
Scientific Programming 15 (2007) 213–234 213
IOS Press

GRIDCC: A Real-time Grid workflow system
with QoS

A. Stephen McGougha, Asif Akrama, Li Guoa, Marko Krznarica, Luke Dickensa, David Collingb,
Janusz Martyniakb, Roger Powellc, Paul Kyberdc, Chenxi Huangc, Constantinos Kotsokalisd and
Panayiotis Tsanakasd

aLondon e-Science Centre, Imperial College London, London, UK
E-mail: {asm, aakram1, liguo, marko, lwd03}@doc.ic.ac.uk
bHigh Energy Physics Group, Imperial College London, London, UK
E-mail: {d.colling, janusz.martyniak}@imperial.ac.uk
cBrunel University, School of Engineering & Design, Uxbridge, UK
E-mail: {Roger.Powell, Paul.Kyberd, Chenxi.Huang}@brunel.ac.uk
dComputing Systems Laboratory, National Technical University of Athens, Athens, Greece
E-mail: ckotso@cslab.ece.grnet.gr, panag@cs.ntua.gr

Abstract. The over-arching aim of Grid computing is to move computational resources from individual institutions where they
can only be used for in-house work, to a more open vision of vast online ubiquitous ‘virtual computational’ resources which
support individuals and collaborative projects. A major step towards realizing this vision is the provision of instrumentation –
such as telescopes, accelerators or electrical power stations – as Grid resources, and the tools to manage these resources online.
The GRIDCC project attempts to satisfy these requirements by providing the following four co-dependent components; a flexible
wrapper for publishing instruments as Grid resources; workflow support for the orchestration of multiple Grid resources in a
timely manner; the machinery to make reservation agreements on Grid resources; and the facility to satisfy quality of service
(QoS) requirements on elements within workflows. In this paper we detail the set of services developed as part of the GRIDCC
project to provide the last three of these components. We provide a detailed architecture for these services along with experimental
results from load testing experiments. These services are currently deployed as a test-bed at a number of institutions across
Europe, and are poised to provide a ‘virtual lab’ to production level applications.

1. Introduction

The Grid [21] has emerged in recent years as
paradigm for allowing users, potentially as members
of distributed communities – often referred to as Vir-
tual Organisations, to obtain access to large quantities
of computing or storage resources while providing a
forum in which resource owners make their services
available to a wider audience. The Grid has evolved
into a Service Orientated Architecture (SOA) [29] with
Web Services [36] emerging as the de-facto commu-
nication mechanism. With the increase of users and
communities within the Grid there is a drive to support
a broader range of resource types. Thus far most Grids
have focused on making computational and, more re-

cently, data resources available. However, for the Grid
to gain mass adoption within the wider scientific and
commercial communities there is a need to integrate
instruments into the Grid. In this paper we define an
instrument to be any piece of equipment that can be
controlled through a computer interface such as tele-
scopes, particle accelerators or electricity power sta-
tions. In the rest of this paper we shall discuss scientific
instruments, however, the principals may be mapped
easily to other instrument types.

In most cases when a scientist performs an exper-
iment this will require the completion of many tasks.
These may include such things as configuring an in-
strument, collecting and storing relevant data from the
instrument, processing of this information and poten-

ISSN 1058-9244/07/$17.00  2007 – IOS Press and the authors. All rights reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/192606057?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

214 A.S. McGough et al. / GRIDCC: A Real-time Grid workflow system with QoS

tially further iterations of these tasks. These tasks,
along with a description of how they interact in order to
achieve the final result, define a workflow. Many sci-
entists now seek to automate their workflow processes
through the use of the Grid and Grid enabled resources.
This desire dramatically increases the need for work-
flows and real-time-support within the Grid. Here we
define real-time-support to mean the capability to make
resources available to the user in a timely manner.

We present here the Grid-Enabled Remote Instru-
mentation with Distributed Control and Computation
(GRIDCC) project [16]. More specifically we present
here the real-time-control of existing Grid resources
and instruments elements from the project. The GRID-
CC project is a 3 year project funded by the European
Union which started in September 2004. There are 10
project partners from Greece, Italy, Israel and the Unit-
ed Kingdom. GRIDCC is extending the Grid to in-
clude access to, and control of, distributed instruments.
Instruments work in real-time and their successful op-
eration often requires rapid interaction with conven-
tional computing/storage resources and/or with other
instruments. The real-time and interactive nature of
instrument control provides a critical requirement for
the definition of acceptable Quality of Service (QoS)
constraints for interactions between the different Grid
components.

In this paper we present those parts of the GRIDCC
architecture responsible for providing workflow and
QoS support. In Section 2 we present related work.
In Section 3 we present the architecture for a real-time
QoS aware workflow management system along with
the workflow pipeline. This we follow by a more de-
tailed breakdown of the architecture: the workflow edi-
tor with QoS support – Section 4, QoS aware workflow
optimisation – Section 5, reservation services – Sec-
tion 6 and performance repository – Section 6. In Sec-
tion 8 we evaluate the performance of our architecture
before concluding in Section 9.

2. Related work

Many Grid workflow systems and tools exist, such
as: Askalon [20], DAGMan [33], GridFlow [12], Grid-
bus Workflow [39], ICENI [25,28], Pegasus [18], and
Triana [34]. Yu and Buyya [40] present a detailed sur-
vey of existing systems and provide a taxonomy which
can be used for classifying and characterising workflow
systems. We use elements of the taxonomy related to

Quality of Service (QoS) and workflow modelling for
comparing our approach to other systems.

A prominent feature of adding instruments to the
Grid is the need for real-time remote control and mon-
itoring of instrumentation. Users and applications will
be allowed to make an Advance Reservation (AR) of
computational resources, storage elements, network
bandwidth and instruments. AR guarantees availability
of resources and instruments at times specified [5]. In
ICENI, the scheduling framework supports AR by us-
ing the meta-data of application components together
with corresponding historical data stored for the pur-
pose of performance analysis and enhancement [27,
37,38]. This approach is also used in Pegasus, Grid-
bus Workflow and Askalon. Here we adopt the idea
of a performance repository of historical information
and extend this with other factors about a service such
as its availability and reliability. Some systems such
as Askalon, DAGMan, ICENI, GridFlow and Gridbus
Workflow allow users to define their own QoS param-
eters and to specify optimization metrics such as ap-
plication execution time, desired resources and eco-
nomical cost. We are using a similar mechanism for
performance enhancement and estimation taking into
account the real-time QoS constraints. We further ex-
tend this by bringing in the ideas of hard (compulso-
ry) and soft (non-compulsory) QoS parameters. This
allows for both feature critical QoS satisfaction (such
as time-critical) and the support of preferential QoS
satisfaction. For those cases where meeting the QoS
requirements is preferable though not mission critical.

Workflow languages such as Business Process Ex-
ecution Language for Web Services (BPEL4WS) [6],
YAWL [35] and WS-Choreography [10] are powerful
languages for developing workflows based on Web Ser-
vices. However, they do not provide a mechanism for
describing QoS requirements. Our approach to over-
come this has been to develop a partner language to
use with BPEL4WS. Instead of defining a new lan-
guage for workflows with QoS requirements, or em-
bedding QoS requirements within a language such as
BPEL4WS, we use a standard BPEL4WS document
along with a second document which points to elements
within the BPEL4WS document. This allows us to an-
notate these elements of the BPEL4WS document with
QoS requirements. This allows us to take advantage of
standard BPEL4WS tooling for execution and manip-
ulation as well as support QoS requirements. As we
use XPath [14] notation to reference elements within
the BPEL4WS document our approach can be easily
adapted to other (workflow) languages based on XML.

A.S. McGough et al. / GRIDCC: A Real-time Grid workflow system with QoS 215

The development and execution of workflows within
the Grid is a complex process due to the mechanisms
used to describe them and the Web Services they are
based upon. The selection of the best resources to use
within the Grid is complicated due to its dynamic nature
with resources appearing and disappearing without no-
tice and the load on these resources changing dramati-
cally over time. These are issues that the scientist will,
in general, not wish to be concerned about. The use of
advanced reservations can help to reduce the amount
of uncertainty within the Grid. However, in general,
the selection of the best service to reserve is a complex
process. We adopt the approach of a workflow pipeline
presented by McGough et al. [26] to decompose this
problem into more manageable steps.

Huang et al. [23] have proposed a just-in-time work-
flow optimization service in which a workflow calls
a proxy service rather than the actual service, which
then determines the best resource to use. Our ap-
proach improves on this by allowing the end points in
a BPEL4WS document to be updated on the fly thus
“hiding” the cost of computing the best service in line
with execution.

Thus far we have used simple workflow optimization
heuristics however we see that our approach can be
easily adapted to use more optimal approaches such
as stochastic optimization [31] and overall workload
optimisation [3].

3. Real-time QoS aware workflow management
system

The GRIDCC Workflow Management Service
(WfMS) is defined as an end-to-end workflow pipeline.
The workflow pipeline is illustrated in Fig. 1. The sci-
entist develops a workflow within the workflow editor,
which presents an abstracted view, thus hiding much
of the complexity. Rather than presenting a generic
workflow editor the scientist is presented with an ed-
itor tailored more to their specific needs. Instruments
are presented as instrument entities rather than generic
Web Services. It is then the task of the workflow editor
(software) to generate appropriate workflow language
documents based on the scientists design. The user
may also have a number of QoS requirements, these
should be specified alongside the workflow description
and submitted to the next stage. Further discussion of
the workflow editor can be found in Section 4.

Once the workflow has been specified the process of
selecting the most appropriate set of resources is per-

Workflow Editor

Workflow Planner Workflow Observer

Workflow Execution

Fig. 1. An end-to-end workflow pipeline.

formed. This is the task of the workflow planner. With-
in the QoS document the scientist may have specified
constraints. These may be of three types:

– Specified resource: The scientist has specified the
resource that should be used. This may be due to
the fact that the scientist has placed a sample onto
a specific instrument at a given time. This informs
the planner of fixed requirements on the workflow.

– Specified requirement: The scientist may not know
the best resource to use for a given task even though
they know that a reservation will be required. This
could be for ensuring enough space is made avail-
able to store data. It is the role of the planner to
convert this into a specified resource.

– Unspecified: The resource is not specified nor is
there a specific requirement on this resource. The
planner may choose to convert this into a speci-
fied resource in order to achieve some overall QoS
requirement.

Each QoS requirement may be strict (hard), in which
case requirements should be considered mandatory –
a hard constraint of ‘this must take less than five min-
utes’ must be adhered to or the whole workflow reject-
ed. Alternatively the requirement may be soft (loose)
in which case a value is given indicating the confidence
required – a soft constraint of ‘this should complete in
less than five minutes in 80% of cases’ can be accepted
as long as the planner believes that it can achieve this
in 80% of cases. The workflow observer is designed
to deal with cases where the workflow deviates from
that planned. The observer monitors the progress of
the workflow and, if the tasks deviate from the plan,
will trigger the planner to modify the workflow in or-
der to increase the chance of the workflow completing
successfully. This is an active area of research. A full
breakdown of the workflow planner/observer can be
found in Sections 3.1 and 5.

3.1. The grid architecture

Figure 2 shows the overall architecture of the real-
time-system used within the GRIDCC project. In the

216 A.S. McGough et al. / GRIDCC: A Real-time Grid workflow system with QoS

architecture the Virtual Control Room (VCR) is the us-
er interface to the Grid. The workflow editor is inte-
grated within the VCR. The VCR also allows the user
to inspect or directly control instruments connected to
the Grid. The Workflow Management Service (WfMS)
contains the workflow planner and observer along with
the workflow engine, in the case of GRIDCC this is
the ActiveBPEL [2] engine. The workflow engine may
communicate with various Grid services such as Com-
pute Elements (CE), Storage Elements (SE) and, as de-
fined within the GRIDCC project, the Instrument Ele-
ments (IE) – a web service abstraction of an instrument
along with the Agreement Service (AS) for broker-
ing reservations with other services. The Performance
Repository (PR) contains information about previous
executions of tasks on the Grid. As both the PR and the
AS are exposed as Web Services they can be integrat-
ed into workflows as well as being used as part of the
WfMS. This allows for both “compile time” and “run
time” optimization of the workflow and its tasks.

On receiving a workflow and QoS document the
WfMS must decide, based on information from the PR
along with an understanding of the workflow, if the
submitted request can be achieved within the provided
QoS constraints. In order to achieve this the WfMS
may choose to manipulate the workflow. This may
include making reservations for tasks in the workflow
and/or changing the structure of the workflow [26].
The workflow engine is invoked and is responsible for
the ordered execution of the workflow tasks, with the
observer monitoring progress.

Figure 3 illustrates in more detail the internal struc-
ture of the WfMS. First a user must delegate their proxy
through the delegation service. This proxy will be
stored within the WfMS for later use. A BPEL4WS
document along with an associated QoS document is
received. This can first be validated before being
passed through various stages (outlined further in Sec-
tion 5) before the BPEL4WS document is submitted
to the BPEL4WS engine and the revised QoS (and
BPEL4WS) is submitted to the Observer. In order to
allow the BPEL4WS engine to communicate with the
existing Grid resources, inline SOAP message intercep-
tors (indicated as small circles within Fig. 3) are used
to manipulate the Web Services calls, and facades are
used to provide simplified composite operations and to
sign x509 certificate requests from Grid services with
delegated proxies.

The WfMS is split into three main parts those of the
BPEL engine, planner and observer. The planner con-
sists of a chain of components used to perform those

stages required to take an abstract workflow through
to a concrete workflow. The exact chain of compo-
nents within the planner chain can be adapted and is in-
spired by the SEDA [24] architecture. Each stage of the
chain will consume and produce the same documents
of BPEL4WS and QoS. Though in general the contents
of these documents will be modified at each stage. The
chain will in general contain resolvers to map invo-
cations within the workflow to resources where these
are not specified and reservers for calling the AS to
make reservations. The return path through the planner
consists of a clean up stage which will clear up any
reservations and tidy up the resources as necessary.

The WfMS may communicate with many exter-
nal Grid services that can communicate through Web
Services. These include (though are not limited to):
AS, Storage Resource Manager (SRM), WMProxy (for
communicating with CE through a Workload Manager
Service (WMS), CREAM which provides an alterna-
tive method for communicating with a WMS, PR, IE
and the LBServer which provides access to the log-
ging and bookkeeping service – a store of information
about resources on the Grid. It should be noted that
to delegate proxies to either CREAM or WMProxy it
is necessary to make the calls via a facade as direct
communication would lack the appropriate credentials.
Though the “deanonymization” of messages (see Sec-
tion 4), with the assistance of the message interceptors,
allows other secure calls to be direct.

4. Workflow editor with QoS support

In recent years, Web Services have established them-
selves as a popular ‘connection technology’ for imple-
menting a SOA. The interface required for Web Ser-
vices is described in a WSDL file (Web Service De-
scription Language) [13]. Integration of two or more
services into a more complex service can be achieved
through ‘Service Orchestration’ or workflows. These
are managed by a workflow engine, which orchestrates
the interactions between services.

The GRIDCC project is providing a web based work-
flow editor based on the BPEL4WS [6] 1.1 spec-
ification. BPEL4WS is generally regarded as the
de-facto standard for composing and orchestrating
workflows in the business environment and is now
achieving wide adoption within the scientific com-
munity. The goal of the BPEL4WS specification
is to provide a notation for specifying business pro-
cess behavior based on Web Services. BPEL4WS

A.S. McGough et al. / GRIDCC: A Real-time Grid workflow system with QoS 217

VCR
WfMS

IE

SE

CE

PR AS

Fig. 2. The GRIDCC Architecture.

Fig. 3. The architecture of the WfMS.

builds on top of the web service stack and is de-
fined entirely in XML, compatible with other emerging
technologies including WS-Reliable Messaging [8],
WS-Addressing [9], WS-Coordination [11] and WS-
Transactions [17] (BPEL4WS is not limited to only
these technologies).

4.1. Business process execution language

The BPEL4WS specification provides a rich vocab-
ulary for the description of business processes support-
ing two different types of process declaration. An ‘Ab-
stract Process’ specifies the messages exchanged be-
tween participating services without exposing the in-
ternal details of the process. An ‘Executable Process’
extends an abstract process to allow specification of the
exact details of how to perform the workflow.

The BPEL4WS 1.1 specification defines various
building blocks, known as ‘activities’. These activi-
ties can be used to specify an executable process’ busi-
ness logic to any level of complexity. Activities can be
grouped into: basic, such as procedural steps (e.g. in-
voke, receive and assign), structured, which control the
flow of the workflow (sequence, switch and while loop)
and special such as terminate, validate and fault han-
dlers. Within the BPEL4WS workflow process itself,

different activities pass information among themselves
using global data variables.

Although the BPEL4WS specification is tailored
more to the requirements of business processes, there
are properties which make BPEL4WS useful in the sci-
entific environment. These properties include Modular
Design, Exception and Compensation Handling. Fur-
thermore, scientific services are often subject to change,
especially with regard to the data types and service-
endpoint locations. Data flexibility is supported using
‘generic’ or ‘loose’ web service data types. Finally, the
BPEL4WS specification allows for workflow adaptiv-
ity, which is mainly facilitated by the ‘empty’ activity
providing a placeholder for future extensions.

However, the BPEL4WS specification does not pro-
vide any direct mechanism to support the manage-
ment and monitoring of a workflow nor does it address
web service security issues, such as passing creden-
tials through a BPEL4WS engine. The WfMS uses
a “deanonymization” technique in which users iden-
tity is first delegated to the WfMS where it can be
stored. When the user successfully communicates with
the WfMS in the future the outgoing message, from the
BPEL4WS engine, is intercepted to attach user creden-
tials and perform a secure call to an external service.

Generating a workflow document is therefore a pro-
cess of bringing activities together to achieve the end-

218 A.S. McGough et al. / GRIDCC: A Real-time Grid workflow system with QoS

QoS properties

BPEL4WS Model
Receive Invoke Invoke Invoke Reply

QoS
Constraint

PL

QoS
Constraint

QoS
Constraint

Fig. 4. Connecting QoS Document and BPEL4WS Model.

goal; similar to a low-level programming language this
is usually a complex and tedious process. A number
of BPEL4WS editors exist, such as the Active BPEL
Editor [19] and the Oracle BPEL4WS Process Manag-
er [30]. However, these are developed for computer
scientists who wish to develop workflows and have an
extensive knowledge of BPEL, and WSDL.

4.2. Aim of GRIDCC editor

The flexibility and richness of features in the
BPEL4WS specification brings with it unavoidable
complexities. These complexities hinder its use by sci-
entist and researchers in an academic domain. To exe-
cute a workflow, the user needs to be able to submit the
workflow to a BPEL4WS engine along with documents
describing the Web Services instances to use with the
workflow, the web service interface (WSDL) for this
workflow and other deployment documents. The user
then needs to be able to trigger this workflow by using
its interface (WSDL). To develop your own workflow
also requires a full knowledge of how to compose and
manipulate these documents.

Considering the user requirements, we can identify
two categories: (1) users executing existing workflow
for complex scientific procedures in which they may
not be experts; and (2) expert users engineering new or
existing processes as workflows. For the first type of
users, web applications are appropriate since execut-
ing existing workflows means uploading the workflow;
supporting parameters and constraints to the server for
use by the workflow engine. The second type of user
needs rich client software with advanced functionality
in order to develop new workflows. This includes com-
fort features, such as a polished user interface, drag-
and-drop, a rich set of keyboard shortcuts, and provi-
sion to save/load whole or partial workflows. These
whole or partial workflows can then be integrated, as
building blocks, to form part of more complicated and
sophisticated workflows. The purpose of the GRID-
CC editor is to provide a hybrid solution and address
some of the limitations of the BPEL4WS specification

which are normally ignored by existing open source
and commercial editors. The GRIDCC editor differs
from existing editors in the following ways:

Portal Based Editor: All open source and commer-
cial workflow editors require installation and configu-
ration of the editor before use. Installation of a work-
flow editor means access to local file system (normal-
ly) as admin, which may not be available. This JSR
168 [1] compliant workflow editor will provide an edit-
ing tool on demand without the need to install. Users
can edit and save the workflow on the server, this can
be performed either from their own web browser or
any other (subject to security constraints) at any time
in the future. This provides a powerful framework for
the sharing of workflows. The use of a JSR 168 com-
pliant portal and portlet interface allows for a mixing
of the presentation layer of the editor (running within a
web browser) with the back-end workflow editor logic
which is implemented in Java and runs on the server
side. This allows for a simple Graphical User Inter-
face (GUI) written for a web browser to delegate all of
the complicated logic, for such things as validating a
workflow, to be handled by the server side. This log-
ic is often referred to as the business logic. Browser
based clients have an inherent advantage as they do not
need to be upgraded on the client side and provide a
pervasive access mechanism. Further, large, complex
workflows can be designed by experts then stored and
maintained centrally, meaning users need only access
and deploy them via the portal.

Drag and Drop: The GRIDCC editor provides a drag
and drop facility which allows the user to drag vari-
ous BPEL4WS activities, Web Services or operations
from the web service registry, Quality of Service (QoS)
constraints from the QoS panel and variables from the
XML Schema registry into the workflow designer pane.
Dragging of different components on the designer pane
either updates the BPEL4WS script or creates the corre-
sponding QoS elements. The workflow editor is based
on ActionScript 3.0 [22] and MXML [15]; the core
components of Macromedia Flash. ActionScript is a
scripting language supporting various features, such as

A.S. McGough et al. / GRIDCC: A Real-time Grid workflow system with QoS 219

<?xml,version="1.0",encoding="UTF-8"?> <QoSRequirements>

<QoSConstraint>

<XPathReference>process</XPathReference>

<Resources>

<CPUSpeed>2000000</CPUSpeed>

</Resources>

<MaxDurationTime>100</MaxDurationTime>

<Reliability>100</Reliability>

</QoSConstraint>

</QoSRequirements>

Fig. 5. A global requirement.

<?xml\,version="1.0"\,encoding="UTF-8"?> <QoSRequirements>

<QoSConstraint>

<XPathReference>

/process/sequence[1]/invoke[1]

</XPathReference>

...

</QoSConstraint>

</QoSRequirements>

Fig. 6. A single invoke activity requirement.

drag and drop, within the web browser. These features
are normally only available through the use of a desk-
top (installed) application. MXML is the XML-based
markup language for the presentation layer.

Hiding Complexities: A generic BPEL4WS work-
flow editor demands advanced skill from workflow de-
signers; i.e. a thorough understanding of Web Services
architecture and different types and styles of Web Ser-
vices, expertise in managing XML files from various
namespaces, experience of an XML query specifica-
tion language such as XPath or XQuery; and familiarity
with the BPEL4WS specification. Web Services and
BPEL4WS specification have dependencies on other
related specification e.g. WS-Addressing; which fur-
ther complicates the design process. The GRIDCC
editor hides these complexities from the scientist and
researchers by automating different tasks in following
way:

1. A workflow process requires global variables for
its proper functioning. Whenever a new process is
created a global corresponding <variables>
element is created at a specific location as re-
quired by the BPEL4WS specification. The
<variables> element is a registry of different
XML specific data types and variables.

2. A workflow orchestrates various Web Services
wrapped in <partnerLinkType>, <part-

nerLinks> and <partnerLink> elements.
Each <partnerLinkType> element wraps a
<portType> of the web service, which it-
self wraps various operations. The GRID-
CC editor creates the <partnerLinkType>,
<partnerLinks> and <partnerLink>
when any web service is added in the web service
registry.

3. Operations on the partner Web Services are
called through the <invoke> activity. The
<invoke> activity specifies the <partner
Link>, <portType>, <operation>, <inp
ut> and <output> elements defined in WSDL
or BPEL4WS script. An operation of the web
service can be dropped directly on a workflow
process from a web service registry and the ed-
itor itself creates the corresponding <invoke>
activity by relating various required elements.

4. An <invoke> element must specify <input>
and <output> variables to store the values of
outgoing and incoming messages. If these vari-
ables do not exist then the GRIDCC editor cre-
ates the<variable> required for successful in-
vocation of the operation in the <variables>
element (item 1).

5. The GRIDCC editor also adds “exception han-
dling” activities with <empty> activities as a
template for flexibility and extensibility. The

220 A.S. McGough et al. / GRIDCC: A Real-time Grid workflow system with QoS

<?xml\,version="1.0"\,encoding="UTF-8"?> <QoSRequirements>

<QoSConstraint>

<XPathReference>

/process/sequence[1]/invoke[1]

</XPathReference>

<XPathReference>

/process/sequence[2]/invoke[2]

</XPathReference>

<MaxDurationTime>100</MaxDurationTime>

</QoSConstraint>

</QoSRequirements>

Fig. 7. Multiple invoke activity requirements.

designer of the workflow can replace these
<empty> activities with actual business logic.

Ease of use: The GRIDCC editor is easy to use due
to its built in error handling. The workflow editor vali-
dates the actions of the designer and makes sure differ-
ent workflow activities are arranged according to pre-
defined specifications. Different activities are arranged
in the logical groups and different activities are enabled
only when they can be used. The BPEL4WS Designer
maps structured activities of the BPEL4WS language
e.g. Sequence, Process, Flow as Graphical User Inter-
face containers such as a Panel. This mapping was a
natural choice as structured activities of BPEL4WS can
wrap simple activities like invoke, receive or reply and
similarly GUI containers can contain simple widgets
like buttons, text boxes and labels. The main advantage
of this mapping is the enhanced user interface such as
when the container is dragged or re-positioned visually
then all of its inner components are re-positioned rel-
atively, which can be likened to re-arranging of a se-
quence activity along with all its sub activities within
the BPEL4WS process.

Web service registry: The Editor provides a very
basic Web Services registry to arrange Web Services
for later use. When a user adds a new web ser-
vice to the registry the editor creates correspond-
ing <partnerLinkTypes>, <partnerLinks>
and <partnerLink> elements for later use in the
<invoke>, <reply> or <receive> activities.
The Web Services registry hides the inner details and
complexities of the BPEL4WS script and WSDL exten-
sions (required by the BPEL4WS specification) from
the user and the designer can concentrate more on the
business logic rather than wrapping the partner services
in various elements. The web service registry can also
be used as a pool of semantically equivalent but geo-
graphically dispersed Web Services.

XML Schema Registry: When any web service is
added into the Web Services registry, the editor parses
the web service and extracts the data types declared
in the <wsdl:type> and <wsdl:message> ele-
ments and build the registry of various data types. XML
data in the registry is namespace aware, however, the
user doesn’t need to address the namespace issues and
conflicts. At design time the user only drags the re-
quired data type and the editor creates the respective
variable with correct structure in the BPEL4WS script.

QoS Constraint: The GRIDCC editor provides a
pallet grouping of various QoS constraints. The
BPEL4WS specification does not define the quality is-
sues related to overall workflow nor individual Web
Services. QoS constraints can be coupled with differ-
ent BPEL4WS activities particularly <invoke> ac-
tivities or linked to a particular service through its
<partnerLink>. QoS constraints for the workflow
are specified in the separate file rather than embedding
them within the BPEL4WS script.

Workflow Monitoring: Some popular workflow en-
gines describe the state of a workflow in XML, but not
all. If a workflow state is available in XML format
then it can be exposed and can be queried by the client
application. It is also possible to retrieve a workflow
snapshot at run time in XML; which can be transformed
using XSLT into user acceptable formats. However,
it must be stated that extracting an XML snapshot of
the current state of the executing workflow requires
some understanding of the underlying workflow en-
gine. Consequently, it is easier to create a workflow
monitoring web service which is independent of the
underlying workflow engine. This involves monitor-
ing nodes being introduced within the workflow script
which ‘call back’ the monitoring service, allowing the
service to keep a record of how far the workflow has
progressed. This has the advantage that the monitoring
service is unaffected by the underlying workflow en-

A.S. McGough et al. / GRIDCC: A Real-time Grid workflow system with QoS 221

Resolver QoS
Reserver

Performance
Repository

Planner

QoS

BPEL QoS

BPEL
QoS

BPEL

Agreement
Service

Fig. 8. QoS Components.

Resource
provider

RASPAgreement
Service

Agreement
Consumer

Fig. 9. Agreement Service interactions.

gine implementation and allows the user to select which
elements within the workflow they wish to monitor, ul-
timately giving the user a greater level of control. De-
velopment of a custom monitoring service can be espe-
cially important when the status of multiple workflow
activities are crucial in deciding the execution path of
the workflow.

5. QoS aware workflow optimization

Quality of Service (QoS) is a broad term that is used
in this context to denote the level of performance and
service that a given client will experience at a specific
point in time, when invoking a given specific operation
on a web service instance.

QoS support is paramount given the inherent shared
nature of the Grid. This is compounded through the
limited capability of certain high demand services. Fur-
thermore, QoS is essential to deal with the require-
ments for real time interactions, such as guaranteeing
the streaming and storage of data from an instrument.
In this environment to satisfy users requirements will
often lead to resource starvation or a situation no better
than first come first served processing due to users mak-
ing exclusive reservations for all stages of their work-
flow. This effect can be alleviated through the client
specifying loose (soft) and strict (hard) QoS require-
ments as appropriate.

The provisioning of loose guarantees consists of the
capability of clients, to select service instances that can
potentially provide a best-effort QoS profile meeting
the client’s requirements. This is based on previous
measurements of that service. Loose guarantees are

delivered on a best-effort basis, and for this reason, they
generally do not require the prior establishment of a
Service Level Agreement (SLA).

Strict QoS requires the certainty of the delivery of the
prescribed level of service, which needs to be agreed
upon through signaling and negotiation processes in-
volving both the client and the service provider. For
example, the reservation of a given portion of a re-
source such as RAM, disk space, network bandwidth
or instrument. The reservation service provider is re-
sponsible for keeping information about resource avail-
ability over time, for ensuring that no resource is over-
committed and for supporting resource-specific locking
mechanisms.

QoS provisioning of our work relies on both strict
and loose QoS guarantees. These QoS requirements
can be made either by a user through the client interface
as discussed in Section 4, or as part of the workflow
manipulation process. While hard QoS requires the
making of reservations on the resources to be used, soft
QoS requires the user (or planner acting on the users
behalf) to model the execution of the services that may
be used to satisfy the users requirements to determine
if these resources are appropriate. These models may
vary from the simple, when only a single service is re-
quired to the extremely complex when several services
are required as part of a workflow. In such cases it may
be required that a reservation is used even to satisfy
loose QoS constraints.

A user submits a BPEL4WS document, which is
likely to contain a number of service invocations – re-
ferred to as tasks. A separate document is used to de-
scribe the QoS requirements placed on the BPEL4WS
document. Although a number of languages exist for

222 A.S. McGough et al. / GRIDCC: A Real-time Grid workflow system with QoS

200 400 600 800 1000

Number of partitions reserved

0

10000

20000

30000

40000
M

es
sa

ge
 p

ay
lo

ad
 s

iz
e

(e
xc

l.
en

ve
lo

pe
)

Fig. 10. Instrument reservation invocation messages size, in Bytes.

200 400 600 800 1000

Number of partitions reserved

0.5

1

1.5

2

2.5

O
pe

ra
tio

n
in

vo
ca

tio
n

tim
e

(in
 s

ec
on

ds
)

Fig. 11. Instrument reservation completion time (linear scale).

describing QoS requirements, none exist which is suit-
able for describing QoS requirements with a workflow
description. A common practice emerging within the
XML community is to have one document per use, and
for these documents to cross reference each other, for
example a BPEL4WS document describes the abstract
workflow, another document describes the deployment
details and a third defines the skeleton of the work-
flow’s WSDL. In this spirit of the ‘one-document-one-
use’ paradigm, the QoS requirements are themselves
defined within their own document, which references
the associated workflow, in our case a BPEL4WS docu-
ment. This allows us to use existing BPEL4WS tooling

to develop and execute workflows, and further it means
future development of QoS support for other workflow
languages would be more straightforward.

As such a simple QoS language has been defined
which uses XPath [14] references into the BPEL4WS
document to tag activities, both basic and structured
activities as shown in Fig. 4. These XPath tags are then
annotated with the QoS requirement such as time to ex-
ecute, disc space required or memory required. Alter-
natively services that are used may be tagged by their
<partnerLink>. This has the advantage that these
can be processed without the need to decompose the
BPEL4WS document. However, if the service is used

A.S. McGough et al. / GRIDCC: A Real-time Grid workflow system with QoS 223

1 10 100 1000

Number of partitions reserved (log scale)

0.5

1

1.5

2

2.5
O

pe
ra

tio
n

in
vo

ca
tio

n
tim

e
(in

 s
ec

on
ds

)

Fig. 12. Instrument reservation completion time (logarithmic scale).

multiple times within the document it is not possible to
distinguish between these. Thus all calls will share the
same QoS requirements.

When using the XPath approach QoS requirements
fall into three categories according to the range of ac-
tivities within the BPEL4WS document it refers to:
global, single invoke and multiple invoke.

A global requirement is a QoS element that speci-
fies single global QoS requirements. A simple example
is given in Fig. 5 (for simplicity, all the unnecessary
technical details are omitted).

In the above example, there is a single XPathRefer-
ence pointing to the entire process of the BPEL4WS
document. Thus everything within this process must
match these QoS requirements. In this case the overall
time should be less than 100 seconds, all CPU’s should
be 2Ghz and all resources should be fully reliable.

Single invoke activity requirement is a QoS el-
ement that specifies requirements on a particular
BPEL4WS activity. Only that activity needs to satisfy
the QoS requirement specified as shown in Fig. 6.

In this case there is a single XPathReference pointing
to a single invoke element of the BPEL4WS document.
Thus everything within this invoke must match these
QoS requirements.

Multiple invoke activities requirement is a QoS
element that specifies requirements over a set of activi-
ties – i.e. all must satisfy (jointly) the QoS requirements.
Within a single QoS constraint, several XPathRefer-
ences pointing to different activities in a BPEL4WS
document are defined. See Fig. 7 where the time for
both invoke activities must be less than 100 seconds.

Client Server

interceptor

Fig. 13. Inline SOAP message interceptors.

It should be noted that multiple QoS elements may
exist within the same QoS document and that these ele-
ments may have overlapping effects on the BPEL4WS
document. For example there may be a requirement for
the entire workflow to complete within an hour while
several of the individual tasks may need to be complet-
ed in less than five minutes each.

5.1. QoS components

The Planner is responsible for ensuring QoS adher-
ence. This is achieved through the use of a number of
stages – see Fig. 8. Namely constraint resolver, ba-
sic resolver, performance repository and QoS reserver.
These components are chained together with the QoS
and BPEL4WS documents being passed between them.
We explain each of these steps in more detail:

Performance Repository is central to being able to
perform any quality of service decisions. Information
is held within the PR as to how different entities within
the Grid behave. This may be information about how
reliable a service is or how long it is expected to take to
execute. Information is retrieved from the PR in order
to determine if a workflow can be executed within the
requested QoS requirements and if so which are the
most appropriate resources to select.

224 A.S. McGough et al. / GRIDCC: A Real-time Grid workflow system with QoS

WfMS

BPEL Engine Service

User Client

Client
Timers

tu

Timer
for

WfMS
tw

Timer for
Server side
of engine ts

Timer for
Client side
of engine tc

Fig. 14. Locations of timings within architecture.

Resolver Services. Here a chain of services are used
to modify an abstract workflow in which potentially
not all endpoints are defined into a concrete workflow
in which the endpoints are defined. The selection of
resources to use is an area of active research and we
seek to develop alternative approaches for this stage,
allowing for comparison. Here we discuss some of the
approaches that we have been evaluating. The most
simple approach is to use a round-robin service which
selects the next available resource until one is found
matching the QoS and other requirements. A con-
straints resolver based on a constraints equation method
can also be used. The workflow along with the QoS
requirements is converted into a set of constraint equa-
tions in the form of linear equations which can be solved
by using Mixed Integer Linear Programming [31]. In-
formation from the Performance Repository is used
to help solve these constraint equations. Another ap-
proach is to use a priori information to pre-allocate re-
sources to a specific set of (common) task thus mak-
ing the process of resolving a mapping exercise [4]. It
should be noted that a QoS element without a named
resource is then changed into an element requesting a
named resource. This can then be passed onto the QoS
Reserver for making the actual reservation if required.

QoS Reserver inspects incoming QoS documents
looking for requests for making reservations with
known resources. The Agreement Service is then con-
tacted in order to make these reservations. The QoS
document is then updated to indicate that the reserva-
tion has been made and records the unique token used

to access the reservation. All requests for reservations
are processed here. In the current implementation if
reservations can’t be satisfied then the whole document
will be thrown back to the user to select new reserva-
tion times. Once we have components capable of se-
lecting timings for reservations internally the workflow
and QoS will be returned to this component.

5.2. Observer

The Observer receives a completed copy of the QoS
document, and the BPEL4WS document, at the same
time that the workflow engine receives the BPEL4WS
document. This QoS document contains timing infor-
mation as to how the workflow is expected to execute.
The Observer is then able to monitor the progress of the
executing workflow, through status calls to the work-
flow engine, in order to ensure that the workflow ex-
ecutes as desired. If the workflow deviates from the
expected plan, in either direction, the observer is able
to invoke the Planner to re-compute the workflow in or-
der to achieve the desired QoS requirements. As each
workflow engine implements status calls in a different
way not only is this approach difficult to implement
but also unclear as to the performance hit that will be
incurred. The ActiveBPEL editor seems to just expose
its internal state and as such calls seem to have little
overhead. However, this call should only be made as
needed and is an area of open research.

We currently support the dynamic changing of end-
points within the BPEL4WS documents. All end-

A.S. McGough et al. / GRIDCC: A Real-time Grid workflow system with QoS 225

10

100

1000

10000

100000

1 10 100 1000 10000 100000

Wait Time (ms)

O
ve

rh
ea

d
s

(m
s)

Client (Insecure)

WfMS (Insecure)

Engine Server (Insecure)

Engine Client (Insecure)

Client (gLite)

WfMS (gLite)

Engine Server (gLite)

Engine Client (gLite)

Client (Globus)

WfMS (Globus)

Engine Server (Globus)

Engine Client (Globus)

Fig. 15. Overheads vs wait time.

points within the BPEL4WS document are defined by
variables within the workflow, which are assignable
through calls to the workflow at initialization time, via
a call to a WSDL operation. For additional control, we
are investigating approaches to dynamically alter the
endpoints during workflow execution. One such ap-
proach would be to provide interrupt operations on the
workflow, which would update these endpoints while
the workflow itself is running, and would allow for
endpoints to be selected for optimization without being
forced to compute them all at the time the workflow is
first triggered.

6. Performance repository

The Performance Repository (PR) is the central
source of information about how services within the
Grid behave. This information includes: reliability,
availability, accessability and expected sojourn time.
The PR provides two main functions, those of gath-
ering and analyzing information about other services
and that of providing responses to queries about these
services.

The PR is implemented as a database and contains
two main types of data: modeling and collected. Mod-
el information provides mathematically modeled de-
scriptions on how a service operates. This is produced

through off-line analysis of the service. It should be
noted that the architecture of the PR is agnostic to the
modeling approach used. Models are held within the
PR as separate objects with the requirement that they
can respond to the same set of queries that are supported
by other data sources within the PR such as historically
collected data. Alternatively a service may present in-
formation at regular intervals to the PR. This collected
information can be data-mined in order to obtain esti-
mates for the service. We seek to extend the PR such
that it may derive models from collected information as
well as use seasonality to help predict more accurately
future state. The intention is to provide a service com-
parable with the Network Weather Service [32] for ser-
vices within the Grid. There are two customers for the
PR’s information, the individual user and the WfMS
planner.

Requests for information from the PR may not be
handled by the PR in isolation. For example a query of
“What 3 Ghz Pentium computers are more than 80%
reliable?” would first make use of the standard re-
source selection service to determine which resources
are 3 Ghz Pentium processors and then check this can-
didate set against their reliability. However, this on-
ly holds for static information. Queries about current
workload and reservations held is not within the remit
of the PR.

226 A.S. McGough et al. / GRIDCC: A Real-time Grid workflow system with QoS

10

100

1000

10000

100000

0 10 20 30 40 50 60 70

No of Submissions

O
ve

rh
ea

d
 (

m
s)

Client

WfMS

Engine Server

Engine Client

Fig. 16. Overheads vs Number of submissions.

7. Reservation services

The GRIDCC Agreement Service (AS) is the service
implementing resource reservation for those resources
which support this functionality, i.e. storage and instru-
ments. The name stems from the fact that the AS is
using ideas and, to a certain extent, data types and in-
terfaces from a WS-Agreement [7] specification draft.
As such, the AS establishes agreements for resource
reservation: It stands in the middle between agree-
ment consumers and Reservation and Allocation Ser-
vice Providers (RASPs), as shown in Fig. 9. The agree-
ment consumer is the entity requesting the reservation,
and may or may not be the same entity with the reserva-
tion consumer. The RASP is a gateway to the resource,
for reservation purposes. In this ecosystem of resource
consumers and brokers, the AS is the entity accepting
agreement offers which comply to specific templates,
parses and interprets the terms, and eventually contacts
the RASP to request the reservation on behalf of the
agreement consumer.

Essentially, the AS is an intermediary which imple-
ments a control protocol for establishing digital con-
tracts concerning reservations of storage space and in-
strument elements. By “control” we refer to the fact
that the domain-specific reservation information (for
instance start/end time) is not visible to the AS and is
not a part of the protocol (language) that the AS under-

stands, but rather carried in the message payload – the
Service Description Terms (SDTs), in AS terminolo-
gy. External processors are responsible for interpreting
the SDTs and converting them to a language that the
RASPs understand.

As there may be multiple Agreement Services es-
tablishing reservation contracts for different adminis-
trative domains, and a single domain may be served
by more than one Agreement Services, resource state
monitoring and resource locking cannot be realistically
performed by the AS. Thus, the AS only holds the role
of that component which proxies requests and performs
necessary translations, so that agreement consumers
need only speak one language for resource reservations.
It is up to the resource itself to honor the contract and
ensure the availability of what has been reserved at the
specified time and for the specified duration.

7.1. Advance reservations for overall performance
enhancement

Advance reservations can affect the overall perfor-
mance of a workflow in two different ways, depend-
ing on whether it is computing facilities, network re-
sources, storage space, or instruments being reserved.
Here, we do not discuss the case of reserving data in
digital libraries or other repositories.

A.S. McGough et al. / GRIDCC: A Real-time Grid workflow system with QoS 227

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Workflow

O
ve

rh
ea

d
 (

m
s)

User

Engine Server

Engine Client

WfMS

Fig. 17. Overheads for a multiple submission run.

The performance change is directly related to the
shared (or not, thereof) nature of resources to be re-
served. If a resource can be used in a shared man-
ner, as is the case for instance with computing facili-
ties and network links, advance reservation can boost
or lower workflow execution times when demanding
processing or transfer of information is involved. In
the former case, for instance, the user locks a slice of
the computing facilities for themselves, so the process-
ing tasks submitted will finish as soon as they are ex-
pected to. If, however, there is no reservation in place,
the user will either have to compromise for slower per-
formance, to wait until the resources are available to
them, or to re-route the task thus introducing another
discovery-matchmaking-submission cycle. Under sit-
uation of low utilization it may even be possible for the
task to complete sooner without reservation as a greater
proportion of the resource than would have been re-
served is used. This is a risky approach and is in no way
a reliable mechanism. The case is similar for network
resources.

When it comes to non-sharable resources, the work-
flow performance may suffer from the need to wait un-
til the resources are made available from others. For
instance, if a workflow must use a specific instrument
to retrieve data for the region it is installed in, there
is no option other than to wait for the instrument to
become available for use. Should this requirement be

known well in advance, the reservation of the resource
would allow its immediate use at a pre-specified time,
thus removing any queuing delays.

In both cases, the usefulness of reserving resources
in advance is directly related to the specific application
(workflow) taken into consideration. An application
for the batch-processing of historic data can typically
accept delays introduced from shared use of resources.
For real-time applications which demand immediate
and efficient access to resources, the ability to reserve
resources in advance may be of critical importance, as
they may have to block and suffer significant delays
should they not have reserved them when needed.

8. Evaluation and performance

In this section we provide an evaluation of the real-
time services used within the GRIDCC project. Due to
the nature of this work being based on bringing work-
flow support to Grid middleware and for the support of
instruments within the Grid it is difficult to give a quan-
titative analysis of this work. It is difficult to evaluate
the benefit of providing workflow support within the
Grid. Instead we focus here on the quantitative features
of the system such as the effect on performance of using
reservations, the chance of a workflow being accepted,
the influence of the size of the PR on the planning time
and the overheads incurred from using this approach.

228 A.S. McGough et al. / GRIDCC: A Real-time Grid workflow system with QoS

1500

2000

2500

3000

3500

4000

4500

0 10 20 30 40 50 60 70

Submitters

O
ve

rh
ea

d
 (

m
s)

Fig. 18. Overheads vs multiple clients.

8.1. Reservation jobs

In the current implementation, reserving storage is
always dependent on the resource being used, with re-
gard to the completion time of the operation. The on-
ly thing that changes from the AS perspective is the
amount of space to be reserved, which is passed on to
the storage resource. As such, efficiency of the AS for
storage reservations is always the same. It is interest-
ing, however, to see how the AS scales with instrument
reservations.

Instruments and instrument collections are typically
virtualized using the same interface. As such, an In-
strument Element may control a single instrument or
multiple instruments of various types. The internal or-
ganization of instrument collections is represented by
a tree structure. Each sub-tree of such a tree is consid-
ered to be a partition of the instrument, which can be
reserved. As such, reserving the partition correspond-
ing to the top node (root) is equivalent to reserving the
whole instrument. Reservation of a partition involves
inserting a relevant entry in the instrument reservations
database; Then when a user contacts the instrument
and tries to use it by setting its properties, they are
not authorized if a reservation entry for this instrument

partition exists in its reservations database and is not
owned by the user.

In the case of instrument reservations, the message
payload increases linearly as the number of partitions to
be reserved increases (Fig. 10). We conducted a num-
ber of experiments over a local network, so that net-
working delays do not affect our measurements. The
actors involved in the experiments were a client to the
AS, running on the same workstation as the AS. The
remote instrument is simulated by a service running on
a low-end computer on the same Local Area Network,
connected at 100 Mbps. We ran a series of 10 experi-
ments with varying number of instrument partitions to
be reserved and came up with their averages. As shown
in Figs 11 and 12, the AS return time scales linearly as
the message payload size increases.

This is not the case when reserving instruments by
quoting their type or functional and non-functional
characteristics. In this case, the message size changes
insignificantly, and it is the RASP and resource imple-
mentation that provides the biggest effect on perfor-
mance. Similarly, when reserving CPUs, the AS per-
formance depends largely on whether reservations take
place by naming the exact resources to be reserved, or
by grouping them according to their properties and re-
serving them in this way. Computing facilities reserva-

A.S. McGough et al. / GRIDCC: A Real-time Grid workflow system with QoS 229

10

1010

2010

3010

4010

5010

6010

7010

0 10 20 30 40 50 60 70

Workflow Stages

O
ve

rh
ea

d
 (

m
s)

Client

WfMS

Server Engine

Fig. 19. Overheads vs number of workflow stages.

tion has not been implemented in our work yet, and is
currently work in progress.

8.2. WfMS overheads

Here we present the results of experiments to eval-
uate the real-time performance of the WfMS (release
WfMS D4 3 RC1). The experimental set-up com-
prised of different computational resources which be-
long to a medium level network at Imperial College
London distributed between the departments of Com-
puting and Physics. We measure response times at dif-
ferent points within our architecture and establish the
sampling distributions of the mean.

Here we concern ourselves with the overheads in-
curred from using the WfMS as a workflow enactment
service. This can be from the WfMS itself or the use
of the BPEL engine. In all cases communication be-
tween services and the serialization and de-serialization
of messages along with the processing of these mes-
sages are not individually distinguished and form part
of the overheads. In order to test these overheads we
need a mechanism for timing parts of our architecture.
Due to the distributed nature of the workflow service
it is not possible to directly time calls between differ-
ent resources at the level of accuracy required – on
the order of milliseconds. This is due to the fact that
clocks between computers are often miss-aligned and

are rarely accurate to this extent. Instead our approach
is to perform comparative timings between events on
the same resource. This allows for round-trip timings
to be made though not uni-directional timings. In order
to add timings to services which are not part of our code
base and to make timings of our code without the need
to explicitly write the timings into the code we use the
inline SOAP message interceptors approach. This is
illustrated in Fig. 13 below.

We use this approach in a number of places as depict-
ed in Fig. 14 with Table 1 describing the timings used.
Note that these interceptors record timings for all mes-
sages that pass through them. Thus the output from the
WfMS was omitted as this would have also recorded
all other calls and made it virtually impossible to deter-
mine which were calls to the BPEL engine. Timings of
the end service were omitted as these closely matched
the execution time of the service. All results are gener-
ated from averages of ten iterations. The specification
of the resources and their locations are given in Table 2.
All resources were connected to 100 MB networks. It
should be noted, however, that there is no specialized
link between the departments and all experiments were
done during normal load. For some of the tests multiple
client boxes were used. These were identical resources
from an open cluster room. All calls between the Client
service and the WfMS were performed securely using
the gLite https tooling. The communication between

230 A.S. McGough et al. / GRIDCC: A Real-time Grid workflow system with QoS

Table 1
Meaning of timings in Architecture

Time Name Description

tu User time Timing observed by the user for invoking a workflow.
tw WfMS overall time Time observed by the WfMS for invoking a workflow.
ts BPEL Server Time observed by the BPEL engine for an incoming

workflow.
tc BPEL Client Time observed by the BPEL engine for each call

out to external services.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Availability

N
um

be
r

of
 M

at
ch

in
g

S
er

vi
ce

s

Fig. 20. Matching services vs availability.

the WfMS and BPEL engine was unencrypted as both
services were running on the same box. Three forms
of security were used between the BPEL engine and
the service. Those of unencrypted, gLite (https) and
Globus (https).

As the main emphasis of this section is to evaluate
the WfMS and BPEL engine we have constrained the
workflows to ones that can be controlled precisely –
the only services which is used is a wait service, which
waits for a pre-determined number of milliseconds –
thus allowing for easy computation of overheads. We
used two workflows; the first workflow consists of just
one call to the wait service (request→ wait → respond)
and the second consists of repeated calls to the wait
service (request → wait n times → respond). The
first workflow allows for the testing of the overheads
incurred when executing a workflow. While the second

indicates the additional overheads incurred from the
number of components within your workflow.

Overheads vs Wait time. In this experiment a single
wait workflow was executed with varying wait times
being used and was conducted with all three security
mechanisms (unencrypted, gLite, Globus). Figure 15
depicts the overheads incurred when running work-
flows through the system which showing that they are
independent of the wait time. The unencrypted com-
munication operated the quickest with an average client
overhead of 1.7 seconds and WfMS overhead of 0.1
seconds. The gLite security added on average 1 second
to the overheads seen by the WfMS and user. The larger
overhead for security between the User and WfMS as
opposed to the BPEL engine and the wait service can be
attributed to the fact that the user is located on a remote
network to the WfMS and as such the handshaking op-

A.S. McGough et al. / GRIDCC: A Real-time Grid workflow system with QoS 231

Table 2
Experimental Resource specification

Resource Use Location Specification

Client Computing Intel Pentium 4 (3.2 GHz) with 2 MB cache and
1 GB memory. Ubuntu Linux 7.10.

WfMS, BPEL engine Physics AMD Sempron (3100+) with 256K cache and
512MB memory. RedHat Enterprise Linux 4.
Apache Tomcat 5.5.23.

Wait Service Physics AMD Sempron (3100+) with 256K cache and
512MB memory. RedHat Enterprise Linux 3.
Apache Tomcat 5.0.28.

Availability

Q
oS

 M
at

ch

R
ej

ec
t

A
cc

ep
t

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 0.96

Fig. 21. Workflow acceptance vs availability.

erations will take longer than those on a local network.
The Globus security mechanism adds approximately 60
seconds to the overheads seen by the user and WfMS.
The reason for such a high overhead is not fully un-
derstood. One problem was exposed with the gLite
security libraries in that there appears to be a memory
leak. After approximately fifty workflow submissions
the memory is exhausted. This issue was not observed
with the other two security approaches. This is current-
ly under investigation. Experiments were also conduct-
ed to determine the effect of deploying the workflow to
the BPEL engine for each submission compared with
just triggering it each time. The process of deploying
the workflow was found to add an extra overhead of 2.2
seconds.

Overheads vs Number of submissions. Here the
same workflow is used with the client submitting mul-
tiple workflows at the same time. As the gLite and
Globus security mechanisms had both exhibited prob-
lems in the previous test, only unencrypted communi-
cation was used here. The wait time in all cases was
held at 2000 milliseconds. Figure 16 illustrates the
overheads incurred during multiple submissions to the
WfMS. It can be seen that as the number of simultane-
ous submissions increase so does the overheads. With
the client overheads continuing to increase while the
others flatten out. This could be due to the fact that
our submission client was not able to handle multi-
ple simultaneous submissions. Alternatively this could
be another manifestation of the memory leak observed
with the gLite secure submissions in the previous ex-

232 A.S. McGough et al. / GRIDCC: A Real-time Grid workflow system with QoS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 25
0

45
0

65
0

85
0

10
50

Number of Services in PR

Q
oS

 E
xe

cu
tio

n
T

im
e

(s
)

Fig. 22. Planning time vs PR size.

periment. Both the WfMS and BPEL engine appear to
cope well under reasonable load. However, both exhib-
it an increase in overhead from multiple submissions.
In both cases this can partly be attributed to the bursty
nature of job submissions. Figure 17 illustrates the
overheads from one run of this experiment. The X-axis
represents the workflow submission number. As can
be seen the overheads observed with the client jump
sharply at around 21 submissions. This could be due to
memory exhaustion or overloading of the submission
client. The WfMS, Engine Server and Engine Client
remain fairly consistent.

Overheads vs Number of submitters. Here rather
than having multiple submissions from the same client
multiple clients were used each repeatedly submitting
the single workflow, thus removing the busty nature and
load on the client. Figure 18 depicts the overheads as
seen by one of the clients for varying numbers of clients.
The figure shows the client observation time increases
as the number of concurrent submitters increase. It can,
however, be seen from this graph that the overhead is far
lower than in the previous experiment as the clients are
fully independent and do not interfere with each other.
Suggesting that in fact the bursty nature of arrivals
coupled with overheads in the multi-submission client
were affecting the previous results.

Effect of the length of a workflow on overheads.
In this experiment we vary the length of a workflow to
determine the effect on overheads. Here the (request→
wait n times → respond) workflow is used with varying
values for n. The wait time for each call was held
at 2000 milliseconds. Figure 19 illustrates the results
from the experiment. As expected, as the number of
stages in the workflow increases so do the overheads.
It can be determined that the overhead per workflow
stage is approximately 60 milliseconds, the majority of
this time coming from the BPEL engine.

8.3. Planner experiments

Here we present experiments to evaluate the func-
tionality and timings of the planner service within the
WfMS. Rather than executing workflows we evaluate
how the Planner can determine workflow placement
and where the overheads come from.

Availability of services. In this experiment we pre-
load the PR with a set of auto generated resource de-
scriptions where the availability is generated from a
uniform distribution. The submission document, to the
WfMS, is augmented with a QoS requirement of the
availability of the service and the Planner is set to out-
put the percentage of resources which have been found

A.S. McGough et al. / GRIDCC: A Real-time Grid workflow system with QoS 233

matching the required level of availability. Figure 20
illustrates the percentage of resources matching the
availability requested in the submission document. As
expected as the availability is increased the proportion
of matching resources decreases.

Ability to run a workflow. Here we look at the
planners ability to run a workflow with QoS. Using the
same PR information from the previous workflow we
repeat the same experiment but this time look at the
ability for the planner to accept the workflow – be able
to locate resources matching the users requirements.
Figure 21 shows the relation between the availability
property of QoS requirements and possibility of finding
matching services and hence being able to execute the
workflow. As can be seen it is nearly always possible
to find a resource with the desired level of availability.
Though as can be derived from the previous experiment
as the users availability requirement goes up the number
of matching services goes down until it is no longer
possible to find a matching resource. At which point
the workflow is rejected.

Performance repository size vs planning time. In
this experiment we determine how the size of the PR
affects the planner. The PR is loaded with different
numbers of records and the amount of time the planner
takes to execute is recorded. From Fig. 22 we can see
that as the number of available services in performance
repository increases so does the execution time of the
planner. When the number of services in the Perfor-
mance Repository is low (less than 250) this effect is
small. However, beyond this number the time increases
rapidly.

9. Conclusion and future work

In this paper we have presented the real-time services
used within the GRIDCC project to allow for integra-
tion of existing Grid technology with that of instru-
ments. These include the end-to-end workflow pipeline
which takes a user’s design and implements it within
the Grid, reservation services and performance repos-
itory. Workflows are defined through an editor which
allows the augmentation of QoS requirements, defining
the users expectations for the execution. The WfMS
provides a mechanism for building QoS on top of an
existing commodity based BPEL4WS engine. Thus
allowing us to provide a level of QoS through resource
selection from a priori information along with the use
of advanced reservation.

The workflow editor and observer are areas of cur-
rent development within the project. We are working
with application scientists from the GRIDCC project
to abstract the editor away from the BPEL4WS/QoS
languages and make them more accessible to the sci-
entist. We are investigating other techniques which
will allow us to dynamically change the execution of
the BPEL4WS workflow once deployed to the engine.
Thus allowing for real time adaption of the workflow
in light of the changing state of the Grid.

References

[1] A. Abdelnur and S. Hepper, Porlet specification (jsr-168),
http://jcp.org/aboutJava/communityprocess/review/jsr168/.

[2] Active Endpoints. ActiveBPEL Engine (2.0). http://www. ac-
tivebpel.org.

[3] A. Afzal, J. Darlington and A.S. McGough, Stochastic Work-
flow Scheduling with QoS Guarantees in Grid Computing En-
vironments, in Proceedings of the Fifth International Confer-
ence on Grid and Cooperative Computing, Changsha, China,
October 2006, 185–194.

[4] A. Afzal, A.S. McGough and J. Darlington, Capacity planning
and scheduling in grid computing environments, Future Gen-
eration Computer Systems, doi:10.1016/j.future.2007.07.004,
2007.

[5] S. Andreozzi, T. Ferrari, S. Monforte and E. Ronchieri,
Agreement-based Workload and Resource Management, in
Proceedings of the 1st IEEE International Conference on e-
Science and Grid Computing, Melbourne, Australia, Decem-
ber 2005. IEEE Computer Society.

[6] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F.
Leymann, K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic
and S. Weerawarana, Business Process Execution Language
for Web services version 1.1, (BPEL4WS). http://www6.
software.ibm.com/software/developer/library/ws-bpel.pdf,
May 2003.

[7] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Lud-
wig, T. Nakata, J. Pruyne, J. Rofrano, S. Tuecke and M. Xu,
Web Services Agreement Specification (WS-Agreement), http://
www.ogf.org/documents/GFD.107.pdf.

[8] R. Bilorusets, D. Box, L. Felipe Cabrera, D. Davis, D. Fer-
guson, C. Ferris, T. Freund, M.A. Hondo, J. Ibbotson, L. Jin,
C. Kaler, D. Langworthy, A. Lewis, R. Limprecht, S. Luc-
co, D. Mullen, A. Nadalin, M. Nottingham, D. Orchard, J.
Roots, S. Samdarshi and J. Shewchuk, Web Services Reliable
Messaging Protocol (WS-ReliableMessaging), ftp://www6.
software.ibm.com/software/developer/library/ws-
reliablemessaging200502.pdf, February 2005.

[9] D. Box, E. Christensen, F. Curbera, D. Ferguson, J. Frey, M.
Hadley, C. Kaler, D. Langworthy, F. Leymann, B. Lovering,
S. Lucco, S. Millet, N. Mukhi, M. Nottingham, D. Orchard, J.
Shewchuk, E. Sindambiwe, T. Storey, S. Weerawarana and S.
Winkler, Web services Addressing (WS-Addressing), August
2004.

[10] D. Burdett and N. Kavantzas, WS Choreography Model
Overview, http://www.w3.org/TR/ws-chor-model/.

[11] L.F. Cabrera, G. Copeland, M. Feingold, R.W. Freund, H.T.
Freund, J. Johnson, S. Joyce, C. Kaler, J. Klein, D. Lang-
worthy, M. Little, A. Nadalin, E. Newcomer, D. Orchard, I.

234 A.S. McGough et al. / GRIDCC: A Real-time Grid workflow system with QoS

Robinson, J. Shewchuk and T. Storey, Web Services Coordina-
tion (WS-Coordination) 1.0, ftp://www6.software.ibm.com/
software/developer/library/WS-Coordination.pdf, August
2005.

[12] J. Cao, S.A. Jarvis, S. Saini and G.R. Nudd, GridFlow: Work-
flow Management for Grid Computing, in Proceedings of 3rd
International Symposium on Cluster Computing and the Grid
(CCGrid), Tokyo, Japan. IEEE CS Press, Los Alamitos, 12–15
May 2003.

[13] E. Christensen, F. Curbera, G. Meredith and S. Weerawarana,
Web services Description Language (WSDL) 1.1, http://
www.w3.org/TR/wsdl, March 2001.

[14] J. Clark and S. DeRose, Xml path language (xpath) version
1.0, http://www.w3.org/TR/xpath, 1999.

[15] C. Coenraets, An overview of MXML: The Flex markup lan-
guage, http://www.adobe.com/devnet/flex/articles/paradigm.
html, March 2004.

[16] D.J. Colling, L.W. Dickens, T. Ferrari, Y. Hassoun, C.A. Kot-
sokalis, M. Krznaric, J. Martyniak, A.S. McGough and E.
Ronchieri, Adding Instruments and Workflow Support to Exist-
ing Grid Architectures, In Lecture Notes in Computer Science,
volume 3993, Reading, UK, April 2006, 956–963.

[17] WCox, F. Cabrera, G. Copeland, T. Freund, J. Klein,
T. Storey and S. Thatte, Web Services Transaction (WS-
Transaction) 1.0, http://dev2dev.bea.com/pub/a/2004/01/ws-
transaction.html, January 2004.

[18] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K.
Vahi, A. Lazzarini, A. Arbree, R. Cavanaugh and S. Koranda,
Mapping Abstract Complex Workflows onto Grid Environ-
ments, Journal of Grid Computing 1(1) (2003), 9–23.

[19] Active endpoints. ActiveBPEL Designer. http://www. active-
endpoints.com/products/activebpeldes/index.html.

[20] T. Fahringer, A. Jugravu, S. Pllana, R. Prodan, C. Seragiotto
Jr. and H.L. Truong, ASKALON: a tool set for cluster and
Grid computing, Concurrency and Computation: Practice
and Experience 17(2–4) (2005), 143–169.

[21] I. Foster and C. Kesselman, eds, The Grid: Blueprint for a New
Computing Infrastructure, Morgan Kaufmann, July 1998.

[22] G. Grossman and E. Huang, ActionScript 3.0 overview, http://
www.adobe.com/devnet/actionscript/articles/actionscript3,
overview.html, June 2006.

[23] L. Huang, D.W. Walker, Y. Huang and O.F. Rana, Dynam-
ic Web Service Selection for Workflow Optimisation, In Pro-
ceedings of the UK e-Science All Hands Meeting, September
2005.

[24] M. Welsh, D. Culler and E. Brewer, SEDA: An architecture for
wellconnected scalable internet services, In Eighteenth Sym-
posium on Operating Systems Principles (SOSP-18), October
2001.

[25] A. Mayer, A.S. McGough, N. Furmento, W. Lee, S. Newhouse
and J. Darlington, ICENI Dataflow and Workflow: Compo-
sition and Scheduling in Space and Time, In UK e-Science
All Hands Meeting, Nottingham, UK, IOP Publishing Ltd,
Bristol, UK, Sep. 2003, 894–900.

[26] A.S. McGough, J. Cohen, J. Darlington, E. Katsiri, WLee,
S. Panagiotidi and Y. Patel, An End-to-endWorkflow Pipeline
for Large-scale Grid Computing, Journal of Grid Computing
(February 2000), 1–23.

[27] A.S. McGough, L. Young, A. Afzal, S. Newhouse and J. Dar-
lington, Performance Architecture within ICENI, In UK e-
Science All Hands Meeting, Nottingham, UK, IOP Publishing
Ltd, Bristol, UK, Sep. 2004, 906–911.

[28] A.S. McGough, L. Young, A. Afzal, S. Newhouse and J. Dar-
lington, Workflow Enactment in ICENI, In UK e-Science All
Hands Meeting, Nottingham, UK, IOP Publishing Ltd, Bristol,
UK, Sep. 2004, 894–900.

[29] D. Nickull and F. McCabe, SOA Reference Model, http://www.
oasis-open.org/committees/tc home.php?wg abbrev=soa-rm.

[30] Oracle. Oracle BPEL Process Manager, http://www.oracle.
com/technology/products/ias/bpel/index.html.

[31] Y. Patel, A.S. McGough and J. Darlington, QoS Support
for Workflows in a Volatile Grid, In Procedings of the 7th
IEEE/ACM International Conference on Grid Computing,
Barcelona, Spain, September 2006.

[32] San Diego Supercomputing Centre. Network weather service.
http://nws.cs.ucsb.edu/ewiki/, 2005.

[33] T. Tannenbaum, D. Wright, K. Miller and M. Livny, Condor –
A Distributed Job Scheduler, Beowulf Cluster Computing with
Linux. The MIT Press, MA, USA, 2002.

[34] I. Taylor, M. Shields and I. Wang, Resource Management for
the Triana Peer-to-Peer Services, in: Grid Resource Manage-
ment – State of the Art and Future Trends, J. Nabrzyski, J.M.
Schopf and J. Wȩeglarz, eds, Kluwer Academic Publishers,
2004, 451–462.

[35] W.M.P. van der Aalst, L. Aldred, M. Dumas and A.H.M. ter
Hofstede, Design and Implementation of the YAWL system,
In Proceedings of The 16th International Conference on Ad-
vanced Information Systems Engineering (CAiSE 04), Riga,
Latvia, june 2004. Springer Verlag.

[36] W3C. Web Service. http://www.w3.org/TR/ws-arch/.
[37] L. Young and J. Darlington, Scheduling in the Grid using

High Level Policies, PhD thesis, Imperial College London,
University of London, 2004.

[38] L. Young, A.S. McGough, S. Newhouse and J. Darlington,
Scheduling Architecture and Algorithms within the ICENI
Grid Middleware, in: UK e- Science All Hands Meeting, Not-
tingham, UK, IOP Publishing Ltd, Bristol, UK, Sep. 2003,
5–12.

[39] J. Yu and R. Buyya, A Novel Architecture for Realizing
GridWorkflow using Tuple Spaces, In Proceedings of 5th
IEEE/ACM International Workshop on Grid Computing (Grid
2004), Pittsburgh, USA. IEEE CS Press, Los Alamitos, 8
Nov. 2004.

[40] J. Yu and R. Buyya, A taxonomy of workflow management sys-
tems for grid computing, GRIDS-TR-2005-1, Grid Computing
and Distributed Systems Laboratory, University of Melbourne,
Australia, March 10, 2005.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

