⎛⎜⎝ n∑

t=1

f2
(
t,Fy

t−1
)
(1 + ∂ut−1(θ)/∂θ)

2

〈m〉t

⎞
⎟⎠

≥
(

n∑
t=1

f2
(
t,Fy

t−1
)(

1 +
∂ut−1(θ)
∂θ

)2
)2

(3.20)

implies that

ICLS(θ) =

(∑n
t=1 f

2
(
t,Fy

t−1
)
(1 + ∂ut−1(θ)/∂θ)

2
)2

∑n
t=1 f

2
(
t,Fy

t−1
)
(1 + ∂ut−1(θ)/∂θ)

2〈m〉t
≤ Ig∗

M
(θ), (3.21)

that is, the optimal linear estimating function g∗
M(θ) is more informative than the conditional

least squares estimating function gCLS(θ).
The optimal estimating function and the associated information based on st are given

by

g∗
S(θ) = −

n∑
t=1

(
∂σ2

e(θ)
∂θ

+ f2
(
t,Fy

t−1
)∂vt−1(θ)

∂θ

)
st
〈s〉t

,

Ig∗
S
(θ) =

n∑
t=1

(
∂σ2

e(θ)
∂θ

+ f2
(
t,Fy

t−1
)∂vt−1(θ)

∂θ

)2
1

〈s〉t
.

(3.22)

Hence, by Theorem 2.1, the optimal quadratic estimating function is given by

g∗
Q(θ) = −

n∑
t=1

1

σ2
e(θ) + f2

(
t,Fy

t−1
)(
σ2
a + vt−1(θ)

)

×

⎛
⎜⎝(f(t,Fy

t−1
)(

1 +
∂ut−1(θ)
∂θ

))
mt +

∂σ2
e(θ)/∂θ + f2

(
t,Fy

t−1
)
(∂vt−1(θ)/∂θ)

σ2
e(θ) + f2

(
t,Fy

t−1
)(
σ2
a + vt−1(θ)

) st

⎞
⎟⎠.

(3.23)
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And the associated information, Ig∗
Q
(θ) = Ig∗

M
(θ) + Ig∗

S
(θ), is given by

Ig∗
Q
(θ) =

n∑
t=1

1

σ2
e(θ) + f2

(
t,Fy

t−1
)(
σ2
a + vt−1(θ)

)

×

⎛
⎜⎝f2

(
t,Fy

t−1
)(

1 +
∂ut−1(θ)
∂θ

)2

+

(
∂σ2

e(θ)/∂θ + f2
(
t,Fy

t−1
)
(∂vt−1(θ)/∂θ)

)2
σ2
e(θ) + f2

(
t,Fy

t−1
)(
σ2
a + vt−1(θ)

)
⎞
⎟⎠.

(3.24)

It is obvious to see that the information of g∗
Q is larger than that of g∗

M and g∗
S, and hence, the

estimate obtained by solving the optimal quadratic estimating equation is more efficient than
the CLS estimate and the estimate obtained by solving the optimal linear estimating equation.
Moreover, the relations

∂ut(θ)
∂θ

= −
f2
(
t,Fy

t−1
)
σ2
a(1 + ∂ut−1(θ)/∂θ)

(
σ2
e(θ) + f

2
(
t,Fy

t−1
)
σ2
a + vt−1(θ)

)
(
σ2
e(θ) + f2

(
t,Fy

t−1
)(
σ2
a + vt−1(θ)

))2

−
σ2
a

(
yt − f

(
t,Fy

t−1
)
(θ + ut−1(θ))

)(
∂σ2

e(θ)/∂θ + f2
(
t,Fy

t−1
)
(∂vt−1(θ)/∂θ)

)
(
σ2
e(θ) + f2

(
t,Fy

t−1
)(
σ2
a + vt−1(θ)

))2 ,

∂vt(θ)
∂θ

=
σ4
af

2
(
t,Fy

t−1
)(
∂σ2

e(θ)/∂θ + f2
(
t,Fy

t−1
)
∂vt−1(θ)/∂θ

)
(
σ2
e(θ) + f2

(
t,Fy

t−1
)(
σ2
a + vt−1(θ)

))2
(3.25)

can be applied to calculate the estimating functions and associated information recursively.

3.4. Regression Model with ARCH Errors

Consider a regression model with ARCH (s) errors εt of the form

yt = xtβ + εt, (3.26)

such that E[εt | Fy

t−1] = 0, and Var(εt | Fy

t−1) = ht = α0 + α1ε
2
t−1 + · · · + αsε

2
t−s. In this

model, the conditional mean is μt = xtβ, the conditional variance is σ2
t = ht, and the

conditional skewness and excess kurtosis are assumed to be constants γ and κ, respectively. It
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follows form Theorem 2.1 that the optimal component quadratic estimating function for the
parameter vector θ = (β1, . . . , βr , α0, . . . , αs)

′ = (β′,α′)′ is

g∗Q(β) =
1

(κ + 2)

(
1 − γ2

κ + 2

)−1

×
n∑
t=1

1
h2t

⎛
⎝
⎛
⎝−ht(κ + 2)xt′ + 2h1/2t γ

s∑
j=1

αjxt′εt−j

⎞
⎠mt +

⎛
⎝h1/2t γxt′ − 2

s∑
j=1

αjxt′εt−j

⎞
⎠st

⎞
⎠,

g∗Q(α) =
1

(κ + 2)

(
1 − γ2

κ + 2

)−1

×
n∑
t=1

1
h2t

(
h1/2t γ

(
1, ε2t−1, . . . , ε

2
t−p
)′
mt −

n∑
t=1

(
1, ε2t−1, . . . , ε

2
t−p
)′
st

)
.

(3.27)

Moreover, the information matrix for θ = (β′,α′)′ is given by

I =

(
1 − γ2

κ + 2

)−1(Iββ Iβα

Iαβ Iαα

)
, (3.28)

where

Iββ =
n∑
t=1

(
xt′xt
ht

+
4
(
1, ε2t−1, . . . , ε

2
t−s
)′(1, ε2t−1, . . . , ε2t−s)

h2t (κ + 2)

)
,

Iβα = −
n∑
t=1

(
h1/2t γtxt′ − 2

∑s
j=1 αjxt

′εt−j
)(

1, ε2t−1, . . . , ε
2
t−s
)

h2t (κ + 2)
,

Iαβ = I ′βα = −
n∑
t=1

(
1, ε2t−1, . . . , ε

2
t−s
)′(

h1/2t γxt − 2
∑s

j=1 αjxtεt−j
)

h2t (κ + 2)
,

Iαα =
n∑
t=1

(
1, ε2t−1, . . . , ε

2
t−s
)′(1, ε2t−1, . . . , ε2t−s)

h2t (κ + 2)
.

(3.29)

It is of interest to note that when {εt} are conditionally Gaussian such that γ = 0, κ = 0,

E

⎡
⎢⎣
(∑s

j=1 αjxt
′εt−j
)(

1, ε2t−1, . . . , ε
2
t−s
)

h2t (κ + 2)

⎤
⎥⎦ = 0, (3.30)
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the optimal quadratic estimating functions for β and α based on the estimating functions
mt = yt − xtβ and st = m2

t − ht, are, respectively, given by

g∗Q(β) = −
n∑
t=1

1
h2t

⎛
⎝htxt′mt +

n∑
t=1

⎛
⎝ s∑

j=1

αjxt′εt−j

⎞
⎠st

⎞
⎠,

g∗Q(α) = −
n∑
t=1

1
h2t

(
1, ε2t−1, . . . , ε

2
t−s
)′
st.

(3.31)

Moreover, the information matrix for θ = (β′,α′)′ in (3.28) has Iβα = Iαβ = 0,

Iββ =
n∑
t=1

htxt′xt + 2
(∑s

j=1 αjxt
′εt−j
)(∑s

j=1 αjxtεt−j
)

h2t
,

Iαα =
n∑
t=1

(
1, ε2t−1, . . . , ε

2
t−s
)′(1, ε2t−1, . . . , ε2t−s)
2h2t

.

(3.32)

4. Conclusions

In this paper, we use appropriate martingale differences and derive the general form of
the optimal quadratic estimating function for the multiparameter case with dependent
observations. We also show that the optimal quadratic estimating function is more
informative than the estimating function used in Thavaneswaran and Abraham [2].
Following Lindsay [8], we conclude that the resulting estimates are more efficient in general.
Examples based on ACDmodels, RCA models, doubly stochastic models, and the regression
model with ARCH errors are also discussed in some detail. For RCA models and doubly
stochastic models, we have shown the superiority of the approach over the CLS method.
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